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ABSTRACT

Differential privacy is a promising privacy-preserving-adigm for
statistical query processing over sensitive data. It woskiject-
ing random noise into each query result, such that it is foigva
hard for the adversary to infer the presence or absence dheiy
vidual record from the published noisy results. The mairectije
in differentially private query processing is to maximire taccu-
racy of the query results, while satisfying the privacy gueaees.
Previous work, notably [16], has suggested that with an@ppr
ate strategy, processing a batch of correlated queries awke w
achieves considerably higher accuracy than answering thém
vidually. However, to our knowledge there is currently nagtical
solution to find such a strategy for an arbitrary query bawk;
isting methods either return strategies of poor qualityefofvorse
than naive methods) or require prohibitively expensive jgota-
tions for even moderately large domains. Motivated by this,
propose the.ow-Rank MechanisrLRM), the first practical dif-
ferentially private technique for answering batch quewéh high
accuracy, based onlaw rank approximatiorof the workload ma-

trix. We prove that the accuracy provided by LRM is close t® th
theoretical lower bound for any mechanism to answer a baftch

queries under differential privacy. Extensive experirsersing real
data demonstrate that LRM consistently outperforms sihtbe-
art query processing solutions under differential privdnylarge
margins.

1. INTRODUCTION

Differential privacy [11] is an emerging paradigm for puhling
statistical information over sensitive data, with strong aigorous
guarantees on individuals’ privacy. Since its proposdferéntial
privacy has attracted extensive research efforts, suchyptogra-
phy [11], algorithms [12, 14, 21], databases [8, 15, 16, 74,28,
29], data mining [1, 13] and machine learning [3, 4, 25]. Tham
idea of differential privacy is to inject random noise inggeegate
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query results, such that the adversary cannot infer, wgh bonfi-
dence, the presence or absence of any given reciorthe dataset,
even if the adversary knows all other records in the datasepd
for r. This paper follows a popular definition of differential yat
cy, callede-differential privacy, in which the adversary’s maximum
confidence in inferring private information is controlled & user-
specified parametercalled theprivacy budget Givene, the main
goal of query processing undedifferential privacy is to maximize
the utility/accuracy of the (noisy) query answers, whiléssging
the above privacy requirements.

This work focuses on a common class of queries cdllezhr
counting querieswhich is the basic operation in many statistical
analyses. Similar ideas apply to other types of linear gsee.g.,
linear sums. Figure 1(a) illustrates an example electrorgdical
record database, where each record corresponds to andinalivi
Figure 1(b) shows the exact number of HIV+ patients in eaatest
which we refer to asinit counts A linear counting query in this
example can be any linear combination of the unit counts.irkor
stance, lettny, znJ, zca, zwa be the patient counts in states
NY, NJ, CA, and WA respectively; one possible linear coumtin

o queryiszny +any+xca+azwa, which computes the total num-

ber of HIV+ patients in the four states listed in our exampleoth-

er example linear counting queryaisry /19 + zny /8 + xca /37,
which calculates the weighted average of patient countsaies
NY, NJ and CA, with weights set according to their respegbiop-
ulation sizes. In general, we are given a databasesmwithit counts,
and a batcl®) S of m linear counting queries. The goal is to answer
all queries inR S undere-differential privacy, and maximize the ex-
pected overall accuracy of the queries.

Name State HIV+ State # of HIV+ patients
Alice NY Yes NY 82,700
Bob NJ Yes NJ 19,000
Carol NY Yes CA 67,000
Dave CA Yes WA 5,900

(a) Patient records (b) Statistics on HIV+ patients

Figure 1. Example medical record database

Straightforward approaches to answering a batch of lineants
ing queries usually lead to sub-optimal result accuracye @aive
solution, referred to asoise on querie§NOQ), is to process each
query independently, e.g., using the Laplace Mechanistn [tis



method fails to exploit theorrelationsbetween different queries.
Consider a batch of three different querigs= zny + xnJ +
TcA +Twa, @2 = TNy + N7, g3 = oa + zwa. Clearly, the
three queries are correlated simge= ¢ +¢3. Thus, an alternative
strategy for answering these queries is to process @ngndgs,
and use their sum to answer. As will be explained in Section 3,
the amount of noise added to query results depends upcsetie
sitivity of the query set, which is defined as the maximum possible
total change in query results caused by adding or removing-a s
gle record in the original database. In our example, theitbétys
of the query se{q2, g3} is 1, because adding/removing a patient
record in Figure 1a affects at most oneggfandgs (i.e., g2 if the
record is associated with state NY or NJ, andf the state is CA
or WA), by exactly 1. On the other hand, the query &gt g2, g5}
has a sensitivity oR, since a record in the above 4 states affects
both¢: and one ofj2 andgs. According to the Laplace mechanis-
m, the variance of the added noise to each queM%/EQ, where
A is the sensitivity of the query set, aads the user-specified pri-
vacy budget. Therefore, processifig, g2, g3} directly incurs a
noise variance of /¢ for each query; on the other hand, executing
{q2,¢3} leads to noise variance @f¢> for each ofg> andgs, and
their sumg: = ¢2 + ¢3 has a noise variance afx 2/¢* = 4/¢>.
Clearly, the latter method obtains higher accuracy for adregs.
Another simple solution, referred to asise on datgNOD), is
to process each unit count under differential privacy, aomline
them to answer the given linear counting queries. Contintine
example, this method computes the noisy countsefey, .,
rca andzwa, and uses their linear combinations to answer
g2, andgs. This approach overlooks the correlations between d-
ifferent unit counts. In our example,ny andzy s (and similar-
ly, xca andxw 4) are either both present or both absent in every
query, and, thus, can be seen as a single entity. Processing t
as independent queries incurs unnecessary accuracy dwstsrer
combining them. In the example, NOD adds noise with variance
2/¢* to each unit count, and their combinations to ansyigfg.,
andg; have noise variancg/c?, 4/¢* and4/¢* respectively. N-
OD’s result utility is also worse than the above-mentionteategy
of processingy: andgs, and adding their results to answgrt
In general, the query s&).S may exhibit complex correlation-
s among different queries and among different unit counts.aA
consequence, it is non-trivial to obtain the best strateggniswer
QS under differential privacy. For instance, consider théofeing
query set:

g = 2rNJ+Tca+TWa
G2 = xINJ+2xwa
g3 = INy +2Tca+2TWa

NOQ is clearly a poor choice, since it incurs a sensitivitysof
(e.g., a record of state WA affects by 1, andg. andgs by 2
each). The sensitivity of NOD remains 1, and it answgarsgo,
and ¢s with noise variance2/e?, 10/e* and 18/¢* respectively,
leading to a sum-square error (SSE}6f¢2. The optimal strategy
in terms of SSE in this case computes the noisy resulisyof and
Twa, as well asy; = rny /3 + zca, andgs = 2zny /3. Then,
it obtains the results fay;, ¢=, andgs as follows.

@ = ¢ +2zNs+rwa —q5/2
@2 = TNJ+2Twa
g = 2q¢) +2rwa+q/2

The sensitivity of the above method is also 1, and it answers
q1, g2, andgs with noise variancd2.5/¢2, 10/e* and 16.5¢° re-
spectively, resulting an SSE of 38/ Observe that the there is no

simple pattern in the query set or the optimal strategy. &there
is an infinite space of possible strategies, searching ébést one
is a challenging problem.

Li et al. [16] first formalize the above observations (i.asaer-
ing a correlated query set with an effective strategy) ihematrix
mechanism However, applying the matrix mechanism in practice
remains hard, because there is currently no effective isalub
find a good strategy for an arbitrary query set. The only known
strategy-searching methods described in [16] are eitleffi¢rent
(which incur prohibitively high computational costs foreevmod-
erately large domains), or ineffective (which rarely obtatrate-
gies that outperform naive methods NOD/NOQ). MotivatedHiy, t
we propose the first practical realization of the matrix nagcém,
called thdow-rank mechanisrtiLRM), based on the theory of low-
rank matrix approximation. We prove that the accuracy predi
by LRM is within a constant factor of the theoretical lowernbd
established in [14]. Extensive experiments demonstraeltRM
significantly outperforms existing solutions in terms cfuk: accu-
racy, sometimes by orders of magnitude.

The rest of the paper is organized as follows. Section 2wnevie
previous studies on differential privacy. Section 3 pregidormal
definitions for our problem. Section 4 presents the mechafos-
mulation of LRM, and analyzes its optimality. Section 5 disses
how to solve the optimization problem in LRM. Section 6 vexfi
the superiority of our proposal through an extensive expenial
study. Finally, Section 7 concludes the paper.

2. RELATED WORK

Section 2.1 surveys general purpose mechanisms for endorci
differential privacy. Section 2.2 presents our main coritpetthe
matrix mechanism [16].

2.1 Differential Privacy M echanisms

Differential privacy was first formally presented in [11fough
some previous studies have informally used similar models.,
[9]. The Laplace mechanism [11] is the first generic mechanis
m for enforcing differential privacy, which works when thatput
domain is a multi-dimensional Euclidean space. McSherdyTat-
war [21] propose the exponential mechanism, which appliesy
problem with a measurable output space. The generalityeoéxh
ponential mechanism makes it an important tool in the desfgn
many other differentially private algorithms, e.g., [6, 24].

Linear query processing is of particular interest in bothttreo-
ry and database communities, due to its wide range of apiplica
To minimize the error of linear queries under differentiavacy
requirements, several methods try to build a synopsis obtlge
inal database, such as Fourier transformations [24], w&v¢P8]
and hierarchical trees [15]. By publishing a noisy synopsider
e-differential privacy, these methods are capable of anggean
arbitrary number of linear queries. However, most of thes¢hm
ods obtain good accuracy only when the query selectionririte
on is a continuous range; meanwhile, since these methodware
workload-aware, their performance for a specific worklaauis to
be sub-optimal.

The compressive mechanism [17] reduces the amount of noise
necessary to satisfy differential privacy, by utilizingtbparsity of
the dataset under certain transformations. The main idalse
a technique called compressive sensing to compress a sppree
sentation of the data into a compact synopsis, and injeserinto
the much smaller synopsis instead of the original data. rAlitat,
the method reconstructs the original data by applying treadle
ing algorithm of compressive sensing to the noisy synop§tse



result provides significantly higher utility, while satygfig differ-
ential privacy requirements.

Several theoretical studies have derived lower boundshier t
noise level for processing linear queries under diffeggmfivacy.
Notably, Dinur and Nissim [9] prove that any perturbationcime-
nism with maximal noise of scal®(n) cannot possibly preserve
personal privacy, if the adversary is allowed to ask all fiadedin-
ear queries, and has exponential computation capacityediycing
the computation capacity of the adversary to polynomialrated
Turing machines, they show that an error s¢ale/n) is necessary
to protect any individual’ privacy.

More recently, Hardt and Talwar [14] have significantly tigh
ened the error lower bound for answering a batch of linearigsie
under differential privacy. Given a batch of linear queries, they
prove that anye-differential privacy mechanism leads to squared
error of at leasf (¢~ 2m>*Vol(W)), whereV ol (W) is the volume
of the convex body obtained by transforming the-unit ball into
m-dimensional space using the linear transformations inwibr-
load W. They also propose a mechanism for differential privacy
whose error level almost reaches this lower bound. Howéveir,
mechanism relies on uniform sampling in a high-dimensicoal
vex body, which, although it theoretically takes polynohtime,
is too expensive to be of practical use. This paper extengis th
analysis to low-rank workload matrices.

Besides linear queries, differential privacy is also agadie to
more complex queries in various research areas, due taaisgst
privacy guarantee. In the field of data mining, Friedman asftiS-
ter [13] propose the first algorithm for building a decisioeet un-
der differential privacy. Mohammed et al. [22] study the sam

problem, and propose an improved solution based on a general

ization strategy coupled with the exponential mechanisiimg @t
al. [8] investigate the problem of differentially privatatd cube
publication. They present a randomized materialized vielecs
tion algorithm, which reduces the overall error, and presedata
consistency.

In the database literature, a plethora of methods have been p
posed to optimize the accuracy of differentially privateupro-
cessing. Cormode et al. [6] investigate the problem of multi
dimensional indexing under differential privacy, with thevel idea
of assigning different amounts of privacy budget to differevels
of the index. Xu et al. [29] optimize the procedure of builglia
differentially private histogram, with an interesting coimation of
a dynamic programming algorithm for optimal histogram comp
tation and the exponential mechanism.

Differential privacy is also becoming a hot topic in the miaeh
learning community, especially for learning tasks invotyisen-
sitive information, e.g., medical records. In [4], Chaudtet al.
propose a generic differentially private learning aldarit which
requires strong convexity of the objective function. Rusibéin et
al. [25] study the problem of SVM learning on sensitive datad
propose an algorithm to perturb the kernel matrix with pen@ance
guarantees, when the loss function satisfieg-lhipschitz continu-
ity property. General differential privacy techniques déaiso been
applied to real systems, such as network trace analysisgi®]
private recommender systems [20].

2.2 Matrix Mechanism

Li et al. [16] propose the matrix mechanism, which formadize
the intuition that a batch of correlated linear queries carah-
swered more accurately under differential privacy, by pssing
a different set of queries (called ts&rategy and combining their
results. Specifically, given a workload of linear queri¢se ma-
trix mechanism first constructsarorkload matrixiV of sizem xn,

wherem is the number of queries, andis the number of unit
counts. The construction of the workload matrix is elabentetr-
ther in Section 3. After that, the mechanism searches $bradegy
matrix A of sizerxn, wherer is a positive integer. IntuitivelyA
corresponds to another set of linear queries, such thay euery
in W can be expressed as a linear combination of the querids in
The matrix mechanism then answers the querie$ imder differ-
ential privacy, and subsequently uses their noisy resolsnswer
queries inlV.

The main challenge for applying the matrix mechanism toprac
tical workloads is to identify an appropriate strategy rixatt. Ref.
[16] provides two algorithms for this purpose. The first,dzhsn
iteratively solving a pair of related semidefinite progranmgurs
O(m3n®) computational overhead, which is prohibitively expen-
sive even for moderately large valuesaf andn. The second
solution computes aif, approximation of the optimal strategy
matrix A. This method, though faster than the first one, still in-
curs high costs as we show in the experiments. FurtherLthe
approximation of the optimal strategy matrix often has papaali-
ty. In fact, throughout our experimental evaluations, weshaever
found a single setting where this method obtains lower dvera
ror than the naive solution NOD that injects noise direatipithe
unit counts. Although the matrix mechanism makes a sigmifica
theoretical contribution, so far its practice use is lirdithie to the
lack of an effective implementation.

3. PRELIMINARIES

In this paper, we assume there argecords in a databagde, i.e.,
D ={z1,x2,...,z,}. Eachz; in Dis areal number. To facilitate
matrix manipulations, in the rest of the paper we use a vettsize
n x 1 to denote the database, ife1, z2,...,z, 7. In Figure 1,
for example, each record contains the number of HIV+ patiant
a state of the USA. A query s€) of cardinalitym is a mapping
from the database domain to real numbers, ¢e.,D — R™.

3.1 Differential Privacy

A query processing mechanistW is a randomized mapping
fromD x Q to R™. Given an arbitrary query s€) € Q and a
databaseD) € D, the mechanism\/ returns a distribution on the
query output domaiR™. Two database®); and D. are neigh-
bor databasedff they differ on exactly one record, i.el); =
{z1,22,...,25,...,xzn} and Dy = {z1,22,..., 25, ..., Tn}. A
randomized mechanisi/ satisfies-differential privacy if for ev-
ery pair of neighbor databasé¥ and D, we have

VQVR: Pr(M(Q,D.)=R) <e Pr(M(Q,D:)=R) (1)

The above inequality implies that the mechaniéfalways re-
turns similar results on neighbor databases. This limisattiver-
sary's confidence in inferring any record from the output)éf
even when he or she knows all remaining records in the dagabas

In [11], Dwork et al. presented a general protocol to impleme
e-differential privacy, utilizing the concept &fensitivity Given a
query set) € Q, the sensitivityA is the maximall, distance
between the exact query results on any neighbor dataliasesd
Do, i.e.

A = max 1Q(D1), Q(D2)]x @

We emphasize thah only depends on the data domdinand
the query sel, not the actual data. Therefore, we simply assume
such a constanh is public knowledge to everyone, including the



adversary. Théaplace Mechanisril1], My, outputs a random-
ized resultR on databas@®, following a Laplace distribution with
mean@(D) and magnitude?, i.e.,

Pr(ML(Q.D) = R) x exp (IR = QD)) (3)

This is equivalent to adding.-dimensional independent Laplace
noise, asQ(D) + Lap ()™, in which Lap (2) is a random
variable following a zero-mean Laplace distribution Widame%.
Based on the definition of the Laplace mechanism, the exgecte
squared error of the randomized query answe?r’—:tg, since the
variance ofLap(s) is 2s for any scales. Note that the amount of
error only depends on the sensitivity of the queries, rdgasdof
the records in databade.

3.2 Batch Linear Queries

As mentioned in the introduction, we focus on non-intexecti
linear queries in this paper. A linear queryD) is in the form of
a linear function over the records in the database. Givenighive
vector {wy, wz, ..., w,}T of sizen, the linear query returns the
dot product between the weight vector and database vedqr, i

q(D) = wiz1 + waxa + ... + WnTn

We assume a batch of linear queries@ = {q1,q2,...,aqm},
is submitted to the database at the same time. The querg set
is thus represented byworkload matrixW/ with m rows andn
columns. Each entry¥;; in W is the j-th coefficient for query
g; on recordz;. Using the vector representation of the database,
iie. D = (x1,22,...,2,)7, the query batchQ can be exactly
answered by calculating:

T
QD)=WD = <Z Wiz, ..., Zwmjxj>
J J

Based on the Laplace mechanism, two baseline solutions-to en
force e-differential privacy on a query batch with worklodd are
as follows.
Noise on data: This solution, denoted a&/p, adds noise to the
original data. Given databade, Mp generates a noisy database
D' using the Laplace mechanism, i.8), = D + Lap (£)". The
query batchQ is then answered by replacidgwith D’. The whole
mechanism can be written in the form of manipulation on ramdo
variables, as follows.

Mp(Q, D) :WD’:W<D+Lap (%)n> (4)

Based on the linearity of expectation, it is straightforsver cal-
culate the expected squared error on the outﬁgt%, S W,
which is proportional to the squared sum of the entried/in
Noise on results: This baseline solution, denoted A$r, adds
noise to the query results instead of the original data. ethe
queries are linear queries, the sensitivity of the queryssat’ =
max; y . |Wi;|A, i.e., the highest column absolute sum [16]. Thus,
Mg outputs the following random results.

AN\
Mgr(Q,D) =WD + Lap (T) (5)

Similarly, the expected squared error of the mechanism enyqu
Qis2mA?e ? = 2mmax; Y, WA%e 2. By comparing their
expected squared errors, we derive th&t outperformsMp by
expectationiff mmax; >, W7 < >, > Wi Whenm > n,
this inequality can never hold, implying thaf is more effective
only whenm is smaller tham.

3.3 Low Rank Matrices

For any square matrid = {A;;} of sizen x n, the trace of
the matrix is the sum of the diagonal entriesAn i.e., t{A) =
> Asi. Given a matriXd? = {W;; } of sizem x n, the Frobenius
norm of W is the square root of the squared sum over all entries,

ie., [Wllr = />,;(Wi;)?. Following common notationiy’”
denotes the transposed matrixiof.

Singular value decomposition (SVD) applies to any reaiedl
matrix WW. Specifically, the result of SVD ol includes three
matrices,U, ¥ andV/, such thatW = UXV. Here,U, %, and
V are of sizem x s, s X s, ands x n respectively, wheren and
n are the number of rows and columnsTiii respectively, ands
is a positive integer no larger thanin{m,n}. Moreover,U and
V" are row-wise and column-wise orthogonal matrices respsyti
3. is a diagonal matrix, which contains non-negative real nensib
on the diagonal and zeros in all the other entries. Thesedag
entries,{\1, \2,..., A5}, are called eigenvalues of the matfiX.
The number of non-negative eigenvalues is called the rarik pf
denoted agank(W).

When the rows and columns in the mat¥ix are correlated, the
rank of the matrixi¥ can be smaller tham andn. In such cases,
we say thatl is a low rank matrix. For example, when a group
of records tend to appear together in a query, the workload»ma
W often exhibits strong column correlations. Similarly, whene
query can be expressed as the linear combination of otheiegue
W has strong row correlations. Both cases can be exploiteg-to r
duce the noise level necessary to satisfy differentialgosivas we
showed in Section 1. Next we present the Low Rank Mechanism,
a general solution to enforce differential privacy on a baitlin-
ear queries, which utilizes the low rank property of the vioaki
matrix to reduce noise.

4. WORKLOAD DECOMPOSITION

In this section, we propose a general workload matrix decom-
position technique that minimizes the error for a batch oédr
queries. Recall that the example in Figure 1 shows thatadsoé
adding noise to the original data or query results (i.e. hogst N-
OD and NOR), it is sometimes possible to construct anotheali
basis that leads to higher overall query accuracy. To buitth s
basis, we partition the workload matriX” into the product of two
componentsB = {B;;} of sizem x r andL = {L;} of size
r x n, such that = BL. Note thatr can be larger than the
rank of the workload matri¥}’. Given the matrix decomposition,
we design general mechanism for adding noisé&. io (D is the
dataset), and analyze the expected squared error. We finsaifg
define the concepts ofuery scaleandquery sensitivityfor a given
decompositioiV = BL.

DEFINITION 1. Query Scale
Given a workload decompositio = BL, the scale of the de-
composition, denoted By(B, L), is the squared sum of the entries
in B,i.e,®(B,L) =Y, . B

DEFINITION 2. Query Sensitivity
Given a workload decompositid’ = BL, the sensitivity of the
decomposition, denoted RY(B, L), is the maximal absolute sum
of any columnirL, i.e., A(B, L) = max; >, |Li;|.

SinceW = BIL, the linear query batch can be answered by
calculating@Q(D) = WD = BLD. Unlike solutions NOD and
NOR, we inject noise into the intermediate reslib to enforce
differential privacy. Sincd.D is another group of linear queries,
we can apply NOR o)’ (D) = LD with Eq. (5). The sensitivity



of the new linear query batch i&(B, L), which leads to the fol-
lowing differential privacy mechanism/p(Q, D) with respect to
the workload decompositio” = BL.

Mp(Q,D)=B (LD + Lap <@))

The error analysis al/p(Q, D) is complicated as its adds noise
at an intermediate step. The following lemma shows that tiw e
is linear in the query scale, and quadratic in the query Heitgi

(6)

LEMMA 1. The expected squared error df p(Q, D) with re-
spect to the decompositidil = BLis2®(B, L) (A(B, L))? /2.

Accordingly, we reduce the problem to finding the optimalkvor
load decompositiofl” = BL that minimizesb(B, L) (A(B, L))*.
However, this optimization problem is difficult to solvense the
objective function is the product 6b(B, L) and A(B, L), and
A(B, L) may not be derivable. To address this problem, we first
prove an interesting property of the workload decompasitichich
implies that the exact query sensitivity is actually not artgnt.

LEMMA 2. Given a workload decompositid = BL and a
positive constanty, we can always construct another decomposi-
tion W = B’L’ such thatB’ = aB andL’ = o~ 'L, satisfying

®(B, L) (A(B,L))* = ®(B, L) (A(B', L))

LEMMA 4. Given a workload matri¥?” of rankr with eigen-
values{\1, ..., \.}, the expected squared error of andifferential
privacy mechanism is at least

” 2/r
2T :
Q (F II /\k> /e
k=1

Assume that all the eigenvaluga\, A2, ..., A} of workload
W are ordered in non-ascending order. We Gse= \i/\, to
denote the ratio between the largest eigenvalue and thdesmal
non-zero eigenvalue. The following theorem discussesitfie-t
ness of low rank mechanism on error minimization. In patéiGtit
proves the optimality of the result decompositidh= B* L* with
respect to Formula (7).

THEOREM 2. Whenr > 5, the mechanisnd,(Q, D) using
W = B*L* is an O(C?r)-approximately optimal solution w.r.t.
the set of all non-interactive-differential privacy mechanisms.

When(C is close to 1, all non-zero eigenvalues are close to each
other and the mechanism under our decomposition optiroizati
program outputs results that well approximate the lowemiou
This result answers one of the questions in [14], in whichate
thors discussed possible orthogonal projections but digrowide
a concrete algorithm to identify the optimal projection.r@rmu-
lation can be regarded as an implementation of orthogomge@r

According to the above lemma, the balance between scale andijon with almost constant approximation. Therefore, osutefills

sensitivity is not important, as we can always build anotgriv-
alent workload decomposition with arbitrary sensitivifyhis mo-
tivates us to formulate a new optimization program, whiatuges
on minimizing the query scale while fixing the query sengitiv
The following theorem formalizes this claim.

THEOREM 1. Given the workload?V, W = BL is the opti-
mal workload decomposition to minimize expected squanex gr
(B, L) is the optimal solution to the following program:

Minimize: tr(B” B)
st. W =BL

vJ‘Z:|Lij| <1

In the optimization problem above, we are allowed to spetiéy
number of columns in the matri®, i.e. the rank- of the matrix
product BL. This enables us to generate matrices of significant-
ly lower rank than the strategy matrix proposed in [16]. Weasth
useLow Rank Mechanisrto denote the general query processing
scheme in Eq. (6), using the optimal decomposition solutmn
Formula (7).

4.1 Optimality Analysis

In this subsection, we analyze the optimality of our optismtiian
formulation. Specifically, we show that the utility of ourgposed
mechanism almost reaches the known utility lower boundifhealr
queries under differential privacy [14].

LEMMA 3. Given a workload matriX¥y of rankr with eigen-
values{\1,..., A}, the expected squared error @ffp(Q, D)
w.r.t. the optimal decompositio = B*L* in low rank mech-
anism is bounded above By, _, \ir/e>.

@)

Using the geometric analysis technique under orthogoral pr
jection [14], the following lemma reveals a lower bound oe th
squared error for linear queries.

the gap between theory and practice.

4.2 Relaxation on Decomposition

Theorem 2 shows that our decomposition leads to results with
a tight bound. However, when there are very small eigengaiue
the workload matriX?/, the bound in the theorem becomes loose.
On the other hand, these small eigenvalues contribute tittthe
workload matrixi¥. This observation motivates us to design a new
optimization formulation, in whictB L does not necessarily match
W, but within a small error tolerance. This enables the foatiah
to find a more compact decomposition, such thatrthesed inB
and L can be smaller than the actual rankiot.

To do this, we introduce a new parameteto bound the differ-
ence betwee and BL in terms of the Frobenius norm. This
leads to a new optimization problem:

Minimize: tr(B” B)
st |W = BL||r <~
ViYLl <1

®)

After finding the optimal( B, L) for the problem in Formula 8,
the mechanism\/p(Q, D) outputs query results using Eq. (6).
The error of this new mechanism is also bounded, as statdrin t
following theorem.

THEOREM 3. The expected squared error 8 (Q, D) using
the decompositio(B, L) satisfying Eg. (8) is at most

2tr(B" B)/€* + ~ Z x

While Theorem 3 implies the possibility of estimating the op
timal ~, it is not practical to implement it directly, because this
estimation depends on the data, i, zZ. In our experiments,
we test different values of, and report their relative performance,

regardless of the data distribution.



Algorithm 1 Workload M atrix Decomposition

Algorithm 2 Nesterov’'s Projection Gradient M ethod

1: Initializer® =0 e R™*"*, 80 =1,k =1
2: while not convergedlo

3. //Approximately solve the subproblem

4:  whilenot convergedio

5: B™® + updateB using Eq. (9)

6: L™ « run Algo. 2 to updatd. w.r.t. Formula (10)
7:  Computer = |[W — B® L®)| 5

8: if 7 is sufficiently small o3 is sufficiently largethen
9: returnB® and L.™*)
10:  if kis divisible by 10then
11: 5(k+1) — 2/3(16)
12 g+ = 700 4 glkt1) (W _ B(k)L(k))
13: k=k+1

5. DECOMPOSITION ALGORITHM

The previous section formulates the workload matrix deammp
sition problem as an optimization program, which is rattenpli-
cated and non-trivial to solve. This section describes &ttie
and efficient solution for this program, based on the ineXar-
mented Lagrangian Multiplier (ALM) method [5, 18].

The main challenge in solving the optimization program af-Fo
mula (8) is the non-smootlf; regularized term. The projected
gradient method [10] is considered one of the most efficienegal
algorithms to solve these problems. Following the strategpd in
[5], we treat thel; regularized term separately and approximate-
ly minimize a sequence of Lagrangian subproblems. Our ttexa
Augmented Lagrangian method for workload matrix decomyposi
tion problem is summarized in Algorithm 1.

In order to handle the linear constraitjl8” — BL||r <~y — 0,
in whichW € R™*", B € R™*" andL € R"*", the inexact
Augmented Lagrangian method introduces a positive peitalty
B € R and the Lagrange multiplier € R™*™. The update o
and~ follows the standard strategy used in [5, 18]. Given fixed
and~ in each iteration, the algorithm aims to find a pair of nBw
and L to minimize the following subproblem:

T(B,L,8,m) = 3(B7B) + (m, W — BL) + S|w - BL|I}

s.t. VJZ |LZ]| <1

This is a Bi-Convex optimization problem, which can be sdlve
by block gradient descent via alternately optimizidgnd L. Based
on the formulation above, optimizing is straightforward. Since
the gradient with respect t8 can be computed as:

0T _ g _ T +BBLLT — pwL”

0B

based on the fact thaf (-) is convex with respect t&, we can set
97 — 0, and obtain a closed form solution to updéte

oB

9)

The second step is to optimidg which is equivalent to solving
the following quadratic programming problem:

B

=T
2

B= (BWLT + rLT) (/3LLT n 1)71

G(L) (LTBTBL) —tr ((BW +)T BL)

10
s.t. V]Z |LZ]| <1 ( )

1: input: G(L), 2%, L

2. x =r-n-10"'?, Lipschitz parameterw® = 1

3: Initializations: L™V = L -1 = 0,6 =1t =1

4: while not convergedlo

5 o= 5= 1 4 o(L® — LED)

6: forj=0to..do

7: w=2ulD U=5-1vy

8: Projectl/ to the feasible set to obtaib*’ (i.e. solve For-
mula (11))

9: if |S—L"Y|r < xthen

10: return;

11: Define function: 7.,.s(U) = G(S) + (25,U — S) +
$IU - S|

12: if G(L™) < J.,s(U) then

13: w® = w; LD = L preak;

14: Sety® = v 1+400777)" W

150 t=t+1

16:; returnL®

In order to minimize Eqg. (10) under constraints, we emplog-Ne
terov’s first order optimal method [23] to accelerate thedgat
decent. Nesterov's method has a much faster convergerectneat
traditional methods such as the subgradient method or the na
projected gradient descent. In particular, the gradiei(a@f) with
respect tal is

aG

3L —

L is updated by gradient descent while ensuring thatthesg-
ularized constraint or. is satisfied. This can be done by solving
the following optimization problem:

BBTBL — 8B*W — BTn

: _ 782 ; <
min || L|m&tw§]LA_L (11)

in which L denotes the last feasible solution after exaktitera-
tions. Since Formula (11) can be decoupled intodependent,
regularized sub-problems, it can be solved efficientlydaypro-
jection methods [10]. The complete algorithm for the progc
method is summarized in Algorithm 2.

Convergence Analysis. In each iteration, the algorithm solves a
sequence of Lagrangian subproblems by optimiZihgstep 5) and
L (step 6) alternatingly. The algorithm stops when a suffityes:
mall v is achieved or the penalty paramefias sufficiently large. It
suffices to guarantee thatconverges to the optimal solution [18].
Although the objective function is non-smooth, the aldoritpos-
sesses excellent convergence properties. To be precisermaly
establish the following convergence statement.

THEOREM 4. If (B L(®) is the temporary solution after the
k-th iteration and(B*, L*) is the optimal solution to Formula (7),

we have
1
SO(M*)

Since™ doubles after every 10 iterations, the algorithm con-
verges rapidly. This proves the fast convergence propdrouo
algorithm.

Complexity Analysis: The total number of variables iR and L
is (m+n)r. Each update o in Eq. (9) takeg)(r?m) time, while

tr(B® B®) —tr(B*B*)
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Figure 3: Effect of varying r with Search Logs dataset for LRM

each update ot takesO(r*n) time. If Algorithm1 converges to
a local minimum withV;,, inner iterations (at line 4 in Algorithm
1) and N, outer iterations (at line 2 in Algorithm 1), the total
complexity of Algorithm 1isO(N;, X Now X (r2m 4 r2n)).

6. EXPERIMENTS

This section demonstrates the effectiveness of the prddase-
Rank Mechanism (LRM), and compares it against four staténef
art methods: the approximate Matrix Mechanism (AMM) that op
timizes theL- approximation [16], the Laplace Mechanism (LM)
[11], the Wavelet Mechanism (WM) [28] and the Hierarchicadf-
anism (HM) [15]. The details of our AMM implementation are
available in Appendix B. All methods were implemented arsd-te

0.0001, 0.001, 0.01,0.1, 1, 10
{0.8,1.0,1.2,1.4,1.7,2.1,2.5,3.0, 3.6} X rank(W)
128, 256, 512, 1024, 2048, 4096, 8192
64,128, 256, 512, 1024
{0.1,0.2,0.3,0.4,05,0.6,0.7,0.8,0.9, 1.0} X min(m, n)

w|3|3[3|R

Table 1: Parametersused in the experiments

WhDiscrete for each weightV;; of queryg; in the batch, we ran-
domly selectiV;; = 1 with probability 0.02 and seV;; = —1
otherwise. InWRange a batch of range queries on the domain
are generated, by randomly picking up the starting locaii@amd
ending locatiorb following a uniform distribution on the domain.
Given the intervala, b), we setW;; of queryg; in the batch to 1

ed in Matlab on a desktop PC with Intel quad-core 2.50 GHz CPU for everya < j < b and all other weights to 0. Finally, fM/Re-

and 4GBytes RAM. In all experiments, every algorithm is exec

lated we generate (discussed later) independent base queties

ed 20 times and the average performance is reported. We ymplo of sizes x n, by randomly assigning weights to the queries under

three popular real datasets used in [15, ZHarch LogNet Trace
and Social Network Search Logncludes search keyword statis-
tics collected fromGoogle Trendsand American Onlinebetween
2004 and 2010.Social Networkgives the number of users in a
social network site with specific degrees in the social graght

a standard0, 1)-normal distribution. Another group of correlation
matrix C' of sizem x s are generated similarly. The final workload
W of sizem x n is the product of” and A.

We test the impact of five parameters in our experimenis:,
n, m ands. ~ is the relaxation factor defined in Formula (8)is

Traceis a statistical database containing the number of TCP pack- the number of columns i® (and also the number of rows ih).

ets related to particular IP addresses, which is collecteoh fa
university intranet. Search LogsNet Traceand Social Network
contain2'® = 65,536, 2'° = 32,768 and 11, 342 entries re-
spectively. The reader is referred to [15] for more detdilthese
datasets. We published our Matlab implementations of gib-al
rithms used in the experiments, as well as sample datasgitse o
athtt p: //yuanganzhao. weebl y. con .

To evaluate the impact of data domain cardinality on realsztt
s, we transform the original counts into a vector of fixed size
(domain size), by merging consecutive counts in order. iGihe

n is the size of the domain and is the number of queries in the
batch. Finally,s is the number of rows of queries in the base
which is only used in the generation\0fRelated The range of all
these five parameters is summarized in Table 1. Unless ageerw
specified, the default parameters in bold are used. Morgawer
test three different privacy budgets= 1, 0.1 and0.01. Note that
the squared error incurred by all the methods is quadrati¢dn

In the experiments, we measukeerage Squared ErrandCom-
putation Timeof the methods. Specifically, thiverage Squared
Error is the average squareth distance between the exact query

numberm of linear queries in the batch, we generate three different answers and the noisy answers. In the following, we first éxam

types of workloads, namelvDiscrete WRangeandWRelated In

the impact ofy andr, which are only used in the LRM method.
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The results provide important insights on how to tune these t
parameters to maximize the utility of the LRM method.

6.1 Impact of yand » on LRM

In LRM, ~ is an important parameter controlling the relaxation
on the approximation oBL to W. In our first set of experiments,
we investigate the impact afon the accuracy and the efficiency of
LRM. Figure 2 reports the performance of LRM under all thride d
ferent workloadsWDiscrete WRangeandWRelatedn theSearch
Log dataset with varying values foy. The results in the figure
show that the errors of LRM on all three workloads are notisens
tive to v in the range fromil0~* to 10. On the other hand, LRM
executes much faster with larger This suggests that a larger val-
ue for~ is preferred in practice, to achieve high efficiency without
losing much on result accuracy. Moreover, we also test witbe
different values of the privacy budget Since the decomposition
method does not rely on the shapes of the result curves with d-
ifferent ¢ values are nearly identical, albeit at different scalese Th
average error is quadratic in the privacy budgeas expected.

In LRM, r is another important parameter that determines the
rank of the matrixB L that approximates the worklodd”. r af-
fects both the approximation accuracy and the optimizatjmeed.
Whenr is too small, e.g., when < rank(W), our optimization
formulation may fail to find a good approximation, leadingstd-
optimal accuracy for the query batch. On the other hand, anyv

This is because the optimization formulation has enougbdiven

to find the optimal decomposition whenis larger than-ank(W).
Finally, the amount of computation spent on workload deansip
tion increases exponentially with Thus, to balance the efficiency
and effectiveness of LRM, a good value fois betweerrank (W)
and1.2 - rank(WW). We use the latter as the default value in the
subsequent experiments.

6.2 Impact of Varying Domain Size n

We now evaluate the performance of all mechanisms with vary-
ing domain sizew. As mentioned earlier in this section, the domain
size is controlled by merging consecutive counts in theiaaiglo-
main. While different workloads and datasets are used, i on
test settings witlk = 0.1 because does not have much impact on
the relative performance of different mechanisms. In Figut, 5
and 6, we report the result error rates of all these mechanism

In all experiments, the approximate Matrix Mechanism (AMM)
is much worse than the other mechanisms, sometimes by an orde
of magnitude. This is mainly because the approximation used
by AMM does not lead to a good optimization of the actual objec
tive function formulated using the error measurein Because of
its poor performance, we exclude AMM in the rest of the experi
ments.

On theWDiscreteworkload, the Laplace Mechanism (LM) out-
performs all other mechanisms when the domain size is velgti

larger leads to poor efficiency, as the search space expands dramatsmall. This is in part due to the fact that the Wavelet Mecéani

ically. We thus test LRM with varying:, by controlling the ratio
of r to the actual rankank(WW), on theSearch Logdataset. We
record the average squared error under all the workloadsegodt
itin Figure 3.

There are several important observations in Figure 3., Fitstn
r < rank(W), the accuracy of LRM is far worse (up to two orders
of magnitude) than that in other settings. Second, the paence
of LRM is rather stable whenbecomes larger than2-rank(W).

(WM) and the Hierarchical Mechanism (HM) are mainly desijne
to optimize range queries. While all other mechanisms itinear
error in terms of the domain size LRM’s error stops increasing
when the domain size is larger than 512. This is because LRM'’s
error relies on the rank of the workload matfiX, andrank (W)

is no larger thamin(m, n) no matter how large: is. This ex-
plains the excellent performance of LRM on larger domaing. O
the WRangeworkload, the errors of WM and HM are smaller than
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LM when the domain size is no smaller than 512, in which case
their strategies work better. LRM'’s performance is stijjrsficant-

ly better than any of them, since LRM fully utilizes the cdare
tions between these range queries on large domains. Fioally
theWRelatedvorkload, LRM achieves the best performance on all

group of experiments, we manually control the rank of waaklo
W to verify the correctness of our claim. Recall that the param
eters determines the size of the matiix,, «s and the size of the
matrix A5, in the generation of theVRelatedvorkload. When
C and A contain only independent rows/columnsis exactly the

test cases. The performance gap between LRM and other methodrank of the workload matri¥x¥” = C'A. In Figure 9, we varys

s is over two orders of magnitude, when the domain size resache
8192. SincaNRelatedchaturally leads to a low rank workload ma-
trix W, this result verifies LRM’s vast benefit from exploiting the
low-rank property of the workload.

6.3 Impact of Varying Query Size m

In this subsection, we test the impact of the query set calitiin
m on the performance of the mechanisms. We mainly focus on
settings when the number of queri@ss no larger than the domain
sizen, i.e. m < n. Due to space limitations, we only present the
results oWRangeandWRelatedvorkloads in Figures 7 and 8.

The results lead to several interesting observationsW®ange
workload (Figure 7), LRM outperforms the other mechanisnign
the number of queries: is significantly smaller than. With grow-
ing m, the performance of all mechanisms @WRangetends to
converge. Whemn = 1024, WM achieves the best performance
among all mechanisms, since it is optimized for range geefie
degeneration in performance of LRM is due to the lack of lomkra
property when the batch contains too many random rangeesueri
On WRelatedvorkload, LRM is dramatically better than the other
methods, for any query set cardinality. Regardless of the value
of m, the rank of theVVRelatedvorkload 1/ remains low, which is
solely determined by the parameteused in the workload genera-
tion procedure. These results further confirm that the sguarror
generated by LRM scales linearly with the rank of the wortloa

6.4 Impact of Varying Query Rank s

All previous experiments demonstrate LRM’s substantialqre
mance advantage when the workload matrix has low rank. # thi

from 0.1 min(m, n) to min(m,n). Compared to the other mech-
anisms, LRM maintains an accuracy advantage of over twasrde
of magnitude, when the rank of the workload matrix is low. Vit
increasing rank of1/, the accuracy of other mechanisms remain
stable, while LRM’s error grows rapidly. This phenomenomiag
confirms that the low rank property is the main reason behiRe L
M'’s advantages with respect to error minimization.

7. CONCLUSION

This paper presented thew Rank MechanisflLRM), an opti-
mization framework that minimizes the overall error in tlesults
of a batch of linear queries undedifferential privacy. LRM is the
first practical method for a large number of linear querieith an
efficient and effective implementation using well estai@id op-
timization techniques. Experiments show that LRM signifiga
outperforms other state-of-the-art differentially pteajuery pro-
cessing mechanisms, often by orders of magnitude. Thernturre
design of LRM focuses on exploiting the correlations betwei¢-
ferent queries. One interesting direction for future warka fur-
ther optimize LRM by utilizing also the correlations betwesata
values, e.g., as is done in [29, 24, 17].
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APPENDIX
A. PROOFS

Lemma 1:
PROOF. Based on the definition of the mechanism in Eq. (6),
the residual of the noisy result with respect to the exaatlteise.

Q(D)—Mp(Q,D),isB-Lap (@)T. The expected squared

error is thusy_, B2 2ABL)Y Sinced (B, L) = >..; B, the

expected error of the mechanisneis(B, L)(A(B, L))?/e*. O

Lemma 2:

PrROOF. Based on the definition of sensitivity, we hak¢B’, L')
= max; Y, |Li,| = max; ¥, |Lij /o = a ' A(B, L),

The last equality holds becaussis a positive constant. On the
other hand, the scales of the decompositions follow a simela-
tionship:

(B, L')=> (Bj;)’ = ZO&2(Bij)2 =a’®(B, L)

ij

[25]

[26]

Therefore,®(B’, L')(A(B',L')? = ®(B, L)(A(B, L))?. Fi-
nally, sinceB’L’ = BL = W, we reach the conclusion of the
lemma. O

Theorem 1:

PrROOFR Assumetha{B*, L") is the best matrix decomposition
for minimizing the expected squared error fofp (Q, D). In the
following, we prove thatB*, L") is optimal, if and only if it also
minimizes the program in Formula (7).

(if part): If (B, L) minimizes Formula (7) butB, L) incurs
more expected error thgB™*, L*), implying that

®(B",L")(A(B",L"))* < ®(B, L)(A(B, L))*

By applying Lemma 2, we can construct another decomposi-
tion B’ = A(B*,L*)B* andL' = A(B*,L*)"'L*, such that
®(B',L')(A(B', L'))? < ®(B, L)(A(B, L))?. Onthe other hand,
sinceA(B’, L’) < 1, we havemax; Y, |L;;| = 1. Therefore, we
can derive the following inequalities.

®(B,L) = ®(B L)AB,L))’
®(B, L)(A(B,L))*
®(B, L)

<
<

Finally, since®(B’, L) = tr(B'" B’) and®(B, L) = tr(B” B),
it leads to a contradiction if (B3'" B') < tr(B” B).

(only if part): If (B*, L™) is not the optimal solution to the pro-
gram in Formula (7), the optimal solutiqi3, L) must incur less
expected error, using a similar strategy. This completesptiof
of the theorem. [

Lemma 3:

PROOF. To prove the lemma, we aim to artificially construct a
workload decompositiofl” = BL satisfying the constraints of the
optimization formulation. If the error of this artificial demposi-
tion is no larger than the upper bound, the exact optimaltiesiu
must render results with less error.

Recall thati¥' has a unique SVD decompositioi = UXV
such that® is a diagonal matrix of size x r. We thus build a
decompositionB = /rUY and L = %V, in which r is the
rank of the matriX¥. First, we will show sucl{ B, L) satisfies the
constraints in Formula (7). It is straightforward to showatisfies
the first constraintBL = /rUS =V = USV = W.

Regarding the second constraint, sii€enly contains orthogo-
nal vectors, every columpmust have|V.;||2 = ||v||2 = 1. By the
norm triangle inequalityjjv|l2 < ||v]l1 < +/7||v||2, and we obtain
\% > 1Vij| < 1. Therefore, sucliB, L) must be a valid solution
to the program.

The expected squared error of the artificial decomposition=
BL is at most

tr(B” B) /€

tr((vrUE)" (VrUY)) /€
(2" UTUS))r /€
\er /€

This proves thad~; _, M\ /e is an upper bound for the noise
of our decomposition-based schemé.]

Lemma 4:

PROOF In Corollary 3.4 in [14], Hardt and Talwar proved that
anye-differential privacy mechanism incurs expected squareat e
no less thahQ(r* (V ol (PW B}))*" /é?).

In the formula aboveBy is the £;-unit ball. Vol(PW BYT) is
the volume of the unit ball after the linear transformatiarder
PW, in which P is any orthogonal linear transformation matrix
fromR™ — R". To prove the lemma, we construct an orthogonal
transformationP using the SVD decomposition ovey = UXV.

By simply letting P = U7, sinceUTU and VV7” are identi-

ty matrices, we havé& ol(PW BY) = Vol(PUVVTLV BY)
Vol(V(VIEV)BY) = Vol(VBT)[1,_, Ax. The last equality
holds due to Lemma 7.5 in [14]. Consider the the convex body
V BT. Itis anr-dimensional unit ball after the orthogonal trans-
formation undef”. Note thatl ol(B7) can be computed using the
well known T function, as in [26],2T% = 2. Therefore,

the lower bound can be computed &(2; [T, _, A)*"r°/€).
This reaches the conclusion of the lemmal

Theorem 2:

PROOF To prove the theorem, we investigate the ratio of the
upper bound to the lower bound.

1[14] used absolute error in the paper, which we change taredua
error here.
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B
(3_1 T )‘k) 3 /e? b
A2 Sincer®)" is always bounded, we conclude that
< k=1 12/
(BT )T 2 1 (k1) T 1 (k41) 1 «T o 1
(7 e M) r 2 S (BB - u (BT) <0 )
A7 c? C
(2)2/7“ \2p2 = (2)2/TT < 7)) " This completes the proof of the theorent]
The last inequality holds due to the fact that< (%)" when B. IMPLEMENTATION OF THE MATRIX
r > 5. Note that all the inequalities above are tight, and the lequa MECHANISM
ities hold whenC' = 1,i.e. A1 = Ao = ... = \.. Thus, we . . .
prove that the approximation factor of our decompositionesce 'F‘ [16], Li e.t a!. propose thQ/Iatnx Mgchamsm The core of
isOC2r). O their method is finding a matrixd to minimize the following the
program.
Theorem 3: . 2 T t AT
PROOF WhenW # BL, the error has two parts. The first part Aenzlaflrnxn 1]z oo (W W ATAT) (12)

is the noises due to the Laplace random variables. Using leefnm
the incurred error is at mos} ®(B, L)(A(B, L))* < Ztr(B" B).

The second part of the error is the structural error on thatses
The expected squared error is measured as

Li et al. [16] present a complicated implementation that may
be practical due to its high complexity. We hereby preserima s
pler and more efficient solution to their optimization pragr. Here
| All3,oc denotes the maximumiz norm of column vectors ofl,

(W — BL)D)"(W — BL)D thereforg| A||3 o, = max(diag(A” A)). Since(ATA)~! = (AT A)T
n (A has full column rank), we led/ = AT A, and reformulate For-
< |W - BL|3D"D = |W - BL||% Z x; mula (12) as the following semidefinite programming prohlem
i=1
_ TheT inequality is_due to the Cauchy Schwartz inequ_ality. By min max(diag(M))tr(WTWM’l) st. M =0
linearity of expectation, the expected squared errors eagirbply MERnXn
summed up. This leads to the conclusion of the theoreim. Als given byA = 3" XuivT, where),, v; are theith eigen-
Theorem 4: value and eigenvector af/, respectively. Calculating the second
PROOF We useB™ " to denote the optimal solution of the La-  term t(W WM ") is relatively straightforward. Since it is s-
grangian sub-problem ih'" iteration. Note the following inequal- ~ mooth, its gradient can be computed-as/ ' W W M ~*. How-
ity on the sequence of the Lagrangian subproblems: ever, calculating the first termax(diag(M)) is harder since it is
non-smooth. Fortunately, inspired by [7], we can still udega-
j(B(k+1)*7 LD 0 PC) rithmic anpl exponentlallfunctlon to approxma.te .thIS term. ]
Approximatethe maximum positive number: SinceM is pos
= minJ(B,L,x®" ") itive definite,v = diag(A/) > 0. we let;, > 0 and define:
B,L
< min J(B,L,z®" g% - i
= IW-BL|p2r i %, \Lm<1 ( s fu®) “logz AL (13)
1 * *
= min tr(B" B) = ~tr((B*" B") We then havenax(v) < f, (v) < max(v) 4+ plogn. If we set
IW=BL||r<v.¥5 5, \L”\<12 2
. S I = i5e this becomes a uniform-approximation ofmax(v)
.Based on the above inequality, we derive the following iradigu with a Lipschitz continuous gradient with constant= + = log n
ty: The gradient of the objective function with respecmnan be com-
L (g0 gl puted as:
2

v; —max(v)
— g(BUHEDY LT 20 g0y )y gD of _ eXp( g )

90~ 3 (owp ()

To mitigate the problems with large numbers, using the prop-

(14)
(k)
L0y 4 —52 W — B<k+1)L(k“)||2F

_ k+1 k+1 k k k k erty of the logarithmic and exponential functions, we canrite
J(BH+D" [H+D* (0 gk)y (= + g® f the logarithmic and ial functi i
25(‘“) Eq.(13) and Eq. (14) as:
(W = BETOLED) 3 — 123 n vt — max(v)
* L)k * 1 ) v) = max(v) + pulo exp (Zi)

_ j(B(kJrl) 7L(k+1) 771_(1@) 7ﬂ(k))_m(|l7r(k+1)|l2F fu(v) (v) + plog Z 7

= ®1%) )

1, wr s 1 x . exp( Z)
< QU(BTE) - 25w (I D7 = @713 avz Z
The third equality holds because of the Lagrangian muétipli This formulation allows us to run the non-monotone projécte

update rule: gradient descent algorithm [2] and iteratively improvess tidsult.



