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Introduction
m Personal information:
Census data
Social networks
Medical / public health data

Recommendation systems records
Such data collections are of significant research value.
There Is a strong need to publish them ...

Noise
So=""0"
\ G
LY 4
@
Individual Database Anonymizer Analyst

How to Design the
Anonymizer mMm?
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Differential Privacy [Dwork et al., TCC'00]

M satisfies e-differential privacy, if for all possible DB, any
Individual (say, Alex), and all possible result set
RC Range(M):
Pr(M(DB with Alex)eER) <
Pr(M(DB w.o. Alex)ER) —

ec~1+e¢
e | = privacy 1
(Typically €=0.1)

Probability
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How to Achieve Differential Privacy

m Laplace Noise _aplace Noise
[Dwork et al., TCC'06] % i
m Gaussian Noise [Dwork et

al., EUROCRYPT'12]

For (g, 0)-differential
privacy, a weaker
differential privacy definition

......
------------------

We only focus on the Laplace Noise.
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Laplace Mechanism
m Main idea: calibrate the noise according to the
sensitivity of f(DB), denoted as Ar.
m Sensitivity: For f: D - R™:

Af = phax. I f(DBy) — f(DB3) Il

for all DB, DB, differing in at most one record.

m Theorem: M(DB)=f(DB) + Lap(A?f)m satisfies
g-differential privacy.
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Linear Counting Queries

Name State HIV+ State # of HIV+ patients
Alice NY Yes NY 82,700
Bob NJ Yes NJ 19,000
Carol NY Yes CA 67,000
Dave CA Yes WA 5,900
(a) Patient records (b) Statistics on HIV+ patients
Workload Data: D
Answer  Matrix: W
qG1= XNy T XNy T XcatTXwa q1 11 1 1 X Ny
= | X + X
= X X
qs3 catTXwa 0" 00 1 1 X ca

X wa
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Linear Counting Queries: Example

q1 = XNy TX N T XcatXwa
d2 = X pny T X Ny
q3 = XcatTXwa

 Naive solution: Noise on Result:
Mgr(W,D) = WD + Lap(Ay /) ™

Sensitivity: 2
Expected error variance: 2A% /e? =8/€*
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Linear Counting Queries: Example

9u | |1]1 |1 1| |*M

g, = 11 0 0 x *M

00 1 1 X ca

X wa

ds

 Nalive solution: Noise on Data:
Mp(W,D) = W(D + Lap(1/e) ™)

Sensitivity:1
Expected error variance: 8/e? +4/e* + 4/e? =16/€?
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Linear Counting Queries: Example

e 11
xNy+xN]
; =10 x

0 1

XcatXwa
d3

 Best Strategy:
* Q1 =XNy tX N Q2= Xcat X pwa
* q1=q1%q2, 92 = q1, 43 = q;

Sensitivity:1
Expected error variance: 2/e +1/e? + 1/e? =4 /¢
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Outline of this talk

m Low-Rank Mechanism

m Optimization Algorithms for LRM
m Experimental Result

m Future Work
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Low-Rank Mechanism
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Low-Rank Mechanism:

m Nalve solutions:

Noise on Data:

Mp(W,D) = W(D + Lap(A(I)/e) ™)
Noise on Result:

Mgp(W,D) = WD + Lap(A(W)/e) ™

m Our approach: Low-Rank Mechanism:
Mpry (W, D) = B(LD + Lap(Ap/€) ")

W = Rmxn’ B = Rmxr, L = ]Rrxn
r < min(m, n)

12



" A
Low-Rank Mechanism

Mpry (W, D) = B(LD + Lap(Ar/€) ")
W = Rmxn’ B = Rmxr, L = RTXTL

m Workload matrix decomposition: W = BL
m Noise Is injected into intermediate result LD

m Expected error variance: 2tr(BTB)A; * /€2

13
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Minimizing Expected Error
2er(B"BAL” st w = BL

min
B,L €2
Where Ay = max ¥; |L;; Nonsmooth!
j

An Important observation:
The sensitivity of L is not important!

Given decomposition W = BL and any positive
constant a, we can always construct another
decomposition W = B'L’ such that A;,= a and

2tr(BTB)AL*= 2tr(B'TB")AL,*

14
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Optimization Problem:

OP1: rgantr(BTB)AL , S.t.W =BL, A= maXZ |Lij]

Fix the Sensitivity!

N

OP2: rgantr(BTB) s.t. W = BL,A = maXZ Lij| =1

Eliminate the max operator

N

OP3: rgantr(BTB) st. W =BLVjY;|L;j| <1

15



Optimization Problem:

min tr(B'B)
B,L
s.t. W = BL

16
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How much noise do we add?

m Dwork et al. [TCC’06]: 0(n?)
mDe etal. [TCC’12]: O(min(m,n)?)
m Our result 0(X %)

1 IS the rank of the workload matrix W

17



Optimization Algorithms
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Optimization Problem:

. tr(B'B)
Bra T
s.t. W = BL,

Challenge: Non-Convex, Non-Smooth

19
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Optimization Algorithms

m For linear constraints: 1
Introd it It ETPRA
ntroduce a positive pena '
- P i P y P s.t. W = BL,
agrange multiplier |
. . V] z ILij| <1
m For L, regularized constraints: j

Projective Gradient Descent
m Augmented Lagrangian subproblem:

J(B,L,B,T) = %tr(BTB) + (m, W — BL)

p

+2 1| W = BL ||,%,s.t.v]'2 L] < 1
[

20



Workload Matrix Decomposition Algorithm

1. Initialize T = 0™ ", B =0

2. Loop

3.  While not converged // solve the subproblem

B « mBin J(B,L,B,m) [IClosed Form solution

L « mLin J(B,L,B,m) [/Projective Gradient Descent

If (Il W —BL |l <), return {B, L}
Increase the penalty parameter
Update the Lagrange multiplierm « 7 + (W — BL)

OO el © ey =

1
Subproblem: J(B,L,g,m) =5tr(B"B) +(m, W — BL)
+§||W—BL||,%,s.t.ij_|Lij|31 )

l
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Highlights of Our Algorithms

m Inexact Augmented Lagrangian Multiplier
(ALM) method for low-rank matrix completion
[Lin, et al., arXiv'10]

m Updating L.

No Lagrangian Multiplier for the £, regularized
terms

Instead we use Nesterov’'s Optimal Projective
Gradient Descent

m Updating B: closed form solution

22



" J
Convergence Rate: Linear

m If {BX, X} is the temporary solution after

the k' iteration and {B*, L*} is the optimal solution,
we have

1
tr (BX"BX) — tr(B*"B")| < 0

)

23
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Matrix Mechanism and Low-Rank Mechanism

m LRM is inspired by the Matrix Mechanism [LI et al.,
PODS’10]: My (W, D) = W(D + AtLap(A/€) )
m MM looks similar to LRM: A->L, WA*->B
Miry (W, D) = B(LD + Lap(AL/€) ")

Authors of MM point out that LRM can be seen as a special case
of MM

m But there is an important difference in formalization:
whether or not to use pseudo inverse (i.e., A*)

The pseudo-inverse-free formalization in LRM allows more
freedom in choosing optimization solutions

24
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Matrix Mechanism and Low-Rank Mechanism

m The optimization solution in MM is inefficient

m MM needs to solve: ming || 4 [ tr(ATWTWATT)

m This is hard, and the solution in MM has a high
computation cost

m Alternative solution: solve: mjn I A3 tT(ATWTWATT)

m But this leads to poor result accuracy (as shown in our
experiments)
m LRM avoids these problems
Can be seen as a refined version of MM

m New results for MM [LI and Miklau, VLDB12]: MM

successfully optimizes linear batch queries under
the (g, d)-differential privacy definition 25
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Competitors:
m Low-Rank Mechanism (LRM): [This paper]
m Matrix Mechanism (MM): [Li et al., PODS'10]
m Laplace Mechanism (LM): [Dwork et al, TCC'00]

m Wavelet Mechanism (WM): [Xiao et al, ICDE'10]
m Hierarchical Mechanism (HM) : [Hay et al, VLDB’10]

Parameters:
vy 0.0001, 0.001,0.01,0.1, 1,10
r {0.8,1.0,1.2,1.4,1.7,2.1,2.5,3.0,3.6} x rank(W)
n 128,256, 512,1024, 2048, 4096, 8192
m 64, 128,256, 512, 1024
s [40.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0} x min(m,n)

27



Varying y for Low-Rank Mechnism
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Varying r for Low-Rank Mechnism
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r = (1~1.2) X rank(W) obtains good results.
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Avg. Squared Error

Varying n for all methods
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m Matrix Mechanism (MM) obtains poor accuracy.

m LRM'’s error becomes stable when the domain size exceeds
512. Moreover, It significantly outperforms other mechanisms
when n is large.
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m LRM outperforms all other mechanisms, when the number of

gueries m << n.

m As m grows, the performance of all mechanisms on all
workloads gradually converges.
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Varying s for all methods
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Observations:
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NetTrace

Avg. Squared Error

0
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Social Network

A = RmXS C = Rsxm

m LRM substantially outperforms other methods, especially when
the rank of the workload matrix is low.

m With increasing rank of W, LRM'’s error grows.
m The low rank property is the main reason behind LRM'’s

advantages.
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Future Work

m Data-aware and workload-aware optimization

m Global sensitivity -

ocal sensitivity

m Applications to socia

networks and graphs

33



Thank you!

Our code Is available online:
http://yuanganzhao.weebly.com/
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Appendix: Upper Bound and Lower Bound

m Use SVD to construct a feasible solution:
1
W = UZV = /rUZ <ﬁv> = BL

m Upper Bound= tr(BTB) = tr((+/rUX)! (/rUX))/e 2

tr(ZTuTzu)r  Sr_ AR T 2 o 5
= —2 = 612 < Afrc =0(r°)

m Lower Bound = O (r3Vol(PWB})?/" /¢%) [Hardt et al.,
STOC 2010] (We construct the lower error bound by
SVD:W =UzV and let P = UT. Vol(BY) =2"/r!)

m Lower Bound = 0 (7327 /7! [Thoy A)?/"/€2) =
0(r® 72 (k=1 A)*"/€%) 2 0 (r/e?) = O(r)
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