

38th International Conference on Very Large Data Bases, Istanbul, Turkey

Low-Rank Mechanism: Optimizing Batch Queries under Differential Privacy

Ganzhao Yuan¹, Zhenjie Zhang², Marianne Winslett^{2,3}, Xiaokui Xiao⁴, Yin Yang^{2,3}, Zhifeng Hao¹

1. South China University of Technology

2. Advanced Digital Sciences Center

3. University of Illinois at Urbana-Champaign

4. Nanyang Technological University

Introduction

Personal information:

- Census data
- Social networks
- Medical / public health data
- Recommendation systems records
- Such data collections are of significant research value. There is a strong need to publish them ...

Differential Privacy [Dwork et al., TCC'06]

M satisfies ε -differential privacy, if for all possible DB, any individual (say, *Alex*), and all possible result set $\mathbb{R} \subseteq \text{Range}(M)$:

How to Achieve Differential Privacy

- Laplace Noise
 [Dwork et al., TCC'06]
- Gaussian Noise [Dwork et al., EUROCRYPT'12]
 - For (ε, δ)-differential privacy, a weaker differential privacy definition

We only focus on the Laplace Noise.

Laplace Mechanism

- Main idea: calibrate the noise according to the sensitivity of f(DB), denoted as Δ_f .
- Sensitivity: For $f: D \to \mathbb{R}^m$: $\Delta f = \max_{DB_1, DB_2} \| f(DB_1) - f(DB_2) \|_1$

for all DB_1 , DB_2 differing in at most one record.

• **Theorem**: $\mathcal{M}(DB) = f(DB) + \operatorname{Lap}(\frac{\Delta_f}{\epsilon})^m$ satisfies ε -differential privacy.

Linear Counting Queries

Name	State	HIV+
Alice	NY	Yes
Bob	NJ	Yes
Carol	NY	Yes
Dave	CA	Yes

(a) Patient records

State	# of HIV+ patients	
NY	82,700	
NJ	19,000	
CA	67,000	
WA	5,900	

(b) Statistics on HIV+ patients

$q_1 =$	$x_{NY} + x_{NJ} + x_{CA} + x_{WA}$	
$q_2 =$	$x_{NY} + x_{NJ}$	
$q_3 =$	$x_{CA} + x_{WA}$	

Linear Counting Queries: Example

$$q_{1} = x_{NY} + x_{NJ} + x_{CA} + x_{WA}$$

$$q_{2} = x_{NY} + x_{NJ}$$

$$q_{3} = x_{CA} + x_{WA}$$

• Naïve solution: Noise on Result: $M_R(W, D) = WD + Lap(\Delta_W/\epsilon)^m$

Sensitivity: 2 Expected error variance: $2\Delta^2/\epsilon^2 = 8/\epsilon^2$

Linear Counting Queries: Example

• Naïve solution: Noise on Data: $M_D(W, D) = W(D + Lap(1/\epsilon)^n)$

Sensitivity:1

Expected error variance: $8/\epsilon^2 + 4/\epsilon^2 + 4/\epsilon^2 = 16/\epsilon^2$

Linear Counting Queries: Example

• Best Strategy:

•
$$q'_1 = x_{NY} + x_{NJ}, q'_2 = x_{CA} + x_{WA}$$

•
$$q_1 = q'_1 + q'_2$$
, $q_2 = q'_1$, $q_3 = q'_2$

Sensitivity:1

Expected error variance: $2/\epsilon^2 + 1/\epsilon^2 + 1/\epsilon^2 = 4/\epsilon^2$

Outline of this talk

- Low-Rank Mechanism
- Optimization Algorithms for LRM
- Experimental Result
- Future Work

Low-Rank Mechanism

Low-Rank Mechanism:

Naïve solutions:

□ Noise on Data:

 $M_D(W, D) = W(D + Lap(\Delta(I)/\epsilon)^n)$

□ Noise on Result:

 $M_R(W, D) = WD + Lap(\Delta(W)/\epsilon)^m$

• Our approach: Low-Rank Mechanism: $M_{LRM}(W, D) = B(LD + Lap(\Delta_L/\epsilon)^r)$

 $W \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times r}, L \in \mathbb{R}^{r \times n}$ $r \le \min(m, n)$

Low-Rank Mechanism

 $\mathcal{M}_{LRM}(W, D) = B(LD + Lap(\Delta_{L}/\epsilon)^{r})$ $W \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times r}, L \in \mathbb{R}^{r \times n}$

Workload matrix decomposition: W = BL
 Noise is injected into intermediate result LD
 Expected error variance: 2tr(B^TB)Δ_L²/ε²

$$\begin{split} & \underset{B,L}{\text{Minimizing Expected Error}} \\ & \underset{B,L}{\min} \frac{2tr(B^TB)\Delta_L^2}{\epsilon^2} \quad \text{s.t. } W = BL \\ & \underset{i}{\text{Where } \Delta_L = \max_i \sum_i |L_{ij}|} \quad \text{Nonsmooth!} \end{split}$$

An important observation: The sensitivity of *L* is not important!

Given decomposition W = BL and any positive constant α , we can always construct another decomposition W = B'L' such that $\Delta_{L'} = \alpha$ and $2tr(B^TB)\Delta_L^2 = 2tr(B'^TB')\Delta_{L'}^2$

Optimization Problem:
OP1:
$$\min_{B,L} tr(B^T B) \Delta_L^2$$
, s.t. $W = BL, \Delta_L = \max_j \sum_i |L_{ij}|$
Fix the Sensitivity!

OP2: $\min_{B,L} \operatorname{tr}(B^T B)$, s.t. W = BL, $\Delta_L = \max_j \sum_i |L_{ij}| = 1$ Eliminate the max operator OP3: $\min_{B,L} \operatorname{tr}(B^T B)$, s.t. W = BL, $\forall j \sum_i |L_{ij}| \le 1$

Optimization Problem:

$$\min_{B,L} \operatorname{tr}(B^T B)$$

s.t. $W = BL$,
 $\forall j \sum_i |L_{ij}| \le 1$

How much noise do we add?

Dwork et al. [TCC'06]: $\mathcal{O}(n^2)$ De et al. [TCC'12]: $\mathcal{O}(\min(m,n)^2)$ Our result : $\mathcal{O}(\sum_{i=1}^k \lambda_i^2 r)$

• r is the rank of the workload matrix W

Optimization Algorithms

Optimization Problem:

$$\min_{\substack{B,L\\B,L}} \frac{1}{2} tr(B^T B)$$

s.t. $W = BL$,
 $\forall j \sum_i |L_{ij}| \le 1$

Challenge: Non-Convex, Non-Smooth

Optimization Algorithms

- For linear constraints:
- Introduce a positive penalty β
- & Lagrange multiplier π

$$\min_{B,L} \frac{1}{2} tr(B^T B)$$

s.t. $W = BL$,
 $\forall j \sum_i |L_{ij}| \le 1$

- For L₁ regularized constraints: Projective Gradient Descent
- Augmented Lagrangian subproblem: $\mathcal{J}(B, L, \beta, \pi) = \frac{1}{2} tr(B^T B) + \langle \pi, W - BL \rangle$ $+ \frac{\beta}{2} \parallel W - BL \parallel_F^2, s. t. \forall j \sum_i |L_{ij}| \le 1$

Workload Matrix Decomposition Algorithm

1. Initialize
$$\pi = 0^{m \times n}$$
, $\beta = 0$

2. Loop

- 3. While not converged // solve the subproblem
- 4. $B \leftarrow \min_{B} \mathcal{J}(B, L, \beta, \pi)$ //Closed Form solution
- 5. L $\leftarrow \min_{L} \mathcal{J}(B, L, \beta, \pi)$ //Projective Gradient Descent
- 6. If $(|| W BL ||_F < \gamma)$, return $\{B, L\}$
- 7. Increase the penalty parameter β
- 8. Update the Lagrange multiplier $\pi \leftarrow \pi + \beta (W BL)$

Subproblem:
$$\mathcal{J}(B, L, \beta, \pi) = \frac{1}{2} tr(B^T B) + \langle \pi, W - BL \rangle$$

 $+ \frac{\beta}{2} \| W - BL \|_F^2, s. t. \forall j \sum_i |L_{ij}| \le 1$ 21

Highlights of Our Algorithms

- Inexact Augmented Lagrangian Multiplier (ALM) method for low-rank matrix completion [Lin, et al., arXiv'10]
- Updating L:
 - \Box No Lagrangian Multiplier for the \mathcal{L}_1 regularized terms
 - Instead we use Nesterov's Optimal Projective Gradient Descent
- Updating B: closed form solution

Convergence Rate: Linear

If {B^k, L^k} is the temporary solution after the kth iteration and {B^{*}, L^{*}} is the optimal solution, we have

$$|\operatorname{tr}(\mathbf{B^{k}}^{T}\mathbf{B^{k}}) - \operatorname{tr}(\mathbf{B^{*}}^{T}\mathbf{B^{*}})| \leq \mathcal{O}(\frac{1}{\beta^{k-1}})$$

Matrix Mechanism and Low-Rank Mechanism

- LRM is inspired by the Matrix Mechanism [Li et al., PODS'10]: $M_{MM}(W, D) = W(D + A^{\dagger}Lap(\Delta_A/\epsilon)^n)$
 - MM looks similar to LRM: $A \rightarrow L$, $WA^+ \rightarrow B$

 $M_{LRM}(W, D) = B(LD + Lap(\Delta_L/\epsilon)^r)$

- Authors of MM point out that LRM can be seen as a special case of MM
- But there is an important difference in formalization: whether or not to use pseudo inverse (i.e., A⁺)
 - The pseudo-inverse-free formalization in LRM allows more freedom in choosing optimization solutions

Matrix Mechanism and Low-Rank Mechanism

- The optimization solution in MM is inefficient
 - MM needs to solve: $\min_A || A ||_1^2 tr(A^{\dagger}W^T W A^{\dagger}^T)$
 - This is hard, and the solution in MM has a high computation cost
 - Alternative solution: solve: $\min_{A} || A ||_2^2 tr(A^{\dagger}W^T W A^{\dagger^T})$
 - But this leads to poor result accuracy (as shown in our experiments)
- LRM avoids these problems

□ Can be seen as a refined version of MM

New results for MM [Li and Miklau, VLDB'12]: MM successfully optimizes linear batch queries under the (ε, δ)-differential privacy definition

Experimental Results

Competitors:

- Low-Rank Mechanism (LRM): [This paper]
- Matrix Mechanism (MM): [Li et al., PODS'10]
- Laplace Mechanism (LM): [Dwork et al, TCC'06]
- Wavelet Mechanism (WM): [Xiao et al, ICDE'10]
- Hierarchical Mechanism (HM) : [Hay et al, VLDB'10]

Parameters:

γ	0.0001, 0.001, 0.01 , 0.1, 1, 10
r	$\{0.8, 1.0, 1.2, 1.4, 1.7, 2.1, 2.5, 3.0, 3.6\} \times rank(W)$
n	128, 256, 512, 1024, 2048, 4096, 8192
m	64, 128, 256 , 512, 1024
s	$\{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\} \times min(m, n)$

Varying γ for Low-Rank Mechnism

 $\| W - BL \|_F^2 \leq \gamma$

Observation:

A larger value for γ is preferred

Varying r for Low-Rank Mechnism

 $W \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times r}, L \in \mathbb{R}^{r \times n}$

Observation:

 $r = (1 \sim 1.2) \times rank(W)$ obtains good results.

Varying n for all methods

Observations:

- Matrix Mechanism (MM) obtains poor accuracy.
- LRM's error becomes stable when the domain size exceeds 512. Moreover, It significantly outperforms other mechanisms when n is large.

Varying *m* for all methods 10⁸ **H**LM 🕀 LM 🕀 L M *WM <-W/M **₩**·WM Avg. Squared Error Avg. Squared Error HH-Avg. Squared Error - HM O LRM 🖸 LRM 10^{7} 10⁶ 10⁶ 10⁵ 10^{6} 64 512 1024 128 512 128 256 64 256 512 1024 64 128 256 1024 Query size m Query size m Query size m **WDiscreate** WRange WRelated

Observations:

- LRM outperforms all other mechanisms, when the number of queries m << n.
- As *m* grows, the performance of all mechanisms on all workloads gradually converges.

Varying s for all methods

Observations:

 $W = AC, \qquad A \in \mathbb{R}^{m \times s}, C \in \mathbb{R}^{s \times m}$

- LRM substantially outperforms other methods, especially when the rank of the workload matrix is low.
- With increasing rank of W, LRM's error grows.
- The low rank property is the main reason behind LRM's advantages.

Future Work

- Data-aware and workload-aware optimization
- Global sensitivity \rightarrow local sensitivity
- Applications to social networks and graphs

Thank you!

Our code is available online: <u>http://yuanganzhao.weebly.com/</u>

Appendix: Upper Bound and Lower Bound

Use SVD to construct a feasible solution:

$$W = U\Sigma V = \sqrt{r}U\Sigma\left(\frac{1}{\sqrt{r}}V\right) = BL$$

• Upper Bound = $tr(B^T B) = tr((\sqrt{r}U\Sigma)^T (\sqrt{r}U\Sigma))/\epsilon^2$ = $\frac{tr(\Sigma^T U^T \Sigma U)r}{\epsilon^2} = \frac{\sum_{k=1}^r \lambda_k^2 r}{\epsilon^2} \le \lambda_1^2 r^2 = \mathcal{O}(r^2)$

Lower Bound = \$\mathcal{O} (r^3 Vol(PWB_1^n)^{2/r} / \varepsilon^2)\$ [Hardt et al., STOC 2010] (We construct the lower error bound by SVD:W = U\(\Sigma V) \text{ and let } P = U^T. Vol(B_1^r) = 2^r / r! \)
Lower Bound = \$\mathcal{O} (r^3(2^r / r! \prod_{k=1}^r \lambda_k)^{2/r} / \varepsilon^2) \geq \$\mathcal{O} (r/\varepsilon^2) = \mathcal{O} (r/\varepsilon^2) = \$\mathcal{O} (r/\varepsilon^2) = \mathcal{O} (r/\varepsilon^2) = \$\mathcal{O} (r/\varepsilon^2) = \$\varepsilon^2 (r/\varepsilon^2) = \$\mathcal{O} (r/\varepsilon^2) = \$\varepsilon^2 (r/\varep