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 Personal information: 

 Census data 

 Social networks 

 Medical / public health data 

 Recommendation systems records 

Introduction 

M 
f(x) 

Noise 

Analyst Individual Anonymizer Database 

How to Design the  

Anonymizer M ? 

Such data collections are of significant research value. 

There is a strong need to publish them … 

① 

② 

③ ④ 
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Probability 

Differential Privacy [Dwork et al., TCC’06] 

M satisfies 𝜀-differential privacy, if for all possible DB, any 

individual (say, 𝐴𝑙𝑒𝑥), and all possible result set  

R⊆ Range(M): 

Pr (M(𝐷𝐵 𝑤𝑖𝑡ℎ 𝐴𝑙𝑒𝑥)∈R)
Pr (M(𝐷𝐵 𝑤.𝑜. 𝐴𝑙𝑒𝑥)∈R) ≤ 𝑒

𝜖 ≈ 1 ± 𝜖  
𝜖 ↓  ⟹  privacy ↑ 
(Typically 𝜖=0.1) 
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How to Achieve Differential Privacy 

 Laplace Noise 

   [Dwork et al., TCC'06] 

 Gaussian Noise [Dwork et 

al., EUROCRYPT'12] 

 For (ε, δ)-differential 

privacy, a weaker 

differential privacy definition 

Laplace Noise 

pdf:  𝑝 𝑦 =
1

2𝜎
exp (

−||y||1

𝜎
) 

We only focus on the Laplace Noise. 
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Laplace Mechanism 
 Main idea: calibrate the noise according to the 

sensitivity of 𝑓(𝐷𝐵), denoted as  ∆𝑓.  

 Sensitivity: For 𝑓:  𝐷 → ℝ𝑚: 

∆𝑓 = max
𝐷𝐵1,𝐷𝐵2

∥ 𝑓 𝐷𝐵1 − 𝑓(𝐷𝐵2) ∥1 

   for all 𝐷𝐵1, 𝐷𝐵2 differing in at most one record. 

 Theorem: M(𝐷𝐵)=𝑓 𝐷𝐵 + Lap(
∆𝑓

𝜖
)𝑚 satisfies 

𝜀-differential privacy. 
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Linear Counting Queries 

𝑞1 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 + 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞2 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽                             

𝑞3 =                            𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑥 𝑁𝑌 

𝑥 𝑁𝐽 

𝑥 𝐶𝐴 

𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

Workload 

Matrix: W 
Data: D 

Answer 

1 1 1 1 

1 1 0 0 

0 0 1 1 
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Linear Counting Queries: Example 

𝑞1 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 + 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞2 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽                             

𝑞3 =                           𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

• Naïve solution: Noise on Result:  

M𝑅 W,D = WD + Lap(∆W/ϵ) 
𝑚 

 

Sensitivity: 2 

Expected error variance: 2Δ2/𝜖2 =8/𝜖2 
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Linear Counting Queries: Example 

• Naïve solution: Noise on Data:  

M𝐷 W,D = W D+ Lap(1/ϵ) 
𝑛  

 

Sensitivity:1 

Expected error variance: 8/ϵ2 +4/ϵ2 + 4/ϵ2 =16/ϵ2  

8 

𝑥 𝑁𝑌 

𝑥 𝑁𝐽 

𝑥 𝐶𝐴 

𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

1 1 1 1 

1 1 0 0 

0 0 1 1 



Linear Counting Queries: Example 

  
• Best Strategy:  

• q1
′ = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽,  q2

′ = 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 
• 𝑞1 = 𝑞1

′+𝑞2
′ ,  𝑞2 = 𝑞1

′ ,  𝑞3 = 𝑞2
′       

 

Sensitivity:1 

Expected error variance: 2/ϵ2 +1/ϵ2 + 1/ϵ2 =4/ϵ2 
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𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 

𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

1 1 

1 0 

0 1 



Outline of this talk 

 

 Low-Rank Mechanism 

 Optimization Algorithms for LRM 

 Experimental Result 

 Future Work 
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 Low-Rank Mechanism 
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Low-Rank Mechanism: 
 Naïve solutions: 

Noise on Data: 

M𝐷 W,D = W D+ Lap(∆(I)/ϵ) 
𝑛  

Noise on Result:  

M𝑅 W,D = WD + Lap(∆(W)/ϵ) 
𝑚 

 Our approach: Low-Rank Mechanism: 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

 

             

W ∈ ℝ𝑚×𝑛, B ∈ ℝ𝑚×𝑟 , L ∈ ℝ𝑟×𝑛 
𝑟 ≤ min (𝑚, 𝑛) 
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Low-Rank Mechanism 

 Workload matrix decomposition: W =  BL 

 Noise is injected into intermediate result LD 

 Expected error variance: 2tr 𝐵𝑇𝐵 ∆L
2/ϵ2 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

W ∈ ℝ𝑚×𝑛, B ∈ ℝ𝑚×𝑟 , L ∈ ℝ𝑟×𝑛 
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Minimizing Expected Error 

An important observation:  
The sensitivity of 𝑳 is not important! 

min
𝐵,𝐿

2𝑡𝑟 𝐵𝑇𝐵 ∆L
2 

ϵ2
 s.t. 𝑊 = 𝐵𝐿 

Where ∆L= max
𝑗
 |𝐿𝑖𝑗|𝑖  

Given decomposition 𝑊 = 𝐵𝐿 and any positive 

constant 𝛼, we can always construct another 

decomposition 𝑊 = 𝐵′𝐿′  such that ∆L′= 𝛼 and  

2𝑡𝑟 𝐵𝑇𝐵 ∆L
2= 2𝑡𝑟 𝐵′𝑇𝐵′ ∆L′

2 

 

 

 

 

 

 

Nonsmooth! 
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OP1: min
𝐵,𝐿
tr 𝐵𝑇𝐵 ∆L

2 ,  s.t. 𝑊 = 𝐵𝐿, ∆L= max
𝑗
 |𝐿𝑖𝑗|𝑖  

OP2: min
𝐵,𝐿
tr 𝐵𝑇𝐵 ,  s.t. 𝑊 = 𝐵𝐿, ∆L= max

𝑗
 |𝐿𝑖𝑗|𝑖 = 1 

OP3: min
𝐵,𝐿
tr 𝐵𝑇𝐵 , s.t. 𝑊 = 𝐵𝐿, ∀j  |𝐿𝑖𝑗|𝑖 ≤ 1 

Optimization Problem: 

Fix the Sensitivity! 

Eliminate the max operator 
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Optimization Problem: 

min
𝐵,𝐿
tr 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀j |𝐿𝑖𝑗|
𝑖
≤ 1 
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How much noise do we add? 

 Dwork et al. [TCC’06]: 𝒪(𝑛2) 

 De  et al.     [TCC’12]:  𝒪(min (𝑚, 𝑛)2) 

 Our result                  :  𝒪  𝜆𝑖
2𝑘

𝑖=1 𝑟  

 

 • 𝑟 is the rank of the workload matrix W 
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Optimization Algorithms 
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Optimization Problem: 

 

 

 

min
𝐵,𝐿

1

2
𝑡𝑟 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀𝑗 |𝐿𝑖𝑗|
𝑖
≤ 1 

Challenge: Non-Convex, Non-Smooth 

19 



Optimization Algorithms 
 For linear constraints： 

Introduce a positive penalty 𝛽  

& Lagrange multiplier 𝜋 

 For ℒ1 regularized constraints： 

   Projective Gradient Descent 

 Augmented Lagrangian subproblem: 

𝒥 𝐵, 𝐿, 𝛽, 𝜋 =
1

2
𝑡𝑟 𝐵𝑇𝐵 + 𝜋,𝑊 − 𝐵𝐿  

+
𝛽

2
∥ W − BL ∥𝐹

2 , 𝑠. 𝑡. ∀j |𝐿𝑖𝑗|
𝑖
≤ 1 

 

min
𝐵,𝐿

1

2
𝑡𝑟 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀𝑗 |𝐿𝑖𝑗|
𝑖
≤ 1 
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Workload Matrix Decomposition Algorithm 

1. Initialize 𝜋 = 0𝑚×𝑛, 𝛽 = 0 

2. Loop 

3.      While not converged // solve the subproblem 

4.            B ← min
𝐵
𝒥 𝐵, 𝐿, 𝛽, 𝜋    //Closed Form solution 

5.            L ← min
𝐿
𝒥 𝐵, 𝐿, 𝛽, 𝜋    //Projective Gradient Descent 

6.       If (∥ 𝑊 − 𝐵𝐿 ∥𝐹  < 𝛾), return *𝐵, 𝐿+ 

7.       Increase the penalty parameter 𝛽 

8.       Update the Lagrange multiplier 𝜋 ← 𝜋 + 𝛽(𝑊 − 𝐵𝐿) 

Subproblem: 𝒥 𝐵, 𝐿, 𝛽, 𝜋 =
1

2
𝑡𝑟 𝐵𝑇𝐵 + 𝜋,𝑊 − 𝐵𝐿  

+
𝛽

2
∥ W − BL ∥𝐹

2 , 𝑠. 𝑡. ∀j |𝐿𝑖𝑗|
𝑖
≤ 1 
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Highlights of Our Algorithms 

 Inexact Augmented Lagrangian Multiplier 

(ALM) method for low-rank matrix completion 

[Lin, et al., arXiv’10] 

 Updating L:  

No Lagrangian Multiplier for the ℒ1 regularized 

terms 

 Instead we use Nesterov’s Optimal Projective 

Gradient Descent 

 Updating B: closed form solution 
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Convergence Rate: Linear 
 If *Bk, Lk+ is the temporary solution after 

the kth iteration and *B∗, L∗+ is the optimal solution, 

we have 

|tr Bk
T
Bk − tr B∗TB∗ | ≤ 𝒪(

1

βk−1
) 
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Matrix Mechanism and Low-Rank Mechanism 

 LRM is inspired by the Matrix Mechanism [Li et al., 

PODS’10]: M𝑀𝑀 W,D = W D+ A
†Lap(∆A/ϵ) 

𝑛  

 MM looks similar to LRM: AL, WA+
B 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

 Authors of MM point out that LRM can be seen as a special case 

of MM 

 But there is an important difference in formalization: 

whether or not to use pseudo inverse (i.e., A+) 

 The pseudo-inverse-free formalization in LRM allows more 

freedom in choosing optimization solutions 
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Matrix Mechanism and Low-Rank Mechanism 

 The optimization solution in MM is inefficient 

 MM needs to solve: min𝐴 ∥ 𝐴 ∥1
2 𝑡𝑟(𝐴†𝑊𝑇𝑊𝐴†

𝑇
)  

 This is hard, and the solution in MM has a high 

computation cost 

 Alternative solution: solve: min
𝐴
∥ 𝐴 ∥2

2 𝑡𝑟(𝐴†𝑊𝑇𝑊𝐴†
𝑇
) 

 But this leads to poor result accuracy (as shown in our 

experiments) 

 LRM avoids these problems 

 Can be seen as a refined version of MM 

 New results for MM [Li and Miklau, VLDB’12]: MM 

successfully optimizes linear batch queries under 

the (ε, δ)-differential privacy definition 25 



Experimental Results 
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Competitors: 

 Low-Rank Mechanism (LRM): [This paper] 

 Matrix Mechanism (MM): [Li et al., PODS’10] 

 Laplace Mechanism (LM): [Dwork et al, TCC’06] 

 Wavelet Mechanism (WM): [Xiao et al, ICDE’10] 

 Hierarchical Mechanism (HM) : [Hay et al, VLDB’10] 

Parameters: 
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Varying 𝛾 for Low-Rank Mechnism 

Observation: 

A larger value for 𝛾 is preferred 

WDiscreate WRange WRelated 

 ∥ W − BL ∥𝐹
2≤ 𝛾 
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Varying 𝑟 for Low-Rank Mechnism 

Observation: 

𝑟 = (1~1.2) × 𝑟𝑎𝑛𝑘(𝑊) obtains good results. 

WDiscreate WRange WRelated 

 𝑊 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑚×𝑟 , 𝐿 ∈ ℝ𝑟×𝑛 

29 



Varying 𝑛 for all methods 

Observations: 
 Matrix Mechanism (MM) obtains poor accuracy. 

 LRM’s error becomes stable when the domain size exceeds 

512. Moreover, It significantly outperforms other mechanisms 

when 𝑛 is large. 

WDiscreate WRange WRelated 
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Varying 𝑚 for all methods 

Observations: 
 LRM outperforms all other mechanisms, when the number of 

queries m << n. 

 As m grows, the performance of all mechanisms on all 

workloads gradually converges. 

WDiscreate WRange WRelated 
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Varying 𝑠 for all methods 

Observations: 
 LRM substantially outperforms other methods, especially when 

the rank of the workload matrix is low.  

 With increasing rank of W, LRM’s error grows.  

 The low rank property is the main reason behind LRM’s 

advantages. 

Search Logs NetTrace Social Network 

W = AC, A ∈ ℝm×s, C ∈ ℝs×m 
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Future Work 

 Data-aware and workload-aware optimization 

 Global sensitivity  local sensitivity 

 Applications to social networks and graphs 
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Thank you! 

Our code is available online: 

http://yuanganzhao.weebly.com/ 
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 Use SVD to construct a feasible solution: 

W = UΣV = rUΣ
1

r
V = BL 

 Upper Bound= 𝑡𝑟 𝐵𝑇𝐵 = 𝑡𝑟(( rUΣ)𝑇 ( rUΣ))/𝜖 2                 

             =
𝑡𝑟 Σ𝑇U𝑇Σ𝑈 𝑟

𝜖 2
=
 𝜆𝑘

2 𝑟
𝑘=1 𝑟

𝜖 2
≤  𝜆1
2𝑟2 = 𝒪(r2) 

 
 Lower Bound = 𝒪 𝑟3𝑉𝑜𝑙(𝑃𝑊B1

𝑛)2/𝑟/𝜀2   [Hardt et al., 

STOC 2010] (We construct the lower error bound by 

SVD:W = UΣV and let 𝑃 = 𝑈𝑇 .     Vol B1
𝑟 = 2𝑟/𝑟! ) 

 Lower Bound = 𝒪 𝑟3 2𝑟/𝑟! 𝜆𝑘
𝑟
𝑘=1

2/𝑟/𝜀2 ≥ 

 𝒪 𝑟3 ∙ 𝑟−2 ∙  𝜆𝑘
𝑟
𝑘=1

2/𝑟/𝜀2 ≥ 𝒪 𝑟/𝜀2 = 𝒪(𝑟) 

  

Appendix: Upper Bound and Lower Bound 
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