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 Personal information: 

 Census data 

 Social networks 

 Medical / public health data 

 Recommendation systems records 

Introduction 

M 
f(x) 

Noise 

Analyst Individual Anonymizer Database 

How to Design the  

Anonymizer M ? 

Such data collections are of significant research value. 

There is a strong need to publish them … 

① 

② 

③ ④ 
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Probability 

Differential Privacy [Dwork et al., TCC’06] 

M satisfies 𝜀-differential privacy, if for all possible DB, any 

individual (say, 𝐴𝑙𝑒𝑥), and all possible result set  

R⊆ Range(M): 

Pr (M(𝐷𝐵 𝑤𝑖𝑡ℎ 𝐴𝑙𝑒𝑥)∈R)
Pr (M(𝐷𝐵 𝑤.𝑜. 𝐴𝑙𝑒𝑥)∈R) ≤ 𝑒

𝜖 ≈ 1 ± 𝜖  
𝜖 ↓  ⟹  privacy ↑ 
(Typically 𝜖=0.1) 
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How to Achieve Differential Privacy 

 Laplace Noise 

   [Dwork et al., TCC'06] 

 Gaussian Noise [Dwork et 

al., EUROCRYPT'12] 

 For (ε, δ)-differential 

privacy, a weaker 

differential privacy definition 

Laplace Noise 

pdf:  𝑝 𝑦 =
1

2𝜎
exp (

−||y||1

𝜎
) 

We only focus on the Laplace Noise. 
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Laplace Mechanism 
 Main idea: calibrate the noise according to the 

sensitivity of 𝑓(𝐷𝐵), denoted as  ∆𝑓.  

 Sensitivity: For 𝑓:  𝐷 → ℝ𝑚: 

∆𝑓 = max
𝐷𝐵1,𝐷𝐵2

∥ 𝑓 𝐷𝐵1 − 𝑓(𝐷𝐵2) ∥1 

   for all 𝐷𝐵1, 𝐷𝐵2 differing in at most one record. 

 Theorem: M(𝐷𝐵)=𝑓 𝐷𝐵 + Lap(
∆𝑓

𝜖
)𝑚 satisfies 

𝜀-differential privacy. 
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Linear Counting Queries 

𝑞1 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 + 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞2 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽                             

𝑞3 =                            𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑥 𝑁𝑌 

𝑥 𝑁𝐽 

𝑥 𝐶𝐴 

𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

Workload 

Matrix: W 
Data: D 

Answer 

1 1 1 1 

1 1 0 0 

0 0 1 1 
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Linear Counting Queries: Example 

𝑞1 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 + 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞2 = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽                             

𝑞3 =                           𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

• Naïve solution: Noise on Result:  

M𝑅 W,D = WD + Lap(∆W/ϵ) 
𝑚 

 

Sensitivity: 2 

Expected error variance: 2Δ2/𝜖2 =8/𝜖2 
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Linear Counting Queries: Example 

• Naïve solution: Noise on Data:  

M𝐷 W,D = W D+ Lap(1/ϵ) 
𝑛  

 

Sensitivity:1 

Expected error variance: 8/ϵ2 +4/ϵ2 + 4/ϵ2 =16/ϵ2  
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𝑥 𝑁𝑌 

𝑥 𝑁𝐽 

𝑥 𝐶𝐴 

𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

1 1 1 1 

1 1 0 0 

0 0 1 1 



Linear Counting Queries: Example 

  
• Best Strategy:  

• q1
′ = 𝑥 𝑁𝑌 + 𝑥 𝑁𝐽,  q2

′ = 𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 
• 𝑞1 = 𝑞1

′+𝑞2
′ ,  𝑞2 = 𝑞1

′ ,  𝑞3 = 𝑞2
′       

 

Sensitivity:1 

Expected error variance: 2/ϵ2 +1/ϵ2 + 1/ϵ2 =4/ϵ2 
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𝑥 𝑁𝑌 + 𝑥 𝑁𝐽 

𝑥 𝐶𝐴 + 𝑥 𝑊𝐴 

𝑞1 

𝑞2 

𝑞3 

= × 

1 1 

1 0 

0 1 



Outline of this talk 

 

 Low-Rank Mechanism 

 Optimization Algorithms for LRM 

 Experimental Result 

 Future Work 
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 Low-Rank Mechanism 
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Low-Rank Mechanism: 
 Naïve solutions: 

Noise on Data: 

M𝐷 W,D = W D+ Lap(∆(I)/ϵ) 
𝑛  

Noise on Result:  

M𝑅 W,D = WD + Lap(∆(W)/ϵ) 
𝑚 

 Our approach: Low-Rank Mechanism: 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

 

             

W ∈ ℝ𝑚×𝑛, B ∈ ℝ𝑚×𝑟 , L ∈ ℝ𝑟×𝑛 
𝑟 ≤ min (𝑚, 𝑛) 
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Low-Rank Mechanism 

 Workload matrix decomposition: W =  BL 

 Noise is injected into intermediate result LD 

 Expected error variance: 2tr 𝐵𝑇𝐵 ∆L
2/ϵ2 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

W ∈ ℝ𝑚×𝑛, B ∈ ℝ𝑚×𝑟 , L ∈ ℝ𝑟×𝑛 
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Minimizing Expected Error 

An important observation:  
The sensitivity of 𝑳 is not important! 

min
𝐵,𝐿

2𝑡𝑟 𝐵𝑇𝐵 ∆L
2 

ϵ2
 s.t. 𝑊 = 𝐵𝐿 

Where ∆L= max
𝑗
 |𝐿𝑖𝑗|𝑖  

Given decomposition 𝑊 = 𝐵𝐿 and any positive 

constant 𝛼, we can always construct another 

decomposition 𝑊 = 𝐵′𝐿′  such that ∆L′= 𝛼 and  

2𝑡𝑟 𝐵𝑇𝐵 ∆L
2= 2𝑡𝑟 𝐵′𝑇𝐵′ ∆L′

2 

 

 

 

 

 

 

Nonsmooth! 
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OP1: min
𝐵,𝐿
tr 𝐵𝑇𝐵 ∆L

2 ,  s.t. 𝑊 = 𝐵𝐿, ∆L= max
𝑗
 |𝐿𝑖𝑗|𝑖  

OP2: min
𝐵,𝐿
tr 𝐵𝑇𝐵 ,  s.t. 𝑊 = 𝐵𝐿, ∆L= max

𝑗
 |𝐿𝑖𝑗|𝑖 = 1 

OP3: min
𝐵,𝐿
tr 𝐵𝑇𝐵 , s.t. 𝑊 = 𝐵𝐿, ∀j  |𝐿𝑖𝑗|𝑖 ≤ 1 

Optimization Problem: 

Fix the Sensitivity! 

Eliminate the max operator 
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Optimization Problem: 

min
𝐵,𝐿
tr 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀j |𝐿𝑖𝑗|
𝑖
≤ 1 
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How much noise do we add? 

 Dwork et al. [TCC’06]: 𝒪(𝑛2) 

 De  et al.     [TCC’12]:  𝒪(min (𝑚, 𝑛)2) 

 Our result                  :  𝒪  𝜆𝑖
2𝑘

𝑖=1 𝑟  

 

 • 𝑟 is the rank of the workload matrix W 

17 



Optimization Algorithms 
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Optimization Problem: 

 

 

 

min
𝐵,𝐿

1

2
𝑡𝑟 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀𝑗 |𝐿𝑖𝑗|
𝑖
≤ 1 

Challenge: Non-Convex, Non-Smooth 

19 



Optimization Algorithms 
 For linear constraints： 

Introduce a positive penalty 𝛽  

& Lagrange multiplier 𝜋 

 For ℒ1 regularized constraints： 

   Projective Gradient Descent 

 Augmented Lagrangian subproblem: 

𝒥 𝐵, 𝐿, 𝛽, 𝜋 =
1

2
𝑡𝑟 𝐵𝑇𝐵 + 𝜋,𝑊 − 𝐵𝐿  

+
𝛽

2
∥ W − BL ∥𝐹

2 , 𝑠. 𝑡. ∀j |𝐿𝑖𝑗|
𝑖
≤ 1 

 

min
𝐵,𝐿

1

2
𝑡𝑟 𝐵𝑇𝐵  

s.t. 𝑊 = 𝐵𝐿,  

∀𝑗 |𝐿𝑖𝑗|
𝑖
≤ 1 
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Workload Matrix Decomposition Algorithm 

1. Initialize 𝜋 = 0𝑚×𝑛, 𝛽 = 0 

2. Loop 

3.      While not converged // solve the subproblem 

4.            B ← min
𝐵
𝒥 𝐵, 𝐿, 𝛽, 𝜋    //Closed Form solution 

5.            L ← min
𝐿
𝒥 𝐵, 𝐿, 𝛽, 𝜋    //Projective Gradient Descent 

6.       If (∥ 𝑊 − 𝐵𝐿 ∥𝐹  < 𝛾), return *𝐵, 𝐿+ 

7.       Increase the penalty parameter 𝛽 

8.       Update the Lagrange multiplier 𝜋 ← 𝜋 + 𝛽(𝑊 − 𝐵𝐿) 

Subproblem: 𝒥 𝐵, 𝐿, 𝛽, 𝜋 =
1

2
𝑡𝑟 𝐵𝑇𝐵 + 𝜋,𝑊 − 𝐵𝐿  

+
𝛽

2
∥ W − BL ∥𝐹

2 , 𝑠. 𝑡. ∀j |𝐿𝑖𝑗|
𝑖
≤ 1 
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Highlights of Our Algorithms 

 Inexact Augmented Lagrangian Multiplier 

(ALM) method for low-rank matrix completion 

[Lin, et al., arXiv’10] 

 Updating L:  

No Lagrangian Multiplier for the ℒ1 regularized 

terms 

 Instead we use Nesterov’s Optimal Projective 

Gradient Descent 

 Updating B: closed form solution 
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Convergence Rate: Linear 
 If *Bk, Lk+ is the temporary solution after 

the kth iteration and *B∗, L∗+ is the optimal solution, 

we have 

|tr Bk
T
Bk − tr B∗TB∗ | ≤ 𝒪(

1

βk−1
) 
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Matrix Mechanism and Low-Rank Mechanism 

 LRM is inspired by the Matrix Mechanism [Li et al., 

PODS’10]: M𝑀𝑀 W,D = W D+ A
†Lap(∆A/ϵ) 

𝑛  

 MM looks similar to LRM: AL, WA+
B 

M𝐿𝑅𝑀 W,D = B LD + Lap(∆L/ϵ) 
𝑟  

 Authors of MM point out that LRM can be seen as a special case 

of MM 

 But there is an important difference in formalization: 

whether or not to use pseudo inverse (i.e., A+) 

 The pseudo-inverse-free formalization in LRM allows more 

freedom in choosing optimization solutions 
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Matrix Mechanism and Low-Rank Mechanism 

 The optimization solution in MM is inefficient 

 MM needs to solve: min𝐴 ∥ 𝐴 ∥1
2 𝑡𝑟(𝐴†𝑊𝑇𝑊𝐴†

𝑇
)  

 This is hard, and the solution in MM has a high 

computation cost 

 Alternative solution: solve: min
𝐴
∥ 𝐴 ∥2

2 𝑡𝑟(𝐴†𝑊𝑇𝑊𝐴†
𝑇
) 

 But this leads to poor result accuracy (as shown in our 

experiments) 

 LRM avoids these problems 

 Can be seen as a refined version of MM 

 New results for MM [Li and Miklau, VLDB’12]: MM 

successfully optimizes linear batch queries under 

the (ε, δ)-differential privacy definition 25 



Experimental Results 
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Competitors: 

 Low-Rank Mechanism (LRM): [This paper] 

 Matrix Mechanism (MM): [Li et al., PODS’10] 

 Laplace Mechanism (LM): [Dwork et al, TCC’06] 

 Wavelet Mechanism (WM): [Xiao et al, ICDE’10] 

 Hierarchical Mechanism (HM) : [Hay et al, VLDB’10] 

Parameters: 
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Varying 𝛾 for Low-Rank Mechnism 

Observation: 

A larger value for 𝛾 is preferred 

WDiscreate WRange WRelated 

 ∥ W − BL ∥𝐹
2≤ 𝛾 
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Varying 𝑟 for Low-Rank Mechnism 

Observation: 

𝑟 = (1~1.2) × 𝑟𝑎𝑛𝑘(𝑊) obtains good results. 

WDiscreate WRange WRelated 

 𝑊 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑚×𝑟 , 𝐿 ∈ ℝ𝑟×𝑛 
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Varying 𝑛 for all methods 

Observations: 
 Matrix Mechanism (MM) obtains poor accuracy. 

 LRM’s error becomes stable when the domain size exceeds 

512. Moreover, It significantly outperforms other mechanisms 

when 𝑛 is large. 

WDiscreate WRange WRelated 
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Varying 𝑚 for all methods 

Observations: 
 LRM outperforms all other mechanisms, when the number of 

queries m << n. 

 As m grows, the performance of all mechanisms on all 

workloads gradually converges. 

WDiscreate WRange WRelated 
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Varying 𝑠 for all methods 

Observations: 
 LRM substantially outperforms other methods, especially when 

the rank of the workload matrix is low.  

 With increasing rank of W, LRM’s error grows.  

 The low rank property is the main reason behind LRM’s 

advantages. 

Search Logs NetTrace Social Network 

W = AC, A ∈ ℝm×s, C ∈ ℝs×m 
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Future Work 

 Data-aware and workload-aware optimization 

 Global sensitivity  local sensitivity 

 Applications to social networks and graphs 
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Thank you! 

Our code is available online: 

http://yuanganzhao.weebly.com/ 
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 Use SVD to construct a feasible solution: 

W = UΣV = rUΣ
1

r
V = BL 

 Upper Bound= 𝑡𝑟 𝐵𝑇𝐵 = 𝑡𝑟(( rUΣ)𝑇 ( rUΣ))/𝜖 2                 

             =
𝑡𝑟 Σ𝑇U𝑇Σ𝑈 𝑟

𝜖 2
=
 𝜆𝑘

2 𝑟
𝑘=1 𝑟

𝜖 2
≤  𝜆1
2𝑟2 = 𝒪(r2) 

 
 Lower Bound = 𝒪 𝑟3𝑉𝑜𝑙(𝑃𝑊B1

𝑛)2/𝑟/𝜀2   [Hardt et al., 

STOC 2010] (We construct the lower error bound by 

SVD:W = UΣV and let 𝑃 = 𝑈𝑇 .     Vol B1
𝑟 = 2𝑟/𝑟! ) 

 Lower Bound = 𝒪 𝑟3 2𝑟/𝑟! 𝜆𝑘
𝑟
𝑘=1

2/𝑟/𝜀2 ≥ 

 𝒪 𝑟3 ∙ 𝑟−2 ∙  𝜆𝑘
𝑟
𝑘=1

2/𝑟/𝜀2 ≥ 𝒪 𝑟/𝜀2 = 𝒪(𝑟) 

  

Appendix: Upper Bound and Lower Bound 
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