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Abstract The canonical support vector machines (SVMs)

are based on a single kernel, recent publications have shown

that using multiple kernels instead of a single one can

enhance interpretability of the decision function and promote

classification accuracy. However, most of existing approa-

ches mainly reformulate the multiple kernel learning as a

saddle point optimization problem which concentrates on

solving the dual. In this paper, we show that the multiple

kernel learning (MKL) problem can be reformulated as a

BiConvex optimization and can also be solved in the primal.

While the saddle point method still lacks convergence results,

our proposed method exhibits strong optimization conver-

gence properties. To solve the MKL problem, a two-stage

algorithm that optimizes canonical SVMs and kernel weights

alternately is proposed. Since standard Newton and gradient

methods are too time-consuming, we employ the truncated-

Newton method to optimize the canonical SVMs. The

Hessian matrix need not be stored explicitly, and the Newton

direction can be computed using several Preconditioned

Conjugate Gradient steps on the Hessian operator equation,

the algorithm is shown more efficient than the current primal

approaches in this MKL setting. Furthermore, we use the

Nesterov’s optimal gradient method to optimize the kernel

weights. One remarkable advantage of solving in the primal is

that it achieves much faster convergence rate than solving in

the dual and does not require a two-stage algorithm even for

the single kernel LapSVM. Introducing the Laplacian regu-

larizer, we also extend our primal method to semi-supervised

scenario. Extensive experiments on some UCI benchmarks

have shown that the proposed algorithm converges rapidly

and achieves competitive accuracy.

Keywords Multiple kernel learning � Support vector

machines � Laplacian semi-supervised learning �
Truncated-Newton method � Nesterov’s optimal gradient

method

1 Introduction

Kernel methods have been extensively used in a variety of

learning tasks with the best known example of support vector

machines [20]. They work through mapping the input data into

a high-dimensional (possibly infinite-dimensional) feature

space, where the mapping is represented by introducing a

kernel. The kernel can intuitively compute the similarity

between two examples. Let L ¼ fxi; yign
i denote the dataset

where xi belongs to some input space and yi = {?1, -1} is

the class label of xi. The result of support vector machines

(SVMs) learning is of the form given in Eq. (1).

f ðxÞ ¼ sign
Xn

i¼1

aikðxi; xÞ þ b

 !
ð1Þ
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where kð�; �Þ is a given kernel associated with a

Reproducing Kernel Hilbert Space (RKHS) H. So long

as the kernel matrix K is positive semidefinite, the

optimization function is convex and convergence of the

training algorithm is guaranteed. However, in the typical

use of the kernel method algorithm, the choice of the

kernel, which is vital to improved performance, is left to

the user. One has to hand-craft the parameters in advance

to select a good kernel. This problem can in principle be

solved by cross-validation; however, the machine learning

community may be interested in more flexible models.

Recently, a so-called multiple kernel learning (MKL) [15]

technique has shown the necessity to consider multiple

kernels instead of a single fixed one. In general, MKL tries

to form an ensemble kernel to enhance interpretability of

the decision function and promote classification accuracy.

In such case, a common approach is to consider that the

kernel k(xi, xj) is a convex linear combination of some

basis kernels: k(xi, xj) =
P

m=1
M dm km (xi, xj) with

P
m=1
M

dm = 1, dm C 0 where M is the total number of kernels.

There are two active research directions in multiple

kernel learning. The first one is to promote the training

speeds of MKL algorithms by transforming the block

regularization [4, 15, 21] (or mixed-norm regularization) to

the (un)weighted sum l2-norm regularization [14, 18, 23].

The MKL problem has been introduced by Lanckriet et al.

[15], leading to a Quadratically Constrained Quadratic

Programming (QCQP) problem that becomes rapidly

intractable as the number of training instances or kernels

become large. The MKL problem can in principle be

solved by some off-the-shelf optimization software, but the

uses of such general purpose algorithms will only give poor

efficiency. Moreover, the kernel learning problem is non-

smooth, making the direct application of gradient descent

methods infeasible, Bach et al. [4] therefore added a sec-

ond weighted sum l2-norm regularization to the objective

function of the MKL, making the problem smooth where

gradient method such as SMO can be applied. Sonnenburg

et al. [21] reformulated the MKL problem of [15] as a

Semi-Infinite Linear Program (SILP). The advantage of the

proposed method is that the algorithm can be solved by

iteratively using existing single kernel SVMs code. How-

ever, one disadvantage of the above approaches is that they

employ mixed-norm regularization that only results in slow

convergence. Recently, based on the MKL framework in

Bach et al. [4], Rakotomamonjy et al. [18] proposed a new

formulation of the MKL problem and successfully applied

it into the SimpleMKL that makes MKL more practical for

large-scale learning. They replace the mixed-norm regu-

larization with a weighted l2-norm regularization which

leads to a smooth and saddle point optimization problem.

By using a variational formulation of the mixed-norm

regularization, they proved that the proposed formulation

was equivalent to the ones of Bach et al. [4], Lanckriet

et al. [15] and Sonnenburg et al. [21].

The second one is to promote the predictive accuracy of

the MKL. Generally speaking, this can be achieved in two

ways. (1) Multiple kernel learning looks for a decision

function of the form in Eq. (2).

f ðxÞ ¼ sign
XM

m¼1

dmfmðxÞ þ b

 !
ð2Þ

where fm (x) is associated with different kernels or different

kernel parameters. The simplest way is to use an

unweighted sum of kernel functions. Using an unweighted

sum gives equal preference to all kernels, but this may not

be optimal. A better approach is to learn a weighted sum

kernels, and this also allows extracting information from

the weighted kernels and leading to a more adaptive dis-

criminant function. (2) In order to avoid overfitting, some

regularization techniques on the weights are needed.

l1-norm of the kernel weights, also known as the simplex

constraint, is mostly used in MKL methods. The advantage

of the simplex constraint is that it leads to a sparse solution,

that is, only a few base kernels carry significant weights.

However, it is reported that [8] kernel selection with

l1-regularization can lead to modest improvement but to

performance degradation in larger-scale classification task.

In contrast, lp regularization (p C 2) [14, 23] regularization

seldom degrades performance. Varma et al. [22] extended

the existing MKL formulations to learn general kernel

combinations subject to general regularization. It is dem-

onstrated that the proposed formulation can lead to better

results not only as compared to canonical MKL but also as

compared to state-of-the-art wrapper and filter methods for

feature selection.

In this paper, we discuss a primal method for multiple

kernel learning. Solving in the primal enjoys a lot of

advantages. It achieves much faster convergence rate than

solving in the dual for the single kernel LapSVM because it

does not require a two-stage algorithm to solve the opti-

mization [16]. It is also shown that it is more suitable for

large-scale optimization [12]. Keerthi et al. greedily

selected a set of kernel basis functions of a specified

maximum size to approximate the SVMs primal cost

function and shown that it achieved similar accuracy with

standard SVMs. Last but not least, most of existing

approaches mainly reformulate the multiple kernel learning

as a saddle point problem that concentrates on solving the

dual optimization problem. In this paper, we show that the

multiple kernel learning problem can be reformulated as a

BiConvex optimization and can also be solved in the pri-

mal. While the saddle point method still lacks convergence

results, our proposed methods exhibit strong optimization

convergence properties. Motivated by the recent interest in
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solving SVMs in the primal [7, 12, 16], we present a primal

approach to the MKL problem that can also achieve

comparable result to existing MKL methods. Specifically,

our contributions are: (a) We extend the regularization

techniques described in [24] to our primal MKL formula-

tions and generalize to more multiple kernel learning

algorithms. From the primal point of view, Sparse SVMs

[12], Primal Regression [6], Laplacian SVMs [16], one-

class SVMs [19], kernel ridge regression [8] can be trained

in a multiple kernel way. (b) We proposed a new two-stage

algorithm to solve the primal MKL problem. We employ a

second-order method to optimize canonical SVMs and

Nesterov’s optimal gradient method to optimize the kernel

weights alternately. Since our implementation uses a spe-

cial kernel cache technique, the update of kernel weights is

very cheap. (c) We apply the truncated-Newton method to

minimize the MKL problem. Since the Hessian matrix need

not be stored and the Newton direction can be computed using

several Preconditioned Conjugate Gradient steps on the

Hessian operator equation, the algorithm is more efficient than

current quadratic hinge loss SVMs. (d) Introducing the

Laplacian regularizer, we also extend our multiple kernel

learning algorithm to semi-supervised scenario.

The rest of this paper is organized as follows. Our primal

multiple kernel learning problem is introduced in Sect. 2. In

Sect. 3, we present an efficient two-stage algorithm for solving

the primal MKL problem. Section 4 provides some extensions

of our work. Extensive experiments dealing with efficiency

and comparison with other MKL methods are presented in

Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Multiple kernel learning framework

2.1 Preliminaries

In the standard supervised learning setup, we find a

hypothesis f 2 H; that is generalized well on new and

unseen data. Applying regularized risk minimization

returns the minimize f*:

f � ¼ arg min
f

kXðf Þ þ Rempðf Þ:

where Remp (f) =
P

i=1
n ‘(yi,f(xi)) is the empirical risk

of hypothesis f, X is the regularizer. This formula can

be also viewed as a multi-objective optimization, where

k (k C 0) is a tuning parameter used to balance the effects

of the two items. An SVM builds the decision rule

sign(f*(x) ? b*), where f* and b* are defined as the solution

of Eq. (3).

Qðf ; bÞ ¼ min
f ;b

kkfk2
H þ

Xn

i¼1

‘ðyi; f ðxiÞ þ bÞ ð3Þ

2.2 Learning with multiple kernels

Considering the linear convex combination of the decision

functions, we can express Eq. (3) in terms of dm and fm(x)

in Eq. (2), thus obtain Eq. (4):

min
d;f ;b

k
XM

m¼1

dmfm

�����

�����

2

H

þ
Xn

i¼1

‘ yi;
XM

m¼1

dmfmðxiÞ þ b

 !
ð4Þ

Equation (4) is a generalization of Eq. (3). While (4) is

intuitive, it is hard to introduce the representation theorem.

Here we follow the regularization techniques proposed in

Ref. [24] and solve a relaxed optimization problem of

Eq. (4) and we reach Eq. (5).

min
f ;b

min
d

k
XM

m¼1

dmkfmk2
H þ

Xn

i¼1

‘ yi;
XM

m¼1

dmfmðxiÞ þ b

 !

ð5Þ

Equation (5) is not necessarily convex due to the

introduced variables dm. On the other hand, in order to

avoid overfitting, we use some regularization techniques on

the weights dm. We restrict the weights in a norm ball asP
m=1
M dm

p = 1, dm C 0. Since the convex combination of

convex sets is also convex, Eq. (5) is transformed into a

BiConvex optimization [5, 10, 11]. To encourage sparse

kernel combinations, we mainly focus on the l1-norm kernel

basis selection formulation, that is S :
PM

m¼1 dm ¼ 1; dm� 0:

This leads to the following optimization:

min
f ;b

min
d

k
XM

m¼1

dm fmk k2
Hþ

Xn

i¼1

‘ yi;
XM

m¼1

dmfmðxiÞ þ b

 !( )

s:t:d 2 S
ð6Þ

Proposition 1 The objective function of Eq. (6) is the

upper bound of Eq. (4).

Proof Since k
PM

i dmfmk2
H ¼ k

PM
i

dmfm

d
1=2
m

d1=2
m k

2
H; using

Cauchy-Schwarz inequality:

XM

i

xiyi

 !2

�
XM

j¼1

x2
j

 !
XM

k¼1

y2
k

 !

we obtain: k
PM

i dmfmk2
H �

PM
i k

dmfm

d
1=2
m

k2
H
PM

i kd1=2
m k

2
2 =PM

i dmkfmk2
H
PM

i dm: Noticing
P

i
Mdm = 1, dm C 0, we

reach: k
PM

i dmfmk2
H �

PM
i dmkfmk2

H. Therefore, Proposi-

tion 1 holds. h

Hence, minimizing the l1-norm regularizer in Eq. (6),

we are actually minimizing an upper bound of the true

regularizer
PM

m¼1 kdmfmk2
H in Eq. (4). Equation (6) can be

solved by deriving its dual formulation, which is identical
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to simpleMKL [18]. However, we solve this problem

directly in the primal. In the following, we will show how

to kernelize the optimization problem Eq. (6).

2.3 Kernelization

Let us now consider an SVM problem with an associated

Reproducing Kernel Hilbert Space H. Following [7], we

use the representation theorem: w =
P

i=1
n ai/(xi) and seek

a solution of the form:

f ðxÞ ¼
Xn

i¼1

aih/ðxiÞ;/ðxÞi þ b ¼
Xn

i¼1

aiKðxi; xÞ þ b

Let us express Eq. (3) in terms of a:

Qðf ; bÞ ¼ k
Xn

i;j¼1

aiajkðxi; xjÞ

þ
Xn

i¼1

‘ yi;
Xn

j¼1

ajkðxi; xjÞ þ b

 !
ð7Þ

where we use the kernel reproducing property in

kfk2
H ¼

Xn

i;j¼1

aiajhkðxi; :Þ; kðxj; :Þi ¼
Xn

i;j¼1

aiajKðxi; xjÞ

We use the same denotations as in Ref. [7] and introduce

the kernel matrix K with Kij = k(xi, xj) and ki is the ith row

of K, then Eq. (7) can be rewritten as Eq. (8):

kaT Kaþ
Xn

i¼1

‘ðyi;Kiaþ bÞ ð8Þ

Since we will solve Eq. (8) in the primal, the smoothness of the

loss function is important for the algorithm design. When the

loss function is smooth, it makes the optimization problem

continuous and differentiable in f. In such case, the smooth

optimization can be directly applied. In this paper, we only

discuss the smooth quadratic hinge loss function [7, 12, 16]:

‘ yi; f xið Þð Þ ¼ max 0; 1� yif xið Þð Þ2

After introducing the quadratic hinge loss function and

adding the scaling constant 1/2 to Eq. (5), we obtain the

following optimization problem:

min
f2H;d

1

2
k
XM

m¼1

dm fmk k2
H

(

þ
Xn

i¼1

max 0; 1� yi

XM

m¼1

dmfmðxiÞ þ b

 !2
9
=

;

s:t:d 2 S ð9Þ

Again, using the representation theorem, we can rewrite

Eqs. (9) as (10):

Fða; b; dÞ ¼ min
a;b;d

1

2
kaT Kaþ

Xn

i¼1

maxð0; 1� yi kiaþ bð ÞÞ2

s:t: K ¼
XM

m¼1

dmKm; ki ¼
XM

m¼1

dmkm
i ; d 2 S

ð10Þ

where ki
m is the ith row of the mth kernel.

3 Algorithm for the primal MKL

Let us focus on the optimization problem Eq. (10). For

simplicity, we denote the canonical SVMs parameters a
and b as z = [aT b]T where a 2 R

n�1; b 2 R
1�1;FðzÞ as the

objective function in Eq. (10) with respect to z while fixing

d and F(d) with respect to d while fixing z. The optimi-

zation problem is a BiConvex Optimization problem

(separately but not jointly convex with respect to z and d).

Instead of trying to solve the problem directly, we can use a

two-step alternate optimization algorithm to find the dis-

criminant function. The first step is to find the optimal

cannonial SVMs z while fixing the kernel weights d, the

second step is to update d while fixing z. The optimization

of kernel weights d is an inner loop update in our algo-

rithm. The complete algorithm of PrimalMKL is summa-

rized in Algorithm 1.

3.1 Optimize canonical SVMs z

Fixing d, the optimization problem Eq. (10) becomes a

canonical SVM optimization. Note that this is an uncon-

strained optimization problem. In Ref. [7, 12], the authors

Algorithm 1 Primal multiple kernel learning

1: zð0Þ ¼ ½að0ÞT bð0Þ�T ¼ 0 2 R
ðnþ1Þ�1; set t = 0

2: initialize d 2 R
M�1 randomly

3: while not converge do

4: update K: K =
P

m dm Km

5: minimize (11) to find the search direction q(t)

//Algorithm 2

6: if krzk2\v2 then

7: return;

8: end if

9: find s* by exact Newton line search:

s* = minsF(z(t) ? s 9 q(t))

10: z(t) = z(t) ? s* 9 q(t)

11: update kernel cache: Km a(t), a(t)T Km a(t), m = [1:M]

12: optimize the kernel weights d //Algorithm 4

13: t = t ? 1

14: end while
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investigated efficient solutions for the nonlinear SVMs.

They mainly used Newton and Preconditioned Conjugate

Gradient (PCG) method to optimize z. In Ref. [16], the

authors have shown that the Preconditioned Conjugate

Gradient method is more suited for Laplacian SVM than

Newton method due to the nature of the intrinsic regular-

izer. Generally, it is believed that for small scale problem,

Newton method will converge faster; for large-scale

problem, however, due to the expensive Hessian matrix

generation and inversion in the update rule, Newton

method may give modest performance. In such case, PCG

method is preferred. On the other hand, the gradient-based

method such as PCG is known to achieve slow conver-

gence near optimal. Although every update of z is very

cheap, it takes more iterations to obtain a reasonable

solution. Since we have to optimize the kernel weights,

more iterations will cause more evaluation of the gradient

of the objective function with respect to d. Once the kernel

number is large, it is expensive to re-evaluate the gradient.

We need a model that takes less iteration to converge to the

minima like Newton method.

In order to solve this optimization problem more effi-

ciently, we use the truncated-Newton [13]. Truncated-

Newton builds a quadratic model to find a search direction

that gives a good trade-off of the progress in each iteration

and the number of iterations. To discuss the truncated-

Newton method, we need to compute the gradient and

Hessian matrix of F(z). Before continuing, we introduce

the concept of support vector set [7]. Support vector set is

the subset of L with the points that generate a l2 loss value

greater than zero, that is a point xi belongs to the support

vector set if yi f(xi) \ 1. Therefore, we have:

rz ¼
ra

rb

� �
¼

kKaþ
P
i2sv

1� yi kiaþ bð Þð Þ �yikið Þ
P
i2sv

1� yi kiaþ bð Þð Þ �yið Þ

2
64

3
75

¼
kKaþKIsvðKaþ 1bÞ �KIsvy

1T IsvðKaþ 1bÞ � 1Isvy

� �

¼
K 0

0T 1

� �
�

kKaþ IsvðKaþ 1bÞ � Isvy

1T IsvðKaþ 1bÞ � 1Isvy

� �

where 1 2 R
n�1; 0 2 R

n�1 is a column vector having all

elements equal to one and zero respectively, y 2 R
n�1 is

the vector that collects the n labeled training points and rz

is the gradient of the objective function in Eq. (10). We

will use the symbols ra and rb to indicate the gradient

with respect to a and b. The matrix Isv 2 R
n�n is a diagonal

matrix where the only elements different from 0 (and equal

to 1) along the primal diagonal are in positions

corresponding to points of L that belong to support

vector set at the current iteration. The Hessian H can be

computed as

H ¼
r2

a raðrbÞ
rbðraÞ r2

b

" #
¼

KIsvKþ kK KIsv1

1T IsvK 1T Isv1

� �

¼ P�
IsvKþ kI Isv1

1T IsvK 1T Isv1

� �

where

P ¼ K 0
0T 1

� �

Newton direction involves solving the following linear

system: H 9 q = -rz exactly. Therefore, P can be

viewed as the preconditioner of the linear system.

Approximate Newton direction: Instead of trying to

solve the linear system exactly to obtain the search direc-

tion, we only find an approximate solution using Precon-

ditioned Conjugate Gradient (P is the preconditioner).

After indicatingr2 the second-order derivative of F(z), the

truncated-Newton uses an approximate direction q in every

iteration t, requiring only that:

kr2FðzðtÞÞqðtÞ þ rFðzðtÞÞk2� gkrFðzðtÞÞk2 ð11Þ

that is, that the linear residual is small. We refer to any

vector q that satisfies Eq. (11) with 0 \ g\ 1 as an

approximate Newton direction. The method is also known

as a Hessian-free Newton or inexact Newton method,

because the Hessian-vector products can be computed

without explicitly forming the Hessian. The Newton

direction is only computed up to a specific error

tolerance. The main operation of certain iterative Newton

method is the product between the Hessian matrix and a

vector p 2 R
nþ1ð Þ�1. After denoting p = [p1

T p2]T, where

p1 2 R
n�1; p2 2 R

1�1; we obtain:

H� p ¼ P�
IsvKþ kI Isv1

1T IsvK 1T Isv1

� �
�

p1

p2

� �

¼ P�
ðIsvKþ kIÞp1 þ ðIsv1Þp2

1T IsvK
� �

p1 þ 1T Isv1
� �

p2

� �

Next, we will use conjugate gradient method to minimize

the left-hand side of Eq. (11). The complete algorithm of

PCG method for approximately finding the Newton direc-

tion is named Newton-PCG and summarized in Algorithm

2. Commonly, the numbers of iterations to find the

approximate Newton direction strongly depend on the

precision g, so Algorithm 2 can commonly terminate after

a few iterations. One might be concerned about terminating

the Newton-PCG subroutine early, especially because

an approximate solution to Eq. (11) will in general not

be a descent direction. Indeed, the Newton-PCG subroutine

can always yield a descent direction even under early

termination if at least one Newton-PCG iteration is

performed.
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Linear search: Once the approximate Newton direction

is found, we need to compute the optimal step. The one-

dimensional function F(z(t - 1) ? s 9 q(t - 1)) is a con-

tinuously differentiable, strictly convex, piecewise qua-

dratic function. Following Chapelle [7], we use exact

Newton line search to find the optimal steps (Line 1,

Algorithm 1). A few Newton iterations to find the optimal

step can ensure the global convergence of the optimization

problem Eq. (10).

3.2 Optimize the kernel weights d

Several methods can be used to optimize the kernel weights

(SMO optimization [4]; Cutting-planes [21]; Projected

Gradient Descent [18]). Rakotomamonjy et al. show that

the projected gradient descent is more stable since we have

a differentiable function to be minimized. In our experi-

ments, we employ the projected gradient descent method

for the sake of the stability of the kernel weights. We use

the symbol rd to indicate the gradient of d. So rd can be

written as:

rdm
¼ k

2
aT Kmaþ

X

i2sv

ð1� yiðkiaþ bÞÞð�yik
m
i aÞ

Once the gradient has been computed, d is updated by

gradient descent while ensuring that the simplex constraint

on d is satisfied. This can be done by l1-ball projection

method [9]. To compute the Euclidean projection onto the

simplex, one can solve the optimization problem (12).

min
d

1

2
kd � d0k2

2 s:t: d 2 S ð12Þ

where d0 denotes the last feasible solution of the kernel

weight. Such a projection operator has been implemented

efficiently in linear time in [9], which is described in

Algorithm 3. To achieve faster optimization, we employ

Nesterov’s optimal gradient method [17] to accelerate the

gradient decent. As a brilliant achievement in the optimi-

zation field, Nesterov’s method has a much faster conver-

gence rate than the traditional methods such as subgradient

method or naı̈ve projected gradient descent. We describe

the kernel weights update by Nesterov’s method in Algo-

rithm 4.

Kernel cache: Note that the update of d involves que-

rying the objective function and the derivative of d thus

needs the computation of Km a and aT Km a. However, we

Algorithm 2 Newton-PCG

1: r ¼ �rf ðxÞ; qð0Þ ¼ krk2
2; k ¼ 1; q ¼ 0; choose g 2 ð0; 1Þ

2: while not converge do

3: if k = 1 then

4: p = r

5: else

6: p ¼ r þ qðk�1Þ=qðk�2Þ� �
p

7: end if

8: w = H 9 p

9: a ¼ qðk�1Þ= pT wð Þ
10: q = q ? a p

11: r = r - a w

12: qk ¼ krk2

13: k = k ? 1

14: if (
ffiffiffiffiffiffiffiffiffiffiffiffi
qðk�1Þ

p
\gkrk or k [ kmax) then

15: break;

16: end if

17: end while

18: output q as the approximate Newton direction
Algorithm 3 Simplex projection

1: input: A vector q 2 Rm�1

2: sort q into v such that v1� v2� . . .� vm

3: find d ¼ maxfj 2 ½1 : m� : vj � 1
j

P j
r¼1 vr � 1

� �
[ 0g

4: compute h ¼ 1
q

P j
r¼1 vr � 1

� �

5: output x s.t. xj = max(zj - h, 0), j = [1:m]

Algorithm 4 Nesterov’s projection gradient for simple constraint

optimization problem

1: input: f(d), rd, d(0)

2: set d(1) = d(0), d(-1) = 0, d(0) = 1, i = 1

3: Lipschitz parameter: c(0) = 1

4: while not converge do

5: a ¼ dði�2Þ�1

dði�1Þ ; s ¼ dðiÞ þ aðdðiÞ � dði�1ÞÞ
6: for j = 0 to ... do

7: c ¼ 2jcði�1Þ; u ¼ s� 1
crs

8: Project u into the feasible set to obtain d(t)

9: if Md ¼ ks� dðiÞk1\v1 then

10: return;

11: end if

12: define function gc,s(u) = f(s) ? rv
T(u - s)?

c
2
ku� sk2

2

13: if f(d(i)) B gc,s(u) then

14: c(i) = c; d(i?1) = d(i); break;

15: end if

16: end for

17: Set dðiÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðdði�1ÞÞ2
p

2

18: i = i ? 1

19: end while

Neural Comput & Applic

123



can keep the vector in the memory and update it in every

iteration of a, making the update of d very cheap.

3.3 Convergence analysis

As we have mentioned before, our multiple kernel leaning

algorithm that can be solved by BiConvex optimization

exhibits nice convergence property. The BiConvex opti-

mization has been well investigated in [5, 10, 11] under a

more general term ‘block coordinate descent’ or ‘Gauss-

Seidel’ method. The past study [5] has shown that the block

coordinate descent is guaranteed to converge to the sta-

tionary point for strictly convex problems. However, when

the subproblem in Eq. (10) is convex (not strictly convex),

the subproblem may have multiple optimal solutions,

the convergence of Algorithm 1 may be problematic.

Fortunately, for BiConvex optimization (only involves

two blocks) [11], have shown that the strict convexity

of the subproblem is not required. Therefore, from Corol-

lary 2 of [11], we have the following convergence

statement:

Proposition 2 Suppose at the tth and kth updates for z and d

respectively. Any limit point of the sequence fzðtÞ; dðkÞg;
t ¼ 1. . .þ1; k ¼ 1. . .þ1 generated by Algorithm 1 is a

stationary point.

Apart from the convergence, another issue is whether

our BiConvex optimization algorithm has at least one sta-

tionary point. In optimization analysis, it is related to the

boundedness of the feasible region. Since d is defined in the

closed convex set S in our problem, the feasible region is

always bounded. Lastly, in order to shed some theoretical

light on some property of the stationary point, we establish

the following statement.

Proposition 3 Suppose that the sequence fzðtÞ; dðkÞg; t ¼
1. . .þ1; k ¼ 1. . .þ1; admits a limit point z*, d*, then

we have

(i)
oF

oz�
¼ 0; and ð13Þ

(ii)
oF

od�
d � d�ð Þ� 0; 8d 2 S ð14Þ

Proof (i) Since F(z) is convex and continually

differential. Using the descent property, we obtain

Fðzðtþ1Þ; dðkþ1ÞÞ �FðzðtÞ; dðkþ1ÞÞ �FðzðtÞ; dðkÞÞ

Due to the local convergency, we obtain F(z(t?1), d(k?1))

= F(z(t), d(k?1)) = F(z(t), d(k)). The truncated-Newton

stops when oF
oz� ¼ 0; we get immediately Eq. (13). (ii) The

proof is by contradiction. Suppose there exists a d 2 S
such that oF

od� d � d�ð Þ\0. Sine F(d* ? p(d - d*)) is

differentiable at the point d*, then it has a linear

approximation at the point d*:

Fðd� þ pðd � d�ÞÞ ¼ Fðd�Þ þ pðd � d�ÞT oF

od�

þ 1

2
p2ðd � d�ÞTr2Fð~dÞðd � d�Þ

Here the last term is the Lagrange remainder, where ~d is a

point on the line segment [d*, d* ? p (d - d*)], the values of

p considered are between 0 and 1 so that ~d is on the line

segment [d*, d] [5]. (i) Since y = d* ? p (d - d*) = (1 - p)

d* ? pd is the convex combination of d and d*, therefore

y 2 S: Moreover, since we have oF
od� d � d�ð Þ\0; there

always exists a line search parameter 0 \p\ 1 which is

sufficiently small such that F(y) \ F(d*) which implying that

d* is not a local minima. Therefore Eq. (14) holds. h

In the proposition above, we use the conditional gradient

descent [5] (aka Frank-Wolfe algorithm) in our conver-

gence analysis. This provides a general guideline on the

local minima our optimization framework stops at.

4 Semi-supervised multiple kernel learning

We now extend our multiple kernel learning framework to

semi-supervised scenario. Before discussing the multiple

kernel version, we review the single kernel Laplacian

Support Vector Machines (LapSVM). The key idea of

LapSVM is to introduce the Laplacian regularizer to the

learning problem. Specifically, the LapSVM estimates the

target function by minimizing

f � ¼ arg min
f2H

‘ðyi; f ðxiÞÞ þ cAkfk2
A þ cIkfk2

I

where kfk2
A is the canonical Hilbert space regularizer that

enforces a smoothness condition on the label examples,

kfk2
I is the intrinsic geometry regularizer in the low-

dimensional manifold that enforces smoothness on all

examples, cA and cI are the weights of two regularizers.

Introducing the graph Lapacian L, we obtain:

f � ¼ arg min
f2H

‘ðyi; f ðxiÞÞ þ cAf T f þ cI f
T Lf

It is reported in Ref. [16] that LapSVM solving directly in

the primal achieves much faster convergence than solving in

the dual. Introducing the representation theorem, they

consider the following unconstrained optimization problem:

min
a2Rn�1;b2R1�1

1

2
cAaT Kaþ cIa

T KLKa

8
<

:

þ
Xn

i¼1

max 0; 1� yi Kiaþ bð Þð Þ2
)

ð15Þ
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One remarkable advantage of the algorithm is that it allows

us to efficiently solve a single problem without the need of

a two-step solution. Our work is mainly to extend the

primal single kernel LapSVM to the multiple kernel

setting.

4.1 Related work

Argyriou et al. [2] proposed another different framework

for kernel selection. They consider a greedy algorithm for

learning the optimal kernel. Suppose h(K) is the objection

function with respect to the kernel K, and G(x) is the

kernel with respect to the feasible parameter x (the band-

width of the Gaussian kernel), they find the optimal step m*

which satisfies

arg max
m

hðmGðxÞ þ ð1� mÞKÞ; m 2 ð0; 1�

Then the algorithm performs the following update to find

the optimal kernel: K  mGðxÞ þ ð1� mÞK. They use the

gradient descent method to find the feasible parameter

x, since the Gaussian kernels are continuously parame-

terized by a compact set, the algorithm can always find the

optimal kernel which is the convex combination of the

basis kernel. Due to the success of the kernel selection

learning, they apply the algorithm to the semi-supervised

learning paradigm [1]. Introducing the Laplacian regular-

izer, they associate the Laplacian graph with different

kernels and train the algorithm by the method proposed in

Ref. [2]. They use a gradient descent method to find the

feasible bandwidth of the Gaussian kernel. While they only

consider the least square loss in their work, we use the

quadratic hinge loss for semi-supervised learning.

4.2 Proposed method

One advantage of solving the primal problem is that it can

be easily extended to semi-supervised setting. In this sec-

tion, we will show how the primal Laplacian SVMs [16]

can be extended to the multiple kernel setting. The multiple

kernel Laplacian SVMs can be formulated as follows:

min
f2H

cA

XM

m¼1

dmkfmk2 þ cI

XM

m¼1

dmf T
m Lfm

þ
Xl

i¼1

‘ yi;
XM

m¼1

dmfmðxiÞ þ b

 !

s:t: d 2 S ð16Þ

Proposition 4 The multiple kernel Laplacian regularizer:P
m=1
M dmfm

T Lfm in the optimization problem (16) upper

bounds its true regularizer fTLf.

Proof Our proof is similar to Theorem 1.

f T Lf ¼ k
ffiffiffiffi
L
p

fk2
2 ¼ k

ffiffiffiffi
L
p XM

m¼1

dmfmk2
2

¼ k
XM

m¼1

ðdm

ffiffiffiffi
L
p

fm

d
1=2
m

Þðd1=2
m Þk

2
2

�
XM

m¼1

kðdm

ffiffiffiffi
L
p

fm

d
1=2
m

Þk2
H

XM

m¼1

kd1=2
m k

2
2

¼
XM

m¼1

dmf T
m Lfm

XM

m¼1

dm ¼
XM

m¼1

dmf T
m Lfm

ð17Þ

h

Again, we can easily kernelize the optimization problem

Eq. (16) in the primal. Introducing the quadratic hinge loss,

we obtain the optimization problem Eq. (18):

Fða;b;dÞ ¼min
a;b;d

1

2
cAaT Kaþ cIa

T Naþ
Xn

i¼1

‘ yi;kiaþ bð Þ
( )

s:t:K¼
XM

m¼1

dmKm; N¼
XM

m¼1

dmKmLKm;

ki ¼
XM

m¼1

dmkm
i ; d 2 S ð18Þ

The optimization problem Eq. (18) can be solved by

truncated-Newton method and Nesterov’s projection

method alternatively which is similar to the Algorithm 1.

5 Experimental analysis

In this section, we demonstrate the efficiency and accuracy

of our multiple kernel learning algorithms on several real-

world datasets coming from the UCI repository. All the

experiments are performed with matlab 7.8 on a single core

of an Intel Celeron E3300 2.5GHZ processor with 2GB

memory. Some Matlab scripts and datasets to reproduce the

experiments are available at: http://code.google.com/

p/primalmkl.

In the following, we will simply refer to the proposed

supervised and semi-supervised algorithms as PrimalMKL

and LapMKL respectively. For the categorical attributes, in

order to convert them into numeric data, we use c numbers

to represent an c-category attribute. Only one of c numbers

is one, and others are zeros. In all experiments, we scale

linearly each attribute to the range [-1, ?1]. For the kernel

weights d update, the Nesterov’s gradient algorithm stops

when kernel weights variation between two consecutive

iterations is lower than 10-5 (i.e., v1 = 10-5, see Step 4 in

Algorithm 4); for canonical SVMs z update, the truncated-

Newton algorithm terminates when the norm of the gra-

dient is lower than 0.1 (i.e., v2 = 0.1, see Step 1 in
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Algorithm 1). For the parameter of truncated-Newton

method, the choice of g = 0.1 appears to give good per-

formance for a wide range of problems. For each training

set in all our experiments, the parameter k, cA and cI are

chosen using fivefold cross-validation on the training set.

We search over a line of values {0.001, 0.002, 0.005, 0.01,

0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. In all the tables of

this section, the best average results are in bold.

5.1 Efficiency

It is reported in Ref. [16] that the Newton method often scales

badly with a few thouthands of training patterns due to the

expensive Hessian matrix generation and inversion, while

Preconditioned Conjugate Gradient (PCG) gives better per-

formance than Newton. In this section, we compare our

proposed method truncated-Newton with PCG to check how

far our multiple kernel SVM solver has improved in this

MKL setting. We use M kernels M ¼ð 11; 22; 33Þ and select

N datapoints N ¼ 1; 000; 1; 500ð Þ from the datasets: ‘Rin-

gnorm’, ‘Splice’, ‘Twonorm’, ‘Waveform’,‘Spambase’,

‘Banana’ and train the PrimalMKL algorithms. As demon-

strated in Fig. 1, the truncated-Newton takes much less time

to converge to the stationary point than PCG. Although the

update of the PCG direction is very cheap, it takes more

iterations to converge than truncated-Newton method and

leads to expensive calculation for the multiple kernel

learning problem. Note that in every iteration, the algorithm

has to update the kernel cache (Km a and aT Km a), so the less

iteration the method takes, the faster convergence rate it

provides. The truncated-Newton method uses PCG method

in the inner iteration to find the approximate Newton direc-

tion and thus can be viewed as finding a good trade-off

between number of iterations and cost in every iteration.

5.2 Accuracy of PrimalMKL

In this section, we conduct extensive experiments to check

how accurate is our PrimalMKL to existing multiple kernel

SVMs solvers, including SimpleMKL1 [18], GMKL2 [22] and

SMO-MKL [23]. Before direct comparisons, we observe

some publications on multiple kernel learning report their

predictive accuracy with unit trace normalization in their

experiment settings [18, 23], others considering abandon

using the trace normalization [21, 22]. As it is pointed out in

[3], group lasso consistency condition is not always satisfied,

normalizing kernel matrices to unit trace may lead to
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Fig. 1 Training time of PrimalMKL with different number of training

patterns (N) and number of kernels (M) for dataset ‘Ringnorm’, ‘Splice’,

‘Twonorm’, ‘Waveform’, ‘Banana’, ‘Spambase’. a N = 1,000, M = 11;

b N = 1,000, M = 22; c N = 1,000, M = 33; d N = 1,500, M = 11; e N = 1,500,

M = 22; f N = 1,500, M = 33

1 http://asi.insa-rouen.fr/enseignants/*arakotom.
2 http://research.microsoft.com/en-us/um/people/manik/.
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suboptimal predictive performance. In the following, we will

verify their results and see whether we should use the unit trace

normalization in our multiple kernel settings. We should use

the same experiment settings for fair comparisons. We con-

duct experiments on the well-known R€atsch’s benchmarks.

Each dataset consists of 100 splits of training and test sets, of

which 40 splits are used in this experiment. For the kernel

parameter list, we use the following two settings.

– Gaussian kernel with 33 widths ð1:1ð�5;�4;...;5Þ;

1:5ð�5;�4;...;5Þ; 2ð�5;�4;...;5ÞÞ on all features and Polyno-

mial kernels of degree 1 to 10 on all features. Each base

kernel matrix is normalized to unit trace.

– Gaussian kernel with 33 widths ð1:1ð�5;�4;...;5Þ;

1:5ð�5;�4;...;5Þ; 2ð�5;�4;...;5ÞÞ on all features. No trace

normalization is used in the base kernel matrices.

We denote SimpleMKL(T) and PrimalMKL(T) as the two

solvers using unit trace normalization, SimpleMKL and

PrimalMKL that abandon using trace normalization. We run

our algorithm for 40 times and get the average accuracy.

Table 1 lists classification performance on R€atsch’s 10

benchmarks. For all methods performed classification on the

dataset, the best result is highlighted by a bold font. For the

Trace-norm version and Non-trace-norm version of Simple-

MKL and PrimalMKL, the best result is highlighted by a

underline font. With direct comparison of average values, two

conclusions can be drawn. (1) PrimalMKL wins five out of ten

datasets while SimpleMKL wins four out of ten, which means

both of the two MKL solvers give similar performance. (2)

Non-trace-norm SimpleMKL wins eight out of ten datasets

while Non-trace-norm PrimalMKL wins seven out of ten

dataset. This demonstrates that Non-trace-norm version often

outperforms the Trace-norm version for the two MKL solvers.

These results also confirm Bach’s statements in [3].

In the following experiments, for fair comparison, we

will abandon using unit trace normalization in all multiple

kernel learning solvers. We run comparisons with GMKL,

SMO-MKL and SimpleMKL on six datasets with N points,

D dimensional features: ‘Sonar’ (N = 210, D = 59), ‘Aus-

tralian’ (N = 690, D = 13), ‘Liver’ (N = 345, D = 5),

‘Ionosphere’ (N = 351, D = 33), ‘Pima’ (N = 768, D = 8)

‘Wdbc’ (N = 569, D = 30). We select 70% of the data points

from the dataset for training and the remaining 30% for

testing.

For GMKL, we employ the default setting of the solver.

We generate D (# of features) kernels from each feature of

the dataset and l1 norm is used to regularize the kernel

weights. For SMO-MKL and SimpleMKL, we use the same

setting as PrimalMKL and generate 33 kernels. We employ

bregman divergence regularizer and l1 regularizer respec-

tively. We run the three algorithms for 30 times. Table 2 lists

classification performances on the 6 datasets. The number of

the selected kernels is reported in brackets. As can be seen

from Table 2, PrimalMKL achieves comparable accuracy to

existing multiple kernel learning methods.

5.3 Accuracy of LapMKL

In this section, we demonstrate the accuracy of our pro-

posed LapMKL by comparing against existing semi-

supervised kernel methods, including GLKS-SSL3 and

single kernel LapSVM4.

Like Argyriou et al. [1], we conduct our experiments on

five-digit pairs (1,7), (2,3), (2,7), (3,8), (4,7) from the

USPS dataset. The dimensionality of each digit image and

the number of digits in each digit class of each set are 256

and 200, respectively. We follow the standard experimental

methodology in [1] where 6 examples from each class are

labeled. The graph laplacian matrices are created based on

the k-nearest-neighbor criterion for k = 10 with the

Euclidean, affine transformation, and tangent distances5.

Table 1 Trace-norm versus non-trace-norm for SimpleMKL and PrimalMKL

Dataset SVMs SimpleMKL SimpleMKL(T) PrimalMKL PrimalMKL(T)

Breast 71.18 ± 3.00 74.55 ± 4.84 74:74	 4:70 74:22	 5:38 73.76 ± 4.59

Diabetis 76.27 ± 1.24 75:98	 1:77 75.37 ± 2.22 76:50	 1:57 75.90 ± 1.50

Flare 65.02 ± 1.26 64:96	 1:59 64.84 ± 2.08 64.18 ± 1.81 64:59	 1:89

German 75.03 ± 1.97 75:42	 2:69 74.95 ± 2.11 75:52	 2:92 74.33 ± 3.52

Heart 84.20 ± 2.20 83.15 ± 3.60 84:35	 2:70 83.25 ± 3.43 84:05	 3:96

Thyroid 95.07 ± 2.18 95:60	 2:74 94.73 ± 1.96 95.73 ± 2.15 95:87	 2:07

Titanic 77.65 ± 0.67 77:90	 0:60 77.49 ± 1.34 77:63	 1:36 77.22 ± 1.19

Splice 87.45 ± 0.60 87:79	 0:90 83.06 ± 5.07 88:32	 0:64 81.32 ± 8.29

Banana 89.45 ± 0.68 89:60	 4:01 88.95 ± 0.52 89:46	 0:50 89.18 ± 0.53

Waveform 89.45 ± 0.67 90:32	 0:45 90.29 ± 0.38 90:40	 0:40 88.06 ± 5.07

3 http://ttic.uchicago.edu/*argyriou/code/index.html
4 http://www.dii.unisi.it/*melacci/lapsvmp/
5 Following Argyriou, We use matlab optimizer ‘minconf’ to obtain

the affine transformation and tangent distances.
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Each experiment is repeated for 10 times, and the average

classification error rates tested on the unlabeled dataset are

reported in Table 3. As can be seen from Table 3, Lap-

MKL wins nine out of fifteen on the USPS dataset. The

affine transformation and tangent distances achieve better

performance than the simple Euclidean distance in the

digital recognition classification problems.

In order to further verify the effectiveness of our Lap-

MKL method, we conduct experiments on 16 benchmark

datasets. The features and number of data points are

described before. We only consider the Euclidean distance

and use supervised multiple kernel learning algorithm

PrimalMKL as our baseline method in this experiment.

Twenty percentage of the data points from each class are

labeled. For the single kernel LapSVM, we search over a

line of the Gaussian kernel widths 2 �7;�6:::7ð Þ� �
: Each

experiment is repeated for 20 times, and the average

classification error rates tested on the unlabeled dataset are

reported in Table 4. LapMKL wins eight out of sixteen

benchmarks while LapSVM wins six out of sixteen. Lap-

MKL significantly outperforms GLKS-SSL while gives a

little better performance than single kernel LapSVM.

Table 4 Predictive accuracy

comparison on the sixteen

benchmarks with supervised

PrimalMKL, LapSVM and

GLKS-SSL

Dataset PrimalMKL LapSVM GLKS-SSL LapMKL

Sonar 68.31 ± 7.78 73.13 ± 4.07 70.30 ± 4.59 75.00 ± 3.63

Australian 79.22 ± 9.98 85.08 ± 0.65 79.57 ± 1.73 85.94 ± 1.18

Ionosphere 91.10 ± 3.04 88.19 ± 1.95 80.28 ± 2.59 92.09 ± 3.09

Liver 61.03 ± 3.75 65.11 ± 4.08 55.28 ± 2.76 60.30 ± 4.89

Pima 74.87 ± 1.36 74.42 ± 1.21 67.17 ± 1.92 74.88 ± 1.90

Wdbc 93.83 ± 7.36 95.59 ± 0.62 94.92 ± 1.09 95.69 ± 1.15

Diabetis 73.60 ± 4.14 70.87 ± 2.39 66.65 ± 2.52 70.65 ± 2.70

Flare 64.22 ± 1.49 65.43 ± 2.08 58.60 ± 2.78 64.50 ± 1.48

Heart 70.48 ± 11.81 86.51 ± 2.65 85.40 ± 2.01 85.85 ± 2.34

Thyroid 91.25 ± 2.96 93.93 ± 2.20 86.62 ± 9.40 95.40 ± 2.03

Titanic 78.63 ± 1.82 80.25 ± 3.17 72.46 ± 3.27 79.92 ± 3.62

Splice 66.51 ± 10.75 81.68 ± 0.94 76.62 ± 1.40 80.67 ± 1.01

Banana 85.11 ± 5.13 86.27 ± 2.33 88.56 ± 2.08 87.14 ± 1.70

Waveform 83.77 ± 9.43 85.38 ± 2.47 79.27 ± 2.31 85.88 ± 1.89

Ringnorm 95.77 ± 1.44 97.69 ± 0.72 96.12 ± 0.30 98.23 ± 0.48

Breast 71.00 ± 1.61 71.71 ± 3.52 63.62 ± 3.09 69.50 ± 4.17

Table 3 Predictive accuracy comparison on USPS dataset with the results in Ref. [1]

Dataset EUCLIDEAN TRANSFORMATION TANGENT

GLKS-SSL LapMKL GLKS-SSL LapMKL GLKS-SSL LapMKL

1 versus 7 98.45 ± 0.00 100.00 ± 0.00 98.49 ± 0.00 100.00 ± 0.00 98.97 ± 0.00 100.00 ± 0.00

2 versus 3 96.80 ± 0.76 94.69 ± 2.13 97.37 ± 1.12 95.64 ± 3.14 98.85 ± 0.14 98.14 ± 1.96

2 versus 7 96.09 ± 0.29 96.76 ± 0.84 97.27 ± 0.51 97.08 ± 1.28 97.89 ± 0.22 97.56 ± 0.94

3 versus 8 93.94 ± 0.89 93.55 ± 1.87 93.04 ± 0.71 94.80 ± 2.36 93.80 ± 0.58 98.19 ± 0.88

4 versus 7 97.37 ± 0.53 98.62 ± 0.45 98.09 ± 0.43 98.94 ± 0.23 98.87 ± 0.20 99.36 ± 2.22

Table 2 Predictive accuracy comparisons with existing MKL solvers

Dataset GMKL SMO-MKL SimpleMKL PrimalMKL

Sonar 87.30 ± 3.17 (24.6) 86.90 ± 5.01 (02.3) 88.17 ± 3.03 (15.60) 86.08 ± 4.31 (02.1)

Australian 84.66 ± 1.64 (06.3) 86.41 ± 3.72 (12.1) 87.31 ± 1.57 (12.35) 85.58 ± 2.04 (03.4)

Ionosphere 94.25 ± 1.80 (14.7) 92.63 ± 1.41 (05.5) 94.34 ± 2.23 (24.65) 94.50 ± 2.20 (17.1)

Liver 65.42 ± 3.64 (06.0) 67.51 ± 2.65 (08.8) 65.67 ± 1.71 (7.30) 67.81 ± 4.60 (01.1)

Pima 76.28 ± 2.02 (05.5) 74.51 ± 2.60 (10.0) 76.67 ± 2.42 (17.7) 76.88 ± 2.28 (15.3)

Wdbc 97.23 ± 1.22 (10.9) 97.50 ± 1.10 (13.3) 96.75 ± 1.01 (24.75) 97.01 ± 0.93 (15.1)
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5.4 Scaling properties of PrimalMKL and LapMKL

– Stability: To understand the evolution of kernel weights

(i.e., d), we plot the evolution curves of the five largest

kernel weights for datasets ‘Sonar’, ‘Australian’, ‘Ion-

osphere’, ‘Liver’, ‘Pima’, ‘Wdbc’ in Fig. 2. It confirms

our statement in Sect. 3.2 that the projected gradient

descent is stable. Results on the running time of the

PrimalMKL for computing the approximate regulari-

zation paths are given in Fig. 3. They have been

obtained by averaging 5 runs over different training

sets.

– Scalability: In order to check how the training time scales

with the number of kernels, we select M kernels

(M = 1*33) to train the classifier. As can be seen from

Fig. 3, as the training instances increase, the training time

of PrimalMKL scales closer to linearly with the number of

the input kernels. They have been obtained by averaging 5

runs over different training sets (‘Sonar’, ‘Australian’,

‘Ionosphere’, ‘Liver’, ‘Pima’, ‘Wdbc’).
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Fig. 2 The evolution curves of the five largest kernel weights for

dataset ‘Sonar’, ‘Australian’, ‘Ionosphere’, ‘Liver’, ‘Pima’, ‘Wdbc’

computed by PrimalMKL. a Sonar/PrimalMKL; b Aust./PrimalMKL;

c Iono./PrimalMKL; c Liver/PrimalMKL; d Pima/PrimalMKL;

e Wdbc/PrimalMKL; f Wdbc/PrimalMKL

0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

Number of Kernels

T
ra

in
in

g 
T

im
e 

(s
ec

on
ds

) ionosphere

sonar

wdbc

pima

liver

australian

linear

(a) Efficiency / PrimalMKL

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

λ

T
ra

in
in

g 
T

im
e 

(s
ec

on
ds

) ionosphere

sonar

wdbc

pima

liver

australian

(b) Efficiency / PrimalMKL

0 20 40 60 80 100 120
30

40

50

60

70

80

90

100

k

T
es

t A
cc

ur
ac

y

ionosphere
sonar
wdbc
pima
liver
australian

(c) Accuracy / LapMKL

Fig. 3 a CPU-time of PrimalMKL versus the number of kernels. b CPU-time of PrimalMKL versus k. c Parameter k versus testing accuracy
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– Sensitivity: One hyperparameter of our proposed semi-

supervised multiple kernel learning method is k which

is the number of nearest neighborhood of the graph

Laplacian matrix. As can be seen in Table 3, this

parameter k does not significantly affect the predictive

accuracy and generally k = 5*20 seems works well

for a wide range of problems.

6 Conclusions

In this paper, we introduce an approach for solving the

multiple kernel learning problem. Different from the existing

methods that focus on the dual problem, we solve the prob-

lem directly in the primal. Our approach uses a weighted l2-

norm regularization while imposing sparsity on the kernel

weights. We also accelerate the learning algorithm by trun-

cate-Newton and Nesterov’s optimal gradient method.

Extensive experiments on some real-world datasets come to

two points: (1) unit trace normalization often leads to sub-

optimal predictive accuracy and (2) our supervised multiple

kernel learning algorithms give comparable results to exist-

ing multiple kernel learning solvers, and our semi-supervised

version achieves state-of-the-art performance.
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