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Abstract

Low rank matrix approximation is an attractive model in large scale machine learning
problems, because it can not only reduce the memory and runtime complexity, but also
provide a natural way to regularize parameters while preserving learning accuracy. In this
paper, we address a special class of nonconvex quadratic matrix optimization problems,
which require a low rank positive semidefinite solution. Despite their non-convexity, we
exploit the structure of these problems to derive an efficient solver that converges to their
local optima. Furthermore, we show that the proposed solution is capable of dramatically
enhancing the efficiency and scalability of a variety of concrete problems, which are of
significant interest to the machine learning community. These problems include the Top-
k Eigenvalue Problem, Distance Learning and Kernel Learning. Extensive experiments
on UCI benchmarks have shown the effectiveness and efficiency of our proposed method.

Keywords: Semidefinite Programming, Metric Learning, Kernel Learning, Eigenvalue
Decomposition, Low-Rank and Sparse Matrix Approximation

1. Introduction

Low rank matrix approximation is a hot topic in the machine learning community
and has been well studied in the last decade. It is used in a wide spectrum of applica-
tions in different problem settings, e.g. dimensionality reduction [31], distance learning
[31], kernel learning [22] and principal component analysis [31]. Low rank matrices are
attractive because they can not only reduce memory and runtime complexity, but also
provide a natural way to regularize parameters while preserving learning accuracy.

While traditional low rank matrix approximation purely focuses on the identifica-
tion of a low rank positive semidefinite matrix (PSD) “close” to a target matrix, many
learning problems involve the minimization of an objective cost function and low rank
approximation simultaneously. In this paper, we show that a general class of popular
learning problems (e.g. top-k eigenvalue approximation, Mahananobis distance learning,
and inductive kernel learning [20], etc) can be cast as quadratic semidefinite programming
problems, whose objective functions have the same overall form with varying regulariza-
tion terms. The solution to any of these problems is a low rank symmetric matrix. The
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overall matrix form of the objective function is usually non-convex, so greedy descent
algorithms that guarantee convergence to local extrema can be used. Despite their popu-
larity, many of these algorithms do not scale well with matrix dimensions. In this paper,
we show that the Conjugate Gradient Method coupled with an effective linear search s-
trategy solves the non-convex problem efficiently, even in high matrix dimensions. To the
best of our knowledge, the use of this decent method in quadratic matrix optimization
is novel.

Apart from high dimension of the learning task, handling constraints is also an issue.
Most metric learning approaches need to cycle through metric constraints many times
before converging [1, 20, 31, 11]. Since the number of constraints scale quadratically with
the number of training samples, this becomes very expensive for large scale data. In this
paper, we cast the metric learning problem into a quadratic matrix optimization frame-
work, where constraints are handled implicitly. Consequently, our proposed solution can
easily scale to large scale learning problems.

Not surprisingly, our approach has close connections with recent work on low-rank
and sparse matrix approximation. Low-rank and sparse approximation is now becoming
a fundamental tool in fields as diverse as image analysis [19], collaborative prediction [28]
and background modeling [35]. To some extent, its popularity in the machine learning
community is mainly due to the advent of low-rank non-negative matrix factorization [23],
and sparse recovery / compressed sensing [6]. (i) Low-rank approximation to a target
matrix is very attractive. Since large datasets often take the form of matrices which
may contain millions of entries, it is a daunting task to store and operate on these large
matrices. A natural way to promote the efficiency (and also regularize the learning model)
is to limit the rank of the corresponding matrix. This is often achieved by nuclear norm
regularizer [35] and low rank factorization [28]. (ii) On the other hand, sparse learning
is another adaptive model in machine learning. Generally speaking, sparse learning
refers to a set of methods to learning that seek a trade-off between some goodness-of-fit
measure and sparsity of the result, the latter property allowing better interpretability.
To promote sparsity, some sparsity-inducing constraints/regularizers are often used (e.g.
l0/l1 regularized [35, 6], non-negative [23] and hinge-loss based constraints [28]). (iii) It
may not be appropriate to distinguish the low-rank learning and sparse learning, since
the low-rank can be viewed as a special case of sparsity (sparsity on the singular value).
The combination of the two is also desirable [5, 35]. By considering different aspects
of low-rank and sparse matrix approximation, different matrix approximation methods
have been developed in recent years, e.g., to improve robustness of principle component
analysis [5, 9], to promote the efficiency of matrix decomposition [18, 35], to deal with
online stochastic approximation [19], and to make extensions by the idea of manifold
learning [17].

While working with low rank and sparse rectangular matrix has attracted extensive
research efforts, low rank optimization on the cone of positive semidefinite square matrix
also has become an active research direction in recent years. Low rank metric learning
with Bergman matrix divergences is studied in [22], where the learning process is viewed
as a matrix nearness problem with linear inequality constraints. The Kullback-Leibler
(KL) divergence and von Neumann (VN) divergence are employed to measure the “close-
ness” between two gaussian distributions. These divergences are natural for learning low
rank kernels. Since they are defined only over the cone of PSD matrices, they not only
preserve rank but also positive semidefiniteness. It was shown that this algorithm scales
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linearly in the number of data points and quadratically in the rank of the input matrix.
Due to restrictions on the rank of the kernel matrix, this method cannot be used for di-
mensionality reduction. More recently, the squared Frobenius divergence regularizer has
received much attention in the metric learning community [20, 25]. Unlike KL divergence
and VN divergence, positive semidefiniteness has to be explicitly enforced when using
the Frobenius divergence. Given an n×n matrix M, if the matrix is low rank PSD with
rank d<n, one intuitive method to enforce the low rank positive semidefiniteness is to
represent the matrix in terms of a factorization M = LLT , with L an n × d matrix. In
[25], the metric learning process is viewed as a linear regression problem on fixed rank
PSD matrices. It was shown that this Frobenius divergence technique yields comparable
performance to KL divergence in metric learning. Other works on PSD optimization can
be found in [4, 21, 1, 2] and therein, it is generally believed that the low-rank optimization
is more computationally challenging than its full rank counterpart, but in practice, when
the final optimal solution presents low-rank property, it often leads to a more efficient
algorithm.

Contributions: Our proposed optimization framework makes the following contri-
butions. (1) We show that our framework is general, since it is applicable to a wide
variety of problems that are of significant interest to the machine learning community.
(2) We study the theoretical properties of low rank factorization M = LLT for positive
semidefinite problems and show that the change of variables does not introduce any local
minima. (3) We show that our framework is significantly more computationally efficient
than existing solutions, while still achieving (and in some cases improving upon) state-of-
the-art performance. Efficiency is achieved by applying a traditional conjugate gradient
method that makes use of the inherent structured nature of the problem.

The paper is organized as follows. Section 2 proposes our low rank matrix optimiza-
tion framework and emphasizes three popular problems that fall in this framework. We
shed theoretical light on the low rank optimization problem and the proposed solution
in Section 3. Section 4 presents the general and efficient solver algorithm. In Section
5, we report empirical results on benchmark datasets and provide quantitative compari-
son with existing methods. Section 6 concludes the paper and discusses future research
directions.

Mathematical Notation: The inner product between two matrices A and B is defined
as 〈A,B〉 =

∑

ij AijBij , and Frobenius norm of a matrix A as ‖A‖F . We use In to
denote the identity matrix of size n×n and A < 0 to denote A is a Positive Semi-Definite
(PSD) matrix.

2. Low Rank Optimization Framework

In this paper, we focus on a general class of quadratic matrix optimization problems.
We are given PSD matricesA,B ∈ R

n×n (i.e. A < 0,B < 0) and an arbitrary symmetric
matrix C ∈ R

n×n. We seek a symmetric PSD matrix M ∈ R
n×n that solves Eq (1).

min
M∈Rn×n

G(M) = tr
(

(AM)
2
+BM2 + 2CM

)

(1)

s.t. M < 0

In general, the solution of Eq(1) has to be searched in a space of dimension O(n2).
Solving such a problem becomes rapidly untractable for large n. In order to solve Eq(1)
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at a reduced computational cost, we assume Eq(1) presents a low rank solution, i.e.

rank(M∗) ≪ n

In order to handle the PSD constraint, we let M = LLT with L ∈ R
n×d, d < n and

rewrite the problem in Eq (2).

min
L∈Rn×d

F (L) = tr
(

(ALLT )2 +B(LLT )2 + 2CLLT
)

(2)

The existence of a solution depends on the matrices A,B,C. However, since we
assume that A and B are PSD, G(M) is convex with respect to M (refer to Section
3). The problem is bounded and the solution always exists. Next, we show how three
popular learning problems are special cases of Eq (2).

2.1. Top-k Eigenvalue Approximation

In many applications, it is important to find the “closest” (in Frobenius norm)
rank k approximation to a symmetric matrix K ∈ R

n×n. This k rank approxima-
tion is constructed using the k largest positive eigenvalues of K and their correspond-
ing eigenvectors. We reformulate the problem without explicitly computing the eigen-
values and eigenvectors. We minimize the Frobenius norm between K and M, i.e.
‖M − K‖2F = tr

(

(M −K)(M−K)T
)

= tr
(

M2 − 2MK+K2
)

, leading to the prob-
lem in Eq (3). Clearly, it is consistent with Eq (2), where A = 0, B = In and C = −K.

min
L∈Rn×k

tr
(

(

LLT
)2 − 2KLLT

)

(3)

We now discuss some applications of the top-k eigenvalue approximation. Low rank
approximation of a symmetric matrix has been studied extensively in the kernel machine
literature [12, 33, 34]. Generally, one need to solve the linear systems of the form (K+

λIn)~x = ~b, where K is the kernel matrix, λ > 0 is a regularization parameter and In
is the n × n identity matrix. Given the low-rank approximation K ≈ LLT, the linear
system can be solved via the Woodbury formula:

(K+ λIn)
−1 ≈ 1

λ

(

In − L
(

λIk + LTL
)−1

LT

)

which only needs O(k2n) time andO(kn) memory. Therefore, it can be used to accelerate
the gaussian processes [33] and least-squares SVMs.

Another application of top-k eigenvalue approximation is to reconstruct the top-k
eigenvector of a Gram matrix from its low-rank decomposition. Note that our low rank
optimization problem Eq.(3) does not provide orthogonal approximations to the eigen-
functions. Thanks to Fowlkes’s matrix completion view [14], our low rank method can
also be utilized for obtaining orthogonal eigenvectors. Given the low-rank approximation
K ≈ LLT, the top k eigenvectors U of K can be obtained as

U = LVD− 1
2 (4)

where V and D are from the eigenvalue decomposition decomposition of the k×k matrix
LTL = VDVT. This is equivalent to solving the following top-k eigenvalue system:
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max
U∈Rn×k

tr(UTKU), s.t. UTU = Ik (5)

The reader is referred to [14, 34] for more details. Therefore low-rank approximation
is useful for algorithms that rely on eigenvectors of the Gram matrix, such as Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Laplacian eigenmap,
etc.
Furthermore, the eigenvalue approximation is also applicable to indefinite kernel learning[7]
and semidefinite programming[32]. For example, [32] suggests using this type of low-rank
approximation (See Page 11 of [32]) to perform PSD cone projection. One merit of such
iterative method is that it can take advantage of a good initial guess in every iteration.

2.2. Distance Learning

Given a d-dimensional vector space Rd and two points ~xi, ~xj ∈ R
d, a distance function

D(~xi, ~xj) returns a non-negative real value, indicating the dissimilarity of ~xi and ~xj .
Distance learning is the problem of constructing D(., .) that conforms to two groups of
point pairs, S and N . A point pair (~xi, ~xj) from S (or N ) indicates that ~xi and ~xj are
similar (or dissimilar) to each other. The optimal D(·, ·) is the function that minimizes
the generalized objective function in Eq (6).

min
D(·,·)

Reg(D) + λLoss(D,S,N )

Here, the loss function Loss(D,S,N ) measures the consistency between the values of
D(·, ·) and pairwise relations in S and N . The regularizer Reg(D) alleviates the problem
of overfitting. The tradeoff factor λ balances the loss function and regularization. Next,
we discuss different regularizer and loss functions, as well as, their relationship with our
optimization framework. We focus on a special class of distance functions, called the
Mahalanobis distance, defined as D(~xi, ~xj) = (~xi − ~xj)M(~xi − ~xj)

T , where M is PSD.
Since the choice of regularizer is application dependent, we discuss three popular dis-

tance regularizers. (i) Trace regularizer: Regt(D) = tr(M). It is analogous to the ℓ1
norm regularizer for vector spaces and is thus related to the sparseness on the singular
values of M. Thus the trace regularizer encourages low rank solutions. (ii) Frobenius
norm regularizer: Regf (D) = ‖M‖2F . It is analogous to the ℓ2 norm regularizer for vector
spaces. Generally, it will result in M being full rank [20]. (iii) Kernel Target Alignment
regularizer: Regi(M) = ‖M−Id‖2F . It tends to capture additional information contained
in the spectral domain [11]. Since these regularizer functions are compatible with our
framework in Eq (1), it is straightforward to employ any of them in distance learning.
Since Regi(M) has a kernel target alignment interpretation [8], we use it as our default
regularizer. In what follows, we examine two popular loss models that are also compati-
ble with Eq (1).

Linearity Loss Model: It measures the distance separation between pairs of sam-
ples in S and N . Of course, a small separation is desired. This loss function is
concisely formulated as Lossl(D,S,N ) =

∑

(i,j)∈S D(~xi, ~xj) −
∑

(i,j)∈N D(~xi, ~xj) =
1
2

∑

i,j

(

~xT
i M~xi − ~xT

j M~xj

)

Sij , where Sij = +1 if ~xj ∈ S and Sij = −1 if ~xj ∈ N .
Let R be a diagonal matrix with each diagonal entry filled with the sum of the corre-
sponding row in S. Defining the Laplace matrix T = R − S, we have Lossl(D,S,N ) =
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tr(XTMXR)− tr(XTMXS) = tr(XTXTM).
Combining the above loss function with the default regularizer Regi(M), we obtain

the objective in Eq (6). This objective function is consistent with our framework, where-
by A = 0, B = Id and C = 1

2λXTXT − Id.

min
M<0

tr(M2 − 2M+ λXTXTM) (6)

Kernel Target Alignment Loss Model: It assumes that points in the training
set are attributed labels that indicate which classes they belong to. The model compares
two kernel matrices: one is based on the distance metric and the other on class labels.
Let c be the number of classes and let Y = [~yi| . . . |~ym] denote the class labels assigned
to all training data {~x1, . . . , ~xm}. Each ~yi = (y1i . . . y

c
i )

T ∈ {0, 1}c is a binary vector of c
elements. Following [8], this loss model introduces a kernel KD = YYT . To construct
the Mahalanobis distance that preserves the class memberships of the training samples,
another kernel is constructed using matrixM. SinceM is PSD, the distance function with
respect to M is equivalent to the Euclidean distance after a linear transformation L, such
thatM = LLT . It is easy to show that the dot product between training points in the new
vector space is KX = (XL) (XL)T = XMXT . This loss model computes the difference
between KD and KX as the dissimilarity between two zero-mean Gaussian distributions
with covariance matrices KD and KX respectively [30]. Here we use the Frobenius norm
to measure the distance between KD and KX . Again, adding the regularizer Regi(M),
we obtain Eq (7) that is consistent with our framework, where A =

√
λXTX, B = Id

and C = −λXTYYTX− Id.

min
M<0

tr
(

λ
(

XTXM
)2

+M2 − 2M− 2λXTYYTXM
)

(7)

2.3. Kernel Learning

Kernel learning is another popular problem that deals with the optimization of low
rank PSD matrices. In [20], Jain et al. presented a kernel learning problem stated as
follows. Given an existing kernel matrix N, it is required to construct a new kernel
matrix K which is close to N while satisfying some constraint conditions, as in Eq (8).
Here, gij and bij are pairs of constraints that impact the shape of K, here i, j ∈ 1, . . . ,m,
where m stands for the number of training examples. In [20], the authors proved that
the above problem is equivalent to the problem of learning linear transformation kernel
functions, as indicated in Eq (8).

min
K<0

Reg(N−1K) s.t. gij(K) ≤ bij ⇔ min
W<0

Reg(W) s.t. gij(φ
TWφ) ≤ bij (8)

Here, W∗ = αIm + φTQ∗φ and Q∗ = N−1(K∗ − αN)N−1. Furthermore, K∗ =
φTW∗φ, α is a parameter. K∗ and W∗ are the optimal solutions for the equivalent
problems in Eq. (8). The trace and Fronbenius regularizers were introduced to extend
the learning framework to supervised and semi-supervised learning [20], as shown in Eq.
(9).
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min
K<0

(

τtr
(

N−1K
)

+ ‖N−1K‖2F
)

s.t. gij(K) ≤ bij (9)

where τ ≥ 0 is a parameter. When τ > 0, the above formulation is the semi-supervised
learning model; when τ = 0, it reduces to the supervised learning model. In terms of con-
straints, Euclidean distance constraints between a pair of points (φi, φj) can be formulat-
ed asK(i, i)+K(j, j)−2K(i, j) ≥ bij orK(i, i)+K(j, j)−2K(i, j) ≤ bij . Furthermore, we
can simplify

∑

i,j∈S Gij −
∑

i,j∈N Gij =
∑

i,j=1 GijSi,j =
∑

i,j=1

(

~ei~e
T
i − 2~ei~e

T
j + ~ej~e

T
j

)

Si,j =
∑

i,j=1

(

2~ei~e
T
i − 2~ei~e

T
j

)

Si,j = 2
∑

i,j=1 ~ei~e
T
i Si,j − 2

∑

i,j=1 ~ei~e
T
j Si,j = 2R − 2S =

2T, where S and T are the score matrix and Laplacian matrix respectively as defined
earlier. Therefore, it is consistent with the framework with A = N−1, B = 0 and
C = τN−1 + λT.

min
K<0

tr(N−1KN−1K) + tr(τN−1 + λT)K (10)

3. Optimality Analysis

In this section, we will discuss the optimality of the results using our low-rank op-
timization framework. In particular, we aim to provide a general guideline on the local
minima our framework stops at. We will show when the result matrix L spans in the full
column rank space, M = LLT is the global minima of the original optimization problem.
To prove this property, we start with the following lemmas proved in previous studies.

Lemma 1. If X and Y are PSD, then X ⊗ Y is PSD, where ⊗ is the tensor product
between two matrices. See P620 in [10].

It is not difficult to show that the gradient and hessian matrix of Eq (1) are

∂G

∂M
= 2AMA+BM+MB+ 2C (11)

∂2G

∂2M
= 2A⊗A+ In ⊗B+B⊗ In (12)

Similarly, the gradient of Eq (2) can be computed as

∂F

∂L
= 4ALLTAL+ 2BLLTL+ 2LLTBL+ 4CL (13)

According to Lemma 1, the Hessian matrix is PSD, so G(M) is convex with respect
to M. For more details of matrix differential calculus, please refer to [24].

To analyze the optimality of the solutions, we first present the first order KKT con-
dition. By introducing the dual variables S ∈ R

d×d for the PSD constraints, we obtain
the Karush-Kuhn-Tucker (KKT) condition for Eq. (1) as follows.

M � 0 (Feasibility) (14)

S � 0 (Non-Negativity) (15)

∂G

∂M
− S = 0 (Optimality) (16)

SM = 0 (Complementary Slackness) (17)

7



Since G(M) is a convex function with respect to M, the KKT optimality conditions
are necessary and sufficient for convex optimization problems[3].

Lemma 2. Suppose P,Q ∈ Rn×d satisfy PPT = QQT. Then for some orthogonal
matrix U ∈ Rd×d, Q = PU. See Lemma 2.1 in [4].

Lemma 3. For all orthogonal U, R is a local minimum of Eq (2) ⇔ RU is a local
minimum of Eq (2).
Proof . (⇒) R is a local minimum of Eq (2) ⇒ ∂F

∂L
|R = 4ARRTAR + 2BRRTR +

2RRTBR + 4CR = 0. But, ∂F
∂L

|RU =
(

∂F
∂L

|R
)

U ⇒ RU is also a local minima. (⇐)

RU is a local minimum of Eq (2) ⇒ ∂F
∂L

|RU =
(

∂F
∂L

|R
)

U = 0 ⇒ ∂F
∂L

|R = 0 ⇒ R is also
a local minimum.

Lemma 4. Suppose M∗ = R∗R∗T , where M∗ is feasible for Eq (1) and R∗ is feasible
for Eq (2). Then M∗ is a local minimum of Eq (1) ⇔ R∗ is a local minimum of Eq (2).
Proof . (⇒) The proof is by continuity. Since G(M) is continually differential, if M
is a local minimum of Eq(1), then each R satisfying M = RRT is a local minimum
of Eq(2). (⇐) The proof is by contradiction. We now suppose that M∗ is not a local
minimum of Eq (1). Therefore, there always exists a sequence of feasible solutions Mk

of Eq (1) converging to M∗ such that G(Mk) < G(M∗) for all k. For each k, we can
choose Rk such that Mk = Rk(Rk)T . Since Mk is bounded, it follows that Rk is bounded
and hence has a subsequence Rk converging to some R such that M∗ = RRT . Since
F (Rk) = G(Mk) < G(M∗) = F (R∗), we see that R is not a local minimum of Eq (2).
(i)Since M∗ = R∗(R∗)T = RRT , R∗ = RU for some orthogonal U (See Lemma (2)).
(ii) Since R is not a local minima of Eq (2), RU is not a local minima for all orthogonal
U (See Lemma (3)). Combining (i) and (ii), we conclude that R∗ = RU is not a local
minimum of Eq (2).

Remark: Since any local minima is a global minima for the convex optimization
problem (1), Lemma 4 reveals a nice property that any local minima of Eq (2) is a global
minima. This is based on the assumption that the matrix R∗ spans in the full column
rank space (i.e. there is no null space in R∗), so that we can always choose R satisfying
M∗ = R∗(R∗)T. Therefore the low rank matrix M∗ can be uniquely determined by a full
column rank matrix R∗, (i.e. rank(R∗)=rank(M∗)). However, in real world applications,
we find that this assumption is mild and always holds. Empirically, we always obtain a
resulting full column rank matrix R∗ in our experiments with random initializations. A
simple one-dimensional case is given in Figure 1. It is clear that the change of variable
of the form M = LLT only introduce one local maximum which is defined in the null
space, and does not introduce any extraneous local minima. To sum up, we obtain two
conclusions. (a) Eq (2) is equivalent to Eq (1), Eq (2) is bounded, and the solution of
Eq (2) always exists. (b) When the full column rank assumption holds, the change of
variable does not introduce any extraneous local minima (i.e. any local minima of Eq
(2) is a global minima).

4. Efficient Solver

In this section, we describe an efficient solver for the problem in Eq 2. We call our
proposed algorithm the Low Rank Optimization (LRO) method. The gradient of F (L)
with respect to L can be computed using Eq (13). Generally, since F (L) is nonconvex, it
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Figure 1: Geometric interpretation of the M = LL
T factorization in one-dimensional case when A =

[1];B = [1];C = [−800].

is hard to utilize the second order information in this nonconvex optimization problem.
Newton method in this scheme may diverge or converge to a saddle point or even to a
point of local maximum [26]. Since the limited-memory quasi-Newton method (L-bfgs)
requires matrix manipulation over its previous directions in each iteration, it leads to
expensive computation when the number of columns in L is large (refer to Section 5.4
for a comparison with LRO). On the other hand, the first-order Conjugate Gradient
(CG) Algorithm [27] is quite a popular iterative approach for the numerical solution
of particular systems of linear equations, namely those whose matrix is symmetric and
positive-definite. In many cases (e.g. especially when the matrices are sparse), the
CG method significantly outperforms L-bfgs. Therefore, we iteratively apply the CG
algorithm to Eq (13) until it converges to a local minimum. The complete algorithm is
summarized in Algorithm 1.

In each CG iteration, the conjugate direction picks up the moving direction based on
the gradient of the objective function at Lt. A good survey on classical rules for updating
the conjugate direction are found in [29]. The Polak-Ribiere (PR) update automatically
restarts an iteration when the update term ρ becomes negative. In our experiments, we
observed that this update rule is generally the best choice, both for convergence speed
and numerical stability.

Computing a proper step size µ is an important feature of the CG method (refer to
Step 13), since it significantly impacts the convergence of Algorithm 1. The optimal step
size µ∗ is computed by performing a local line search around the current solution Lt−1. As
such, µ∗ = min0<µ<1 F (Lt−1 + µ∆t−1). Since it is quite expensive to evaluate F (L) for
a specific L, a simple inexact line search using the Armijo sufficient decreasing condition
may incur high computational overhead. To overcome such difficulty, we analyze the
objective function and derive a more efficient solution.

In the following, we discuss how to find µ using first order condition. To simplify the
notation, we use L and ∆ to denote Lt−1 and ∆t−1 respectively. The objective along
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Algorithm 1 Conjugate Gradient Descent for the Quadratic Semidefinite Pro-
gramming

1: Input: stopping parameter ǫ
2: Initialize the original solution L0 to a random full column rank matrix {We simply

initialize L0 =orth(randn(n, d)) in MATLAB.}, set t = 0
3: while not converge do
4: if t > 0 then
5: if F (Lt)−F (Lt−1)

|F (Lt)|+1 < ǫ or ‖Lt−Lt−1‖F√
n

< ǫ then

6: Return Lt

7: end if

8: ρ = max

{

0,
〈 ∂F
∂Lt

, ∂F
∂Lt

− ∂F
∂Lt−1

〉
〈 ∂F
∂Lt

, ∂F
∂Lt

〉

}

9: ∆t = − ∂F
∂Lt

+ ρ∆t−1

10: else
11: ∆t = − ∂F

∂Lt

12: end if
13: Solve the cubic equation dF (Lt+µ∆t)

dµ = 0 (0 < µ < 1) to get the candidate steps:
cstep

14: if (# of cstep =0) Return Lt,
15: elseif (# of cstep =1) µ = cstep(1)
16: elseif (# of cstep =3) select one that makes the greatest descent as µ,
17: endif
18: Increment t by 1
19: Update Lt = Lt−1 + µ∆t−1

20: end while

the search direction ∆ can be computed as:

F (L+ µ∆) = tr
(

A(L + µ∆)T (L+ µ∆)A(L+ µ∆)T (L+ µ∆)

+B(L+ µ∆)T (L+ µ∆)(L+ µ∆)T (L+ µ∆)B

+2C(L+ µ∆)T (L+ µ∆)
)

It is easy to see that F (L+µ∆) can be written as a 4th order polynomial function in µ, as

F (L+µ∆) =
∑5

i=1 aiµ
i−1, where {ai}5i=1 are constants that depend on ∆,A,B,C, and

L and can be efficiently computed using properties of the matrix trace. Therefore, solving
dF (L+µ∆)

dµ = 0 is equivalent to solving the cubic equation
∑4

i=1(iai+1)µ
i−1 = 0. Based

on the current descent direction ∆, the cubic equation may produce 0, 1 or 3 real-valued
solutions. If the equation has no solution (Step 14), the algorithm has converged. If the
equation produces a single solution, it is used as the optimal step size (Step 15). If the
equation produces multiple solutions, we select the µ that leads to the greatest descent
with respect to the objective. One may worry that this may impair the performance of
the line search, however, in practice, even for a problem which contains tens of thousands
of variables in our experiments, the number of times the line search produces 3 solutions
is usually negligible (less than 5). One cause may be the general local convexity of the
optimization problem (refer to the right subfigure in Figure 1).
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The convergence of Algorithm 1 is evident. Since F has continuous first-order gradi-
ents over the open set domain, then for any Lt and ∆t, the Taylor series on some open
interval of µ(µ > 0) can be expressed as:

F (Lt+1) = F (Lt + µ∆t) = F (Lt) + µ〈∆t,
∂F

∂Lt

〉+ o(µ2)

where o(µ2) the Taylor polynomials of higher degree which is larger than 2. Since the
conjugate gradient direction is a descent direction [27, 29] with 〈∆t,

∂F
∂Lt

〉 < 0 , there
exist a sufficient small µ such that F (Lt+1) < F (Lt). Combining our exact line search
program, Algorithm 1 is guaranteed to decrease the objection function in every iteration.
A global convergence proof of the Polak-Ribiere conjugate gradient method based on
Armijo line search for general smooth (not necessarily convex) functions can be found in
[16]. Due to the greedy descent property of Algorithm 1, convergence to a local minimum
is guaranteed.

Time Complexity: The total number of variables is n × d. According to the
quadratic termination property of the CG algorithm, Algorithm 1 converges to a local
minimum in n×d or fewer iterations (#it). Since computing the gradient requiresO(n2d)
operations, the complexity of Algorithm 1 is O(#it × n2d).

5. Experiments

In this section, we provide experimental validation of our LRO method on both
synthetic and real data. We evaluate the performance of LRO in three applications:
Top-k eigenvalue problem, distance learning and kernel learning. All experiments are
performed using MATLAB 7.8 on a single core Intel Pentium E3300 1.86GHZ processor
with 1GB RAM. The CG algorithm is stopped when the relative change in F or L (refer
to Line 5 in Algorithm 1) is below a tolerance ǫ = 10−6 in all our experiments.

5.1. Top-k Eigenvalue

The Top-k Eigenvalue approximation problem can be solved by MATLAB solver ‘eig’,
whose time complexity is O(n3). As such, it is not scalable to large scale matrix prob-
lems. However, efficient Top-k eigenvalue solvers exists: ‘JDQR’ is a publicly available
MATLAB package1 based on the Jacobi-Davidson method [13], ‘eigs’ is a Matlab func-
tion based on Lanczos Method. We use its default stopping criterion for all methods. In
our experiments, we compare our LRO method against ‘JDQR’ and ‘eigs’ by generating
an arbitrary indefinite matrix K and applying the three Matlab solvers to estimate the
closest rank d approximation to K. Note that LRO approximates K with LLT where
L ∈ R

n×d and reconstruct the orthogonal eigenvectors by Eq (4). Experimental results
have been obtained by averaging 10 runs over different sized matrices H and different
ranks (d = {1, 10, 40, 80,√n}) . We report the runtime and normalized objective value
Objective = 1

n
tr(UTKU) for the three solvers in Table 1. The orthogonality measure

Orthogonality = ‖UTU− In‖F for LRO is also included in the table. Two conclusions
can be drawn. (1) LRO outperforms ‘JDQR’ in terms of computational efficiency while
achieving a larger objective value, moreover, LRO gives comparable efficiency to ‘eigs’.
(2) Although the problem is nonconvex, our experiments demonstrate that LRO tends

1http://www.staff.science.uu.nl/∽vorst102/JDQR.html
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JDQR eigs LRO
n d T ime Objective T ime Objective T ime Objective Orthogonality

1000 1 0.40 0.044442 0.44 0.044442 0.35 0.044442 1.11e-16
1000 10 1.77 0.432857 0.89 0.432857 0.65 0.432856 3.01e-15
1000 40 3.45 0.722600 1.13 1.617016 1.27 1.617010 1.18e-14
1000 80 7.22 0.963321 1.71 3.018015 2.60 3.018006 2.20e-14
1000 31 3.10 0.722600 1.02 1.275306 1.22 1.275302 9.72e-15
2000 1 1.37 0.031521 1.76 0.031521 0.89 0.031521 2.22e-16
2000 10 7.66 0.308372 3.91 0.308372 2.35 0.308371 2.56e-15
2000 40 10.08 0.459197 4.94 1.187446 4.92 1.187442 1.17e-14
2000 80 14.00 0.519013 7.18 2.281043 8.25 2.281015 2.30e-14
2000 44 10.35 0.459197 5.19 1.300596 5.97 1.300588 1.29e-14
3000 1 4.13 0.025740 4.77 0.025740 3.75 0.025739 0.00e-00
3000 10 17.23 0.253965 8.82 0.253965 7.75 0.253964 3.07e-15
3000 40 20.50 0.328882 11.93 0.984637 15.24 0.984630 1.25e-14
3000 80 24.88 0.378555 17.66 1.909765 17.97 1.909729 2.18e-14
3000 54 21.53 0.353763 14.03 1.313890 18.40 1.313872 1.48e-14
4000 1 7.42 0.022359 8.71 0.022359 5.06 0.022359 2.22e-16
4000 10 35.98 0.198505 18.41 0.220359 14.05 0.220358 2.68e-15
4000 40 37.74 0.263871 25.08 0.859493 20.59 0.859483 1.30e-14
4000 80 41.53 0.307176 37.39 1.676963 34.53 1.676943 2.21e-14
4000 63 38.03 0.285531 29.73 1.333807 28.34 1.333783 1.83e-14
5000 1 13.71 0.019956 16.62 0.019956 8.77 0.019956 4.44e-16
5000 10 55.08 0.177945 41.48 0.197501 23.15 0.197500 3.43e-15
5000 40 56.95 0.217035 41.28 0.773370 40.40 0.773364 1.30e-14
5000 80 62.47 0.256050 62.48 1.514662 66.05 1.514646 2.26e-14
5000 70 61.17 0.236555 56.68 1.331808 53.77 1.331795 1.90e-14

Table 1: Time comparison (in seconds) with ‘JDQR’ and ‘eigs’.

to converge to the global solution, so the risk of falling into undesirable local minima is
generally avoided.

Remark: Our experimental results demonstrate the potential of our low-rank opti-
mization as a general quadratic semidefinite programming algorithms. Current modern
technique of computing leading eigenpairs such as ‘eigs’ is based on Lanczos algorithm.
However, the Lanczos algorithm is known to suffer from numerical stability and the or-
thogonality of the solution U is not always guaranteed. In practice, the orthogonality
of U is quickly lost and in some cases could even be linearly dependent. One needs to
employ Gram-Schmidt process to reorthogonalize U into a basis spanning the Krylov
subspace corresponding to the target matrix K. For more discussions on the Lanczos
algorithm, please refer to Section 5 of [9]. On the other hand, our method is based on
simple gradient descent and the orthogonal eigenvectors can be directly reconstructed by
Eq (4). It is expected to be more robust.
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dataset LRO-KTA LRO-L ITML NCA LMNN IGML
soybean 00.0 ± 0.0 05.4± 5.2 00.7 ± 1.0 00.1± 0.8 02.2± 2.1 01.8± 2.1
iris 02.7 ± 1.5 04.3± 2.1 04.3 ± 2.7 04.1± 1.6 04.5± 2.1 02.7 ± 1.7

wine 01.5 ± 1.0 02.8± 1.6 07.7 ± 3.0 04.6± 1.5 04.1± 1.8 05.0± 1.6
sonar 22.4± 2.5 23.9± 3.8 28.3 ± 6.3 26.5± 4.6 20.3 ± 4.4 28.1± 4.5
glass 30.6 ± 2.4 31.0± 3.3 36.2 ± 3.4 36.9± 2.7 34.9± 3.2 35.8± 2.3
ionosphere 14.1± 3.1 15.5± 1.5 11.1 ± 2.6 17.2± 1.6 15.0± 1.9 16.6± 1.8
pima 26.5 ± 1.7 27.6± 1.6 27.8 ± 1.7 27.8± 1.6 27.1± 1.7 27.6± 1.9
segment 03.7± 0.6 11.4± 0.7 11.6 ± 1.0 09.0± 1.7 03.6 ± 0.9 05.9± 3.4
optdigits 02.9± 0.3 02.5± 0.3 02.1 ± 0.3 02.1± 0.3 01.6 ± 0.3 03.2± 0.3
waveform 16.6± 0.6 16.0 ± 0.6 19.7 ± 0.7 20.1± 0.7 19.1± 0.7 30.6± 0.7

Table 2: Error rates (in %) on 10 UCI benchmark datasets for distance learning

5.2. Distance Learning

In this section, we demonstrate the efficacy and efficiency of LRO and compare it
to two popular metric learning algorithms on several real-world benchmark dataset-
s. After learning the optimal Mahalanobis distance function from the training set,
we use a kNN classifier (k = 3) to classify each test sample. The hyper-parameter
λ is set by a typical fivefold cross-validation procedure. We search over the values
λ = {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103}. To reduce the number of parameters, we
set d = min(n,min(60,max(40,

√
n))) in all experiments.

Low dimensional Data: We compare our LRO method using the kernel target
alignment model (LRO-KTA) and the linearity model (LRO-L) against popular methods,
including ITML [11], NCA [15], LMNN [31] and IGML [30]. The experiments are run on
10 datasets from the UCI data repository. We use the default stopping criterion for all
other methods.

Table 2 shows the classification error of six methods on 10 datasets averaged over 20
runs with the corresponding standard deviation. A detailed description of these datasets
are available in Table 3. The best result is highlighted in bold. From Table 2, several
conclusions can be drawn. Firstly, for 5 out of 10 datasets, LRO-KTA performs better
than the other classifiers. LMNN performs better than the other approaches for 3 out of
10 datasets. Secondly, LRO-L only gives modest performance. This demonstrates that
the linear loss model enforces the similarity or dissimilarity between training samples too
strictly and is sensitive to noise. This impairs classification performance.

High dimensional Data: We also apply LRO to high-dimensional large scale
datasets, where sparsity is an important factor that can impact the efficiency of the al-
gorithm. Because many metric learning methods cycle through the distance constraints
many times, they fail to make good use of the sparsity inherent to the data. Our L-
RO algorithm can handle the constraints implicitly by simply employing sparse matrix
multiplication. We use both sparse and non-sparse datasets in this experiment. First,
we compare the computational efficiency of LRO to that of existing full-rank methods
ITML and LMNN, and the low-rank method SURF [25]. Figure 2(a) shows the run-time
taken to learn metrics of dimensionality n = 100 to n = 5000 on the “gisette” dataset
with m = 3000 instances and c = 2 classes. All methods are run to convergence. We
observe that the full-rank methods scale quadratically with the dimension n, while the
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dataset # class # tr # te # feat sparsity
w1a 2 2,477 47,272 300 0.9618
w3a 2 4,912 44,837 300 0.9612
isolet 26 6238 1559 617 0
gisette 2 1,000 1,000 5,000 0.01
letters 26 15,000 5,000 16 0
20news 20 15,935 3,993 62,061 0.9987
real-sim 2 36,155 36,154 20,958 0.9976

Table 3: Description of 7 large scale benchmark datasets on distance learning
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Figure 2: (a): Run-time comparison on the “gisette” dataset between full-rank methods: ITML, LMNN,
and low-rank methods: SURF and LRO-KTA. Full-rank methods do not scale well, whereas low-rank
methods scale roughly linearly with d. (b): Run-time comparison with SURF on the “realsim” dataset.
LRO-KTA is substantially faster than SURF.

low-rank ones scale roughly linearly with LRO-KTA outperforming SURF. Here, we note
that “gisette” is a non-sparse dataset. Next, we focus on comparing LRO with SURF on
the large scale sparse “realsim” dataset. We select m = 6000 instances from the dataset.
Figure 4(b) shows the run-time taken to learn the metrics of dimensionality n = 500 to
n = 5000. LRO-KTA is more than 10 times faster than SURF on this sparse dataset.

We make further comparisons with SURF. Table 4 shows the mean classification
error of the two methods over seven datasets averaged over three runs. For both of the
algorithms, we set the rank of the learned matrix equal to d ∈ {20, 20, 20, 40, 20, 16, 20}.
Based on the results in Table 4, we draw the following observations. Firstly, LRO-KTA is
significantly faster on the sparse datasets and generally faster on the non-sparse datasets.
For example, LRO-KTA is about 10 times faster than SURF on the sparse “realsim” and
“20news” datasets. For the non-sparse dataset “gisette”, LRO-KTA is four times faster.
Secondly, LRO-KTA only gives modest convergence speed on the “letters” and “isolet”
datasets. Stopping criterion may be responsible for this result. Thirdly, both low rank
algorithms yield similar test error, with LRO-KTA performing slightly better. We also
study the relationship between the reduced rank d, training time, and test error rate.
Figure 3(a) shows the test error rate as a function of d for SURF and LRO-KTA on the
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Figure 3: (a): Test error rate vs. rank on “isolet” and “letter” datasets. (b): Training time and Test
error rate of LRO-KTA with varying rank.

“isolet” and “letter” datasets, respectively. Figure 3(b) shows training time and error
rate as a function of matrix rank for LRO-KTA. Clearly, we observe that approximating
the matrix with a higher rank will be less efficient without necessarily resulting in better
accuracy.

Run Time Comparison
Alg. w1a w3a isolet gisette letters 20news realsim
SURF 40 s 39 s 91 s 1020 s 5 s 7140 s 4200 s

LRO-KTA 6 s 13 s 289 s 300 s 34 s 587 s 360 s
Error Rate Comparison

Alg. w1a w3a isolet gisette letters 20news realsim
SURF 2.7% 2.2% 3.26% 5.1% 5.3% 18.0% 5.8%

LRO-KTA 2.4% 2.4% 5.8% 5.3% 4.0% 14.8% 3.24%

Table 4: LRO-KTA vs. SURF when applied to distance learning

Global Convergence: According to the KKT optimality condition, our local search
algorithm terminates at global optimum when ∂G

∂(LtL
T

t )
becomes PSD, i.e. ωt = 0, where

ωt is defined as:

ωt = λmax

(

− ∂G

∂
(

LtLT
t

)

)

Here λmax(·) is the largest eigenvalue of a matrix. In order to learn some asymptot-
ic behavior of the algorithms, we report the values of ωt after tth iteration in Figure
4. It is demonstrated that the algorithm converges to the local minima with ω de-
creasing to 0 (ω ց 0). To further evaluate global convergence of the algorithm, we
learn the best linear transformation L∗ starting from different initializations with dif-
ferent ǫ (10−6, 10−8, 10−10, 10−12). We report the average and standard deviation of

15



     0

5e+4  

ω
t

 

 

     0

2e+3  

4e+3  

ω
t

 

 

     0

5e+6  

1e+7  

ω
t

 

 

0 20 40 60 80 100
     0

5e+3  

1e+4  

ω
t

Itertations (t)

 

 

ionosphere

glass

optdigits

sonar

(a) on low dimensional dataset

     0

5e+2  

1e+3  

ω
t

 

 

     0

2e+7  

4e+7  

ω
t

 

 

     0

5e+2  

1e+3  

ω
t

 

 

0 50 100 150 200 250
     0

1e+7  

2e+7  

ω
t

Itertations (t)

 

 

w1a

w3a

letter

isolet

(b) on high dimensional dataset

Figure 4: (a): The value of ωt after tth iteration on low dimensional dataset: “ionosphere”, “glass”,
“optdigits”, “sonar”. (b): The value of ωt after tth iteration on low dimensional dataset: “w1a”, “w3a”,
“letter”, “isolet”.

{F (L∗), ω#it and #it} over 10 runs in Table 6. Here #it is defined as the number of
iterations which the algorithm takes to converge. Therefore, two conclusions can be ob-
tained. (i) The small standard deviations of the objective function and the small value
of the eigenfunction ω#it indicate that LRO tends not to get stuck at undesirable lo-
cal minima. (ii)Although CG is guaranteed to converge in O(n × d) iterations, in our
experiments, we find reasonable solutions are found often in much fewer iterations.

5.3. Kernel Learning

We apply LRO to the kernel learning problem and study its computational efficiency.
In our experiments, we select a subset of training patterns from the “letters” dataset,

varying from m = 100 to m = 1500. A gaussian kernel K(~xi, ~xj) = exp
(

−‖~xi−~xj‖2

σ2

)

with varying bandwidth σ = {1, 5, 8} is used for learning. Here, we set the rank d = 20.
As can be seen from Figure 5, our algorithm scales roughly linearly with the number of
training examples.

A recent kernel learning algorithm can be found in [20]. They represent the PSD
matrix in terms of a factorization M = JOJT , where J ∈ R

n×d is a pre-specified matrix,
O ∈ R

d×d is unknown PSD matrix. The number of parameters in the model can thus
be reduced from n2 to d2. The optimization algorithm is based on Uzawa’s inexact
algorithm which is original designed for matrix completion. The learning procedure in
[20] is repeated by cycling through the constraints, whereby each iteration involves an
SVD operation that projects the current solution into the feasible set (i.e. the convex
cone of positive semidefinite). Since there are too many parameters that need to be
set beforehand and due to the inexact line search technique used in this method, slow
convergence might ensue. Setting the parameters of this method is non-trivial, so it
is difficult to conduct a fair comparison between its performance and that of our LRO
method.
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Figure 5: Scalability of LRO-KTA with training set size for kernel learning.

dataset CG (sec) L-bfgs (sec)
optdigits 5.14(0.76) 5.88(1.00)
w1a 4.55(1.09) 5.57(0.43)
w3a 6.13(0.21) 6.82(0.90)
isolet 184.41(6.29) 176.76(7.09)
letters 17.15(0.59) 13.23(0.66)
gisette 364.06(83.25) 678.53(39.31)
real-sim 159.72(1.88) 386.16(18.04)

Table 5: Training Time Comparison: CG v.s. L-bfgs

5.4. Conjugate Gradient vs. L-bfgs

Here, we validate the use of the CG method in LRO. To do this, we implement two
versions of LRO-KTA: one with the CG method and the other with the L-bfgs method.
For the L-bfgs version, we use 20 past updates of the position and gradient to approximate
the Hessian matrix. We report the average training time over 7 datasets averaged over 20
runs with the corresponding standard deviation in Table 5. The CG method often results
in faster convergence especially for large scale datasets (e.g. “gisette” and “realsim”).

5.5. Discussions

It is hard to compare against other solvers for PSD matrix optimization in all ex-
periments, since they usually optimize different objectives. For example, the Top-k
eigenvalue problem can be also approximately solved by Nyström method [33, 14, 34],
however, such sampling method is inefficient when high accuracy is required. Therefore,
we only compare against exact sparse eigenvalue methods such as ‘eigs’ and ‘JQDR’. Bu-
rer and Kulis’s optimization method [4] mainly focuses on linear low rank Semidefinite
Programming (SDP). Journee’s optimization method [21] is more general, but incapable
of solving all the different problems LRO can. Generally, these methods can not utilize
the structure of the optimization problem. Moreover, at every iteration, these methods
need to perform eigenvalue or singular value decomposition, which is not scalable to large
scale applications. Furthermore, NCA [15] is a also metric learning algorithm which uses
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the decomposition M = LLT. Since the objective with respective to M is non-convex,
they uses Carl Edward Rasmussen’s Matlab solver ‘minimize’ to ensure a robust solution.
Note that ‘minimize’ is designed for general purpose, it uses CG and cubic polynomial
interpolation method, which is inefficient. In our experiments, we found their inexact
algorithm, even for median scale dataset, often converges much slower than our method.
We therefore skip the results with NCA and compare our LRO method with the new
metric learning solver SURF. We also report the scalability of our method for kernel
learning.

ǫ = 1e−6 ǫ = 1e−8

dataset F (L) ω#it #it F (L) ω#it #it

soybean 1.3e1(5.2e-7) 4.1e1(7.4e-3) 1.0e2(0.0e0) 1.3e1(8.7e-8) 4.2e0(6.0e-3) 1.8e2(0.0e0)
iris 1.1e0(5.2e-16) 1.1e-9(2.0e-16) 1.1e1(0.0e0) 1.1e0(5.2e-16) 1.1e-9(2.0e-16) 1.1e1(0.0e0)
wine 1.1e2(0.0e0) 2.7e0(6.4e-13) 4.7e1(0.0e0) 1.1e2(2.8e-14) 8.6e-1(2.6e-12) 7.8e1(0.0e0)
sonar 2.2e3(1.3e0) 4.4e1(2.8e1) 1.2e2(1.8e1) 2.2e3(5.8e-1) 8.7e0(4.2e0) 4.3e2(6.7e1)
glass 1.8e3(4.0e-9) 3.2e1(3.1e-6) 6.9e1(0.0e0) 1.8e3(1.5e-10) 9.2e0(6.0e-7) 9.7e1(0.0e0)

ionosphere 5.2e3(1.0e-11) 3.6e2(5.3e-8) 1.3e2(0.0e0) 5.2e3(3.5e-12) 1.2e2(1.1e-9) 2.2e2(0.0e0)
pima 3.6e4(3.0e-11) 5.7e2(2.2e-9) 4.0e1(0.0e0) 3.6e4(2.4e-11) 2.1e2(4.7e-9) 7.8e1(0.0e0)

optdigits 1.8e5(3.3e1) 4.9e4(3.8e4) 2.3e2(6.7e0) 1.7e5(8.6e0) 2.3e4(1.7e3) 4.8e2(1.6e1)
waveform 2.2e3(2.7e-6) 5.8e1(8.1e-4) 6.3e1(0.0e0) 2.2e3(1.1e-5) 1.2e2(3.3e-1) 1.0e2(0.0e0)

w1a 5.8e2(1.1e-2) 2.4e0(7.1e-2) 1.4e2(7.2e0) 5.8e2(9.5e-3) 2.0e0(5.7e-3) 3.0e2(3.2e1)
w3a 1.2e7(1.7e3) 7.0e4(3.9e4) 1.9e2(9.8e0) 1.2e7(5.2e2) 2.3e4(1.7e4) 3.7e2(4.1e1)

letters 6.7e2(1.2e-12) 1.0e0(2.6e-9) 4.8e1(0.0e0) 6.7e2(1.5e-13) 1.7e0(6.9e-9) 6.5e1(0.0e0)

ǫ = 1e−10 ǫ = 1e−12

dataset F (L) ω#it #it F (L) ω#it #it

soybean 1.3e1(3.0e-6) 2.0e-1(2.1e-1) 4.1e2(7.1e0) 1.3e1(1.0e-10) 4.3e-3(9.1e-4) 6.1e2(0.0e0)
iris 1.1e0(3.3e-16) 1.1e-9(1.9e-16) 1.1e1(0.0e0) 1.1e0(3.3e-16) 1.1e-9(1.9e-16) 1.1e1(0.0e0)
wine 1.1e2(1.7e-14) 2.1e-2(5.1e-13) 1.5e2(0.0e0) 1.1e2(1.4e-14) 2.0e-3(1.2e-12) 2.0e2(0.0e0)
sonar 2.2e3(1.7e-3) 2.0e0(5.6e-3) 2.8e3(6.2e2) 2.2e3(4.0e-4) 2.0e0(1.5e-3) 4.1e3(2.2e2)
glass 1.8e3(1.4e-12) 2.0e-1(1.8e-7) 2.4e2(0.0e0) 1.8e3(8.2e-13) 1.4e-2(1.5e-8) 3.4e2(0.0e0)

ionosphere 5.2e3(4.6e-12) 2.4e0(1.6e-9) 7.0e2(0.0e0) 5.2e3(3.8e-12) 5.4e-1(4.6e-9) 1.9e3(0.0e0)
pima 3.6e4(1.4e-11) 6.3e0(5.3e-9) 3.0e2(0.0e0) 3.6e4(2.5e-11) 1.4e-1(2.5e-9) 5.9e2(0.0e0)

optdigits 1.7e5(3.8e-3) 4.3e2(3.2e2) 2.7e3(3.9e1) 1.7e5(1.7e-4) 9.5e0(3.5e0) 5.7e3(2.3e2)
waveform 2.3e3(7.2e-13) 1.2e1(9.8e-8) 6.2e2(0.0e0) 2.3e3(4.5e-13) 1.0e0(3.0e-8) 1.4e3(0.0e0)

w1a 5.8e2(7.9e-5) 2.0e0(4.9e-6) 2.4e3(2.2e2) 5.8e2(2.3e-6) 2.0e0(1.0e-7) 1.1e4(8.9e2)
w3a 1.2e7(1.2e0) 3.8e2(1.5e2) 2.3e3(8.8e1) 1.2e7(0.2e0) 1.5e1(0.9e2) 2.2e4(1.2e2)

letters 6.7e2(1.1e-13) 8.0e-2(1.7e-10) 1.1e2(0.0e0) 6.7e2(5.7e-14) 1.1e-3(1.1e-11) 1.4e2(0.0e0)

Table 6: Global Convergence of the LRO-KTA Algorithm.

6. Conclusion and Future Work

In this paper, we propose an efficient, simple and general optimization framework for
the low rank PSD matrix problem. We apply this framework to a variety of important
problems that occur in machine learning. Extensive empirical results on benchmark
datasets show that our proposed method is accurate, stable, efficient, and scalable to large
and sparse datasets. We also show that our method can outperform popular and state-
of-the-art methods. Our experiments hint that our method enjoys stable convergence
and does not get stuck at undesirable low minima. Therefore, future work will focus on
providing theoretical validation for the convergence process.
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