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Abstract

Many machine learning tasks (e.g. metric and manifold learning problems)
can be formulated as convex semidefinite programs. To enable the applica-
tion of these tasks on a large-scale, scalability and computational efficiency
are considered desirable properties for a practical semidefinite programming
algorithm. In this paper, we theoretically analyse a new bilateral greedy opti-
mization(denoted BILGO) strategy in solving general semidefinite programs
on large-scale datasets. As compared to existing methods, BILGO employs
a bilateral search strategy during each optimization iteration. In such an
iteration, the current semidefinite matrix solution is updated as a bilateral
linear combination of the previous solution and a suitable rank-1 matrix,
which can be efficiently computed from the leading eigenvector of the de-
scent direction at this iteration. By optimizing for the coefficients of the
bilateral combination, BILGO reduces the cost function in every iteration
until the KKT conditions are fully satisfied, thus, it tends to converge to
a global optimum. In fact, we prove that BILGO converges to the global
optimal solution at a rate of O(1/k), where k is the iteration counter. The
algorithm thus successfully combines the efficiency of conventional rank-1
update algorithms and the effectiveness of gradient descent. Moreover, BIL-
GO can be easily extended to handle low rank constraints. To validate the
effectiveness and efficiency of BILGO, we apply it to two important machine
learning tasks, namely Mahalanobis metric learning and maximum variance
unfolding. Extensive experimental results clearly demonstrate that BILGO
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can solve large-scale semidefinite programs efficiently.

Keywords: Semidefinite Programming, Low-Rank Optimization, Rank-1
Approximation, Frank-Wolfe algorithm, Leading Eigenvector, Metric
Learning, Kernel Learning

1. Introduction

Semidefinite Programming (SDP) is commonly used in machine learning
problems, such as metric learning [1, 2], manifold learning [3, 4, 5], linear
regression [6], distance matrix completion [7], and solving Lyapunov equa-
tions [8]. Given a convex and continuously differentiable function F , where
F : Rd×d → R, the goal of general semidefinite programming is to find a
positive semidefinite (PSD) matrix M such that the objective F (M) is min-
imized, as shown in Eq (1).

min
M∈Rd×d

F (M) s.t. M < 0 (1)

A plethora of approaches have been proposed in the literature to handle
the PSD constraints. (i) Classic interior point methods convert the orig-
inal optimization problem to a series of subproblems with LogDet barrier
functions. A similar strategy has also been adopted in studying the matrix
nearness problem with linear constraints via LogDet divergences [9]. (i-
i) Eigenvalue decomposition methods, e.g. the projected gradient descent
method [1, 10], iteratively trim the negative eigenvalues in order to main-
tain positive semidefiniteness. However, full eigenvalue decomposition is an
expensive operator especially at large scales where d is large. (iii) Block co-
ordinate descent methods, e.g. the method of [11], update one row or column
of the solution matrix at a time by solving a subproblem, which enforces the
PSD condition via the Schur Complement Decomposition theorem. Due to
its memory complexity of O(d2), this type of SDP solver is not feasible in
large scale problems. (iv) Low rank methods [12] replace the PSD matrix
with its low-rank decomposition and minimize an unconstrained, non-convex
objective. Despite their significant computational gains, these methods sac-
rifice the convexity of the objective and only local minima are guaranteed.

From above, we observe that existing SDP methods are either time-
consuming, memory-demanding, or suffer from local minima. In this paper,
we theoretically analyse a new SDP method that applies a bilateral greedy
optimization (BILGO) strategy to efficiently achieve the global minimum of
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Eq (1). Inspired by recent work on leading eigenvector updates in SDP (e.g.
[13, 14, 15, 16]) and the forward greedy selection algorithm [17], BILGO
[18, 19] iteratively updates the current solution by searching for the optimal
linear combination of the previous solution and the leading eigenvector of the
gradient matrix. As compared to existing SDP methods that perform linear
search, BILGO optimizes the linear combination weights bilaterally, i.e. it
solves for both weights simultaneously. The contributions of this paper are
three-fold. (i) We prove that each iteration of BILGO ensures a decrease in
the objective untill the KKT conditions are fully satisfied, thus, it tends to
converge to a global minimum. In fact, for any continuously differentiable
convex function, BILGO converges to the global optimal solution at a rate of
O(1/k), where k is the iteration counter. Therefore, the algorithm successful-
ly combines the advantages of existing SDP techniques, achieving effective-
ness and efficiency with a single shot. (ii) The performance of BILGO can be
further enhanced by employing an efficient closed-form bilateral linear search,
an efficient Lanczos-based method to compute the leading eigenvector, and a
simple extension to handle low-rank matrix constraints, which is a common
assumption adopted in machine learning theory and practise for large-scale
problems. (iii) To validate the effectiveness and efficiency of BILGO, we ap-
ply it to two important machine learning tasks, namely Mahalanobis metric
learning and maximum variance unfolding. Extensive experimental results
clearly demonstrate that BILGO can solve large-scale semidefinite programs
efficiently.

The rest of the paper is organized as follows. Section 2 provides a detailed
description of the BILGO algorithm, as well as an analysis of its convergence
properties. Further computational enhancements are discussed in Section 3.
Section 4 illustrates connections between BILGO and existing work. Two
applications of BILGO are discussed in section 5. Section 6 presents our
extensive experimental results that clearly show BILGO’s impressive perfor-
mance on large scale machine learning benchmarks. Section 7 concludes this
work.

2. BILGO algorithm

Mathematical Notation: The inner product between two matrices A
and B is defined as 〈A,B〉 =

∑
ij AijBij, and Frobenius norm of a matrix

A as ‖A‖fro. We use Id to denote the identity matrix of size d× d and Ω to
denote the cone consisting of all PSD matrices.

In this section, we describe Bilateral Greedy Optimization (BILGO) method
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[18, 19] and analyze its properties. BILGO is an iterative algorithm, which
generates a sequence of feasible solutions {M0,M1, . . . ,Mk, . . .} ⊂ Ω until
convergence to the global optimum of Eq (1). One key feature of BILGO lies
in its update strategy, i.e. computing Mk+1 from Mk. The algorithm design
is based on the following optimality analysis. Given a matrix M ∈ Rd×d and
by introducing the dual variables S ∈ Rd×d of Eq (1), we easily derive the
following KKT optimality conditions.

M � 0 (Feasibility)

S � 0 (Non-Negativity)

∇F (M)− S = 0 (Optimality)

SM = 0 (Complementary Slackness)

Note that the non-negativity constraints are enforced in eigenvalues of the
dual variables S (refer to [15]). Since F (M) is a convex function with respect
to M, these KKT conditions are both necessary and sufficient for global
optimality.

Given a matrix M in the feasible set Ω, a descent direction at M is
another matrix D, such that M + πD always remains in the feasible set Ω
and improves the objective F (M) when π > 0 is sufficiently small. Figure
1 shows the feasible direction D at point M. D is a feasible direction if
changing M by a small amount in the direction D maintains feasibility. We
naturally obtain the following lemma.

Lemma 1. Let M ∈ Ω be any nonstationary point. If (1) there exists an-
other matrix N ∈ Ω that D = N−M; and (2) 〈∇F (M),D〉 < 0, then D is
a descent direction.

Proof: Because Ω is a convex set, when 0 < π < 1, M + π(N −M) =
(1− π)M + πN ∈ Ω is also in Ω (1). Moreover, iff M is non-stationary, the
gradient matrix ∇F (M) 6= 0. Since F (.) is convex and differentiable, the
first-order condition for convexity dictates that the following inequality holds:
F (M +πD)−F (M) ≥ π 〈∇F (M),D〉. Obviously, if 〈∇F (M),D〉 ≥ 0, then
F (M + πD) ≥ F (M) and D is not a descent direction. Therefore, it must
be the case that 〈∇F (M),D〉 < 0. �

Lemma 1 is crucial because it creates the opportunity for finding a descent
direction D that also ensures the feasibility of each intermediate solution. As
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such, BILGO does not involve any explicit projection onto Ω (e.g. trimming
of negative eigenvalues). Such a projection-free method is also known as
conditional gradient descent or the Frank Wolfe algorithm in some work [20].
In what follows, we use ~vmax to denote the eigenvector of matrix −∇F (M)
corresponding to its largest eigenvalue. Next, we discuss how to construct a
feasible descent direction D using ~vmax.

Lemma 2. If M is not the global minimum of F (M), there always exists
τ ≥ 0 such that D = τ~vmax~v

T
max −M is a descent direction.

Proof: Let N = τ~vmax~v
T
max. For any τ ≥ 0, N ∈ Ω, implying D satisfies

the first condition of Lemma 1. Let J(τ) = 〈D,∇F (M)〉 = 〈τ~vmax~v
T
max −

M,∇F (M)〉 = 〈τ~vmax~v
T
max,∇F (M)〉 − 〈M,∇F (M)〉. Using the eigenval-

ue decomposition theorem, we have −∇F (M) =
∑

i λi~vi~v
T
i . Notice that

~vTi ~vj = 0 for all i 6= j and ~vTi ~vj = 1 for all i = j. We thus obtain
J(τ) = 〈τ~vmax~v

T
max,

∑
i λi~vi~v

T
i 〉− 〈M,

∑
i λi~vi~v

T
i 〉 = −τλmax−

∑
i λi~v

T
i M~vi.

Since the KKT optimal conditions imply that ∇F (M) � 0 when M is a
stationary point and since M � 0, we conclude that λmax ≥ 0 for any
non-stationary point M. (i) When λmax > 0, we can always choose any
sufficiently large τ so that J(τ) < 0. (ii) When λmax = 0, ∇F (M) � 0,
〈∇F (M),M〉 > 0, since otherwise M satisfies the KKT optimal condi-
tion, implying that M is the global optimal solution. Therefore, we obtain

Figure 1: Feasible direction D at point M

.
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J(τ) < 0 for any τ . Based on the second condition of Lemma 1, we conclude
that there always exists τ ≥ 0 such that D = τ~vmax~v

T
max −M is a descent

direction. �
Combining Lemmas 1 and 2 above, we prove Theorem 1 that ensures

the feasibility of the update rule in each iteration of BILGO M ← αM +
β~vmax~v

T
max, when coefficients α and β are chosen appropriately.

Theorem 1. If M is not the global minimum of F (M), there always exist
0 ≤ α ≤ 1, β ≥ 0 such that:

F (αM + β~vmax~v
T
max) < F (M)

Proof: We update the solution M by M ← M + πD, where 0 ≤ π ≤ 1
and D is a valid descent direction. Since D = τ~vmax~v

T
max −M is a descent

direction (refer to Lemma 2), there always exists τ ≥ 0 and 0 ≤ π ≤ 1 such
that F (M) > F (M + πD) = F (M + π(τ~vmax~v

T
max −M)) = F ((1 − π)M +

πτ~vmax~v
T
max). Since τ is dependent on π, we set α and β as in Eq (2) to

obtain 0 ≤ α ≤ 1 and β ≥ 0.

β = πτ, α = 1− π (2)

�
The overall BILGO method is summarized in Algorithm 1. In each it-

eration, BILGO utilizes Theorem 1 to update the result matrix. Using the
largest vector of the gradient direction as the improvement direction, a bilat-
eral optimization is conducted to construct the final update solution. Specif-
ically, in the kth iteration, BILGO computes the leading eigenvector ~vkmax of
the gradient descent direction −∇F (Mk), and then finds the bilateral com-
bination of the current solution Mk and the rank-1 matrix computed using
the leading eigenvector, i.e. ~vkmax(~vkmax)T . Theorem 1 guarantees that the
objective is decreased in each iteration. To define stopping criteria, we ana-
lyze the relative change in λkmax and γkslack =

∥∥∇F (Mk)Mk
∥∥

fro
, which when

sufficiently small indicate that the KKT conditions for global optimality have
been satisfied.

Convergence of BILGO

In the rest of this section, we analyze the convergence properties of the
BILGO algorithm, when the objective F (·) is continuously differentiable on
the convex set Ω with some Lipschitz constant L ≥ 0. Since Ω is a convex
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Algorithm 1 BILGO Method

1: k = 0,Mk = 0 ∈ Rd×d, ε1, ε2
2: while not converge do
3: Find the largest real eigenvalue λkmax and its corresponding eigenvector

~vkmax of the matrix −∇F (Mk)

4: if λkmax−λ
k−1
max

λkmax
< ε1 and

γkslack−γ
k−1
slack

γkslack
< ε1 then

5: terminate and output Mk

6: end if
7: if F (Mk)−F (Mk−1)

F (Mk−1)
< ε2 then

8: terminate and output Mk

9: end if
10: Solve the bilateral search problem to find the optimal 0 ≤ α ≤ 1 and

β ≥ 0 to minimize F
(
αMk + β~vkmax(~vkmax)T

)
.

11: Mk+1 = αMk + β~vkmax(~vkmax)T

12: Increment k by 1
13: end while

set, F (·) is continuously differentiable (Chapter 2 in [21]) over Ω if for any
R and T in Ω, the following inequality always holds for some L ≥ 0.

0 ≤ F (R)− F (T)− 〈∇F (T),R−T〉 ≤ L

2
‖T−R‖2

fro

Lemma 3. If F is continuously differentiable with some Lipschitz constant
L ≥ 0, for any M,N ∈ Ω and 〈N−M,∇F (M)〉 < 0, there exists a positive
constant C such that F (M+π(N−M)) ≤ F (M)+π 〈∇F (M),N−M〉+π2C.

Proof: By the definition of continuously differentiable function F , we ob-
tain F (M+π(N−M))−F (M)−π 〈∇F (M),N−M〉 ≤ L

2
‖M−(M + π (N−M)) ‖2

fro.
Since 〈N−M,∇F (M)〉 < 0, M and M + π(N−M) belong to the descent
sequence of the convex function F (.), clearly the diameter of such sequence is
bounded. In other words, there exists a constant C such that for M,N ∈ Ω:

max
〈N−M,∇F (M)〉<0

L

2
‖M− (M + π (N−M)) ‖2

fro = π2C

�
Similar to C, a constant Cf in [22] is used to denote the “Nonlinearity

Measure” of a convex function over the simplex set. Inspired by this work,
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we establish the convergence property of BILGO stated in Lemma 4.

Lemma 4. For a continuously differentiable convex function F (·), one iter-
ation of Algorithm 1 satisfies:

h(Mk+1) ≤ h(Mk)− g(Mk)2

where h(Mk) = F (Mk)−F (M∗)
4C

and g(Mk) = 〈τ~vmax~vTmax−Mk,−∇F (Mk)〉
4C

.

Proof: At the kth iteration, the update rule is Mk+1 = αMk+β~vmax~v
T
max.

For simplicity, we use π and τ instead of α and β in this proof. They are
transformable by Eq (2). By Lemma 3, we have: F (Mk+1) ≤ F (Mk) +
π〈τ~vmax~v

T
max−Mk,∇F (Mk)〉+π2C. This leads to the following inequalities.

h(Mk+1) =
F (Mk+1)− F (M∗)

4C

≤ h(Mk) +
π〈τ~vmax~v

T
max −Mk,∇F (Mk)〉

4C
+
π2

4

= h(Mk)− πg(Mk) +
π2

4

= h(Mk) +
(
g(Mk)− π

2

)2
− g(Mk)2

≤ h(Mk)− g(Mk)2

In the last step, we assume 0 ≤ g(Mk) ≤ 1
2
. This assumption always

holds using an appropriate initialization of M0 and setting τ and π to suitable
values. Suppose we choose τ such that g(M0) = 1

2
and π = 1 in the first

iteration, the algorithm is guaranteed to decrease since h(M1) ≤ h(M0)− 1
4
.

Moreover, h(Mk+1) − h(Mk) decreases as k increases, therefore we obtain
−1

4
≤ h(Mk+1) − h(Mk) ≤ h(Mk) − πg(Mk) + 1

4
π2 − h(Mk) for all k ≥ 1.

Therefore, we have g(Mk) ≤ 1
4

(
1
π

+ π
)

for all k ≥ 1. Moreover, we set

π = 2g(Mk) 1 to obtain g(Mk) ≤ 1
4

(
1

2g(Mk)
+ 2g(Mk)

)
. By combining

g(Mk) ≥ 0 and analysing this simple inequality, we observe g(Mk) ≤ 1
2

for
all k ≥ 0. �

1Here the line search parameter π = 2g(Mk) is a conservative estimation. An exact
line search program can be performed to ensure the greatest functional gains.
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Using the previous lemmas, we prove Theorem 2, which guarantees that
BILGO converges at a rate of O(1/k), where k is the iteration counter.

Theorem 2. For a continuously differentiable convex objective F (·), for any
k ≥ 1, any iteration of Algorithm 1 guarantees that: F (Mk)−F (M∗) ≤ 4C

k+3

Proof: Since F (·) is a convex function, F (Mk)−F (M∗) ≤ 〈∇F (Mk),Mk−
M∗〉 = 〈∇F (Mk),Mk〉−〈∇F (Mk),M∗〉 ≤ 〈∇F (Mk),Mk〉−〈∇F (Mk), τ~vmax~v

T
max〉.

The last inequality holds because ~vmax~v
T
max is the maximizer of the lin-

ear function 〈−∇F (Mk), ·〉, thus 〈∇F (Mk), ~vmax~v
T
max〉 ≤ 〈∇F (Mk), M∗

τ
〉.

Therefore, we conclude that g(Mk) ≥ h(Mk) ≥ 0.
Using Lemma 4, we obtain h(Mk+1) ≤ h(Mk)−h(Mk)2 = h(Mk)

(
1− h(Mk)

)
.

Generally, noting that 1 − ν ≤ 1
1+ν

for ν > −1, we obtain h(Mk+1) ≤
h(Mk)

1+h(Mk)
= 1

1+ 1

h(Mk)

. Solving the recursion problem gives: h(Mk+1) ≤ 1
k+3

for

all k ≥ 1. �

3. Computational Enhancements

In this section, we briefly describe some auxiliary enhancements to BIL-
GO that can further improve its computational footprint.

3.1. Efficient Line Search

The BILGO line search step (Step 10 in Algorithm 1) can be solved by
coordinate gradient decent or a bisection search. These traditional methods,
however, are only sub-optimal from a convergence perspective. In order to
accelerate the line search step, we apply the projective Newton method [23],
which is guaranteed to achieve a quadratic convergence rate.

Projective Newton: With respect to α and β, the objective f(α, β) =
F (αMk + β~vkmax(~vkmax)T ) is a smooth convex function, and the variables are
bounded, i.e. 0 ≤ α ≤ 1, β > 0. By defining the variable vector ~s = [α, β]T

and upper bound ~u = [1,∞]T , the line search problem becomes equivalent
to finding the optimal 0 ≤ ~s ≤ ~u that minimizes the objective f(~s). By
employing the Projective Newton method, we update ~s by applying: ~sl+1 =
~sl + γ(~bl − ~sl), where ~bl is the solution to the box-constrained quadratic
program in Eq (3).

min
0≤~b≤~u

1

2
(~b−~sl)T∇2f(~sl)(~b−~sl) +∇f(~sl)

T (~b−~sl) (3)
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Here, ∇f(~sl) and ∇2f(~sl) are the gradient and Hessian of f(·) evaluated at
~sl respectively. γ is a step-size parameter that is often set to 1 in practice. It
can be shown that ~bl has a closed form solution, since Eq (3) only contains
two variables. Additionally, we also observe that when the objective function
F (M) is strictly quadratic (e.g. the KTA Mahalanobis metric learning model
in Eq. 5), the line search can be obtained exactly in one iteration.

Two Variables Box-Constrained Quadratic Programming: In
what follows, we discuss how to solve Eq (3) analytically. We notice that
Eq (3) can be formulated as the following two variables box-constrained
quadratic problem, as shown in Eq (4):

min
~b∈R2×1

1

2
~bTQ~b + ~pT~b, s.t. ~u ≥ ~b ≥ 0 (4)

where Q ∈ R2×2 and ~p ∈ R2×1. Introducing the dual variables ~w ∈ R2×1

and ~z ∈ R2×1 for the up bound and low bound constrains, we obtain the
Karush-Kuhn-Tucker (KKT) condition for Eq (4) as follows.

~z ≥ 0, ~w ≥ 0, ~b ≥ 0

Q~b + ~p− ~z + ~w = 0

zibi = 0, i = 1, 2

wi(ui − bi) = 0, i = 1, 2

When the matrix Q is rank deficient, Eq (4) reduces to a single variable non-
negative quadratic problem which is trivial to compute. When the matrix Q
is full rank, we observe that the optimal solution b∗ must satisfy the following
conditions for i = 1, 2.

zi > 0, wi = 0, bi = 0

zi = 0, wi > 0, bi = ui

zi = 0, wi = 0, 0 < bi < ui

Therefore, the optimal solution b∗ can be obtained by enumerating all the 9
candidate solutions and picking the one that leads to the smallest objective
value in Eq (4).
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3.2. Computing the Leading Eigenvector

BILGO needs to find the leading eigenvector of the negative gradient
direction (Step 3 in Algorithm 1) in each iteration. Instead of using full-rank
decomposition techniques, we develop a novel and efficient Lanczos-based
Hessian-free Newton method to accelerate this procedure. Given a symmetric
matrix A = −∇F (Mk), we let f(~v) = 1

4
‖~v~vT −A‖2

fro. ~vkmax is the leading

eigenvector, if and only if ~vkmax =
~v∗

‖ ~v∗‖ and ~v∗ = arg min~v f(~v). Although the

objective f(·) is non-convex, we use the following proposition to find a local
minimum.

Proposition 1. For any ~v 6= 0, any local minimum of f(~v) is a global
minimum2.

To find a non-zero local minimum, the gradient and Hessian matrix with
respect to ~v can be computed as:

∇f(~v) = ~vT~v~v −A~v

∇2f(~v) = 2~v~vT + ~vT~vId −A

In order to minimize f(~v) efficiently, we use the Hessian-free Newton method,
which builds a quadratic model to find a search direction that provides a rea-
sonable trade-off between accuracy and computational cost. The proposed
method is summarized in Algorithm 2. The fundamental idea here is to com-
pute the approximate Newton direction using the traditional Lanczos [24] or
Conjugate Gradient (CG) method. However, since the Hessian ∇2f(~v) may
not be PSD, the algorithm terminates as soon as negative eigenvalues are
detected in the Hessian, and the most recently available descent direction is
returned. After the Newton direction has been approximated, the algorithm
performs an exact line search (with step size µ) using the first order optimi-

ality condition (Step 4 of Algorithm 2). It can be shown that f(~vt+µ~dt) is a
4th order polynomial in µ. Therefore, the line search step can be obtained by
solving a cubic equation and selecting the solution that leads to the greatest
descent. Although our proposed method for computing the leading eigen-
vector is simple greedy gradient descent, it exhibits excellent convergence

2 This is because the original optimization problem 1
4‖V − A‖2fro is convex and has

a unique minimum. When the matrix rank-1 factorization V = ~v~vT is used, there is a
surjection between solutions using ~v and those using V.
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Algorithm 2 A Lanczos-based Hessian-free Newton method to find
leading eigenvector

1: Initialize ~v0 to a random vector and set t = 0
2: while not converge do
3: Use the iterative Lanczos (or CG) method to approximately solve

∇2f(~vt)~dt = −∇f(~vt)

4: Solve the cubic equation df(~vt+µ~dt)
dµ

= 0 (0 < µ < 1) to get a set of
candidate steps: cstep

5: set µ to the element in cstep that leads to the greatest descent
6: Update ~vt+1 = ~vt + µ~dt

7: Increment t by 1
8: end while

empirically.

3.3. Low-Rank Optimization

As mentioned before, one advantage of BILGO is that it can be easily
extended to handle low-rank matrix constraints, as in [17]. At each BILGO
iteration, the solution is updated by a rank-1 matrix: M← αM+β~vmax~v

T
max.

By using the low rank representation M = LLT , this update rule becomes
equivalent to adding a new column to L, i.e. L ← [

√
αL|
√
β~vmax]. Since L

is generated by a greedy algorithm, it is not necessarily the solution which
leads to the greatest descent on the objective. Therefore, we need to refine
L to improve the baseline BILGO implementation. However, since the low
rank representation M = LLT is used, the objective F (LLT ) is non-convex
in general. This may pose some difficulty in optimization. Fortunately, there
exist efficient methods to find a local minimum of this non-convex problem.
For example, [12] uses a first-order L-bfgs approach that employs a strong
Wolfe-Powell line search. Also, the methods in [8, 15] use a Riemannian
trust region approach that is based on a second-order model of the objective
defined on the manifold. Clearly, these methods can be incorporated into
the BILGO algorithm to improve its baseline implementation. The result is
an algorithm that is numerically robust and fast.

4. Connections to Existing Work

In this section, we illustrate connections between the BILGO algorithm
and prior work.
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1. Connection with Hazan’s update rule: Sparse SDP approximation was
initially proposed in [13], applied to nuclear norm regularized prob-
lems [14], and then applied to boosting metric learning [16]. Methods
of this type mainly use Hazan’s update rule to solve an SDP with a
trace-one constraint: M←M + πD = M + π(~vmax~v

T
max −M). These

methods enforce the constraint implicitly. After initializing M0 with
an arbitrary trace-one matrix, these methods converge to the glob-
al minimum. In fact, when τ = 1, the BILGO update rule reduces
to the aforementioned one. However, Hazan’s rule cannot be direct-
ly used to solve the unconstrained SDP, since it does not guarantee
that D = ~vmax~v

T
max − M is a descent direction for Eq (1) during

every iteration. This will occur at a nonstationary point M where
〈D,∇F (M)〉 = −λmax −

∑
i λi~v

T
i M~vi ≥ 0. In comparison, Theorem 1

guarantees that BILGO always generates a descent direction for Eq(1)
at every iteration.

2. Connection with Journée et al.’s update rule: The update rule below
is used in [15] to solve SDP problems, i.e. M ← M + πD = M +
π(~vmax~v

T
max). This optimization method uses the smallest algebraic

eigenvalue of the gradient direction to monitor the convergence of the
algorithm. Here, we point out that (i) this update rule does not follow
the second condition of Lemma 1, i.e. it may not be able to decrease
the objective when 〈∇F (M), ~vmax~v

T
max〉 = λmax = 0. (ii) Moreover,

such a way of monitoring the convergence of the algorithm may be
problematic, because λmax = 0 does not necessarily indicate that the
algorithm has converged (refer to the experiment in Section 6.1).

3. Connection with Random Conic Pursuit : Random Conic Pursuit was
proposed in [18] for SDP problems with linear constraints. Their bi-
lateral update rule is similar to that of BILGO: M ← αM + βD =
αM + β~x~xT , but where ~x is a random vector sampled from a mul-
tivariate normal distribution and α, β ≥ 0. Moreover, their proof of
convergence rate is based on the assumption that β = 1

k
and α = 1− 1

k
.

It is not necessarily the optimal choice for α, β and ~x, but it turns
out that their stochastic sampling algorithm can also converges with
convergence rate O(1/k). Actually, the main problem with Random
Conic Pursuit is the large hidden constants in the O-notation which
makes it slow in practice (refer to the experiment in Section 6.1).

4. Connection with classical Frank-Wolfe algorithm: The BILGO opti-
mization is built on the classical Frank-Wolfe algorithm [20] (also known
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as conditional gradient descent) framework. Given a non-stationary
solution M, classical Frank-Wolfe algorithm finds a descent direction
D = N −M by solving N = arg minN′∈Ω〈∇F (N′),N′ −M〉. Unlike
the constraint set is closed in [20, 22], the constraint set Ω we consider
is open. So the optimization problem above is unbounded if we sim-
ply consider a full rank matrix N. However, one does not need to use
a full-rank matrix to minimize a linear function but a rank-1 matrix
suffices. To allow a bounded solution, we restrict N within a rank-1
unit conic space and show that it can always decrease the objective
function. In fact, this is the same property that we use in computing
the rank-1 factorization (refer to Footnote 2 in Page 11).

5. Connection with Shalev-Shwartz et al.’s algorithm: Shalev-Shwartz et
al. proposed an efficient forward greedy selection algorithm [17] for
solving large-scale matrix minimization problems with a low-rank con-
straint. Based on the smoothness and strong convexity of the objective
function, they also derived its formal approximation guarantees for the
greedy algorithm. Their algorithm mainly focused on a low rank matrix
completion problem, i.e. minX

∑
(i,j)∈Ψ(Xij −Yij)

2, s.t. rank(X) ≤ k,
where Ψ is the set of all given entries of Y. It can be shown that
this low rank matrix completion can be transformed into the equiva-
lent semidefinite optimization problem below[25]: minX̂

∑
(i,j)∈Ψ(X̂ij−

Ŷij)
2, s.t. rank(X̂) ≤ k, where X̂ = [A|X; XT |B] and Ŷ = [0|Y; YT |0].

Furthermore, ‘|’ and ‘;’ in [·] denote respectively the column-wise and
row-wise partitioning indicator, A and B are the outputs of the op-
timization program. What we need above is to make sure the matrix
solution is symmetric and hence, right and left eigenvectors are the
same. To sum up, the semidefinite optimization problem is more gen-
eral.

6. Connection with non-negatively constrained convex programming : While
the semidefinite program in Eq (1) forces non-negativity constraints on
the eigenvalues of a matrix, non-negatively constrained convex pro-
gramming forces non-negativity constraints on the elements of a vec-
tor, i.e. min f (~w) , s.t. ~w ≥ 0, where f(·) is a convex smooth objective
function. This optimization problem has been extensively studied with
the best-known example of non-negative matrix factorization [26] and
quadratic hinge loss support vector machines[27]. Clearly, the bilateral
line search, local minimization and convergence analysis can be natu-

14



rally also extended to this problem of vector space. In every iteration,
one can pick the coordinate of the largest real value in the descent direc-
tion −∇f(~w) and greedily decrease the objective function. Similar to
the low-rank factorization M = LLT , one can employ the non-negative
representation ~w = ~v � ~v and refine ~v using some efficient non-convex
optimization approaches [2].

7. Connection with Sören Laue’s algorithm: We are also aware of the re-
cent proposed hybrid algorithm for convex semidefinite optimization
[19]. Both approaches suggest using bilateral line search and local
minimization. Both proofs look different, but are actually equivalent.
Firstly, one of the linear search variables α in BILGO is further con-
strained to be α ≤ 1. Although we can still further constraint it, such
constraint may not be needed. This is because with a descent direction
D in Theorem 1, the convex optimization will find a non-negative step
length π(π ≥ 0) which will naturally leads to α = 1 − π ≤ 1 (refer
to the experiment in Section 6.1). Secondly, it appears that their con-
vergence analysis works by constructing a duality gap that is an upper
bound on the primal error, and our analysis is based on the KKT op-
timal condition theory of convex optimization. However, it is known
that the relaxed complementary slackness condition as part of KKT
can be shown to be equivalent to a duality gap. Generally speaking,
both proofs are in fact equivalent to each other. However, our research
on the similar problem is independent with theirs. We think our theo-
retical analysis here is of independent interest.

5. Applications

In this section, we discuss two important applications of the bilateral
greedy optimization: Mahalanobis metric learning and maximum variance
unfolding for manifold learning.

5.1. Mahalanobis Metric Learning

For Mahalanobis metric learning, we mainly focus on two learning models:
the Kernel Target Alignment (KTA) model [28] and the Large Margin Nearest
Neighbor (LMNN) model [29].

KTA model: Let c be the number of classes and let Y = [~yi| . . . |~ym]
denote the class labels assigned to all training data X = {~xT1 , . . . , ~xTm}. Each
yi = (y1

i . . . y
c
i )
T ∈ {0, 1}c is a binary vector of c elements. The model

compares two kernel matrices, one is based on class labels: KD = YYT ,
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the other on the distance metric KX = XMXT . The loss model computes
the dissimilarity between two zero-mean Gaussian distributions with covari-
ance matrices KD and KX respectively. Here we use the Frobenius norm to
measure the distance between KD and KX . By employing the information-
theoretic regularizer [9] ‖M − Id‖2

fro, the objective function of the SDP can
be written as in Eq (5):

FKTA(M) = min
M�0
‖M− Id‖2

fro + λreg‖XTMX−YTY‖2
fro (5)

The gradient of FKTA with respect to M can be computed respectively as in
Eq (6):

∂FKTA
∂M

= 2λregX
TXMXTX + 2M− 2Id − 2λregX

TYYTX (6)

To allow efficient low-rank optimization, we use the change of variable M = LLT

and reformulate the SDP problem FKTA(M) as a non-convex optimization
problem FKTA(LLT). Once the gradient of FKTA with respect to L has been
computed, as in Eq (7), we can utilize a first-order local search strategy (see
section 3.3) to refine the solution L.

∂FKTA
∂L

= 4λregX
TXLLTXTXL + 4LLTL− 4L− 4λregX

TYYTXL (7)

LMNN model: LMNN metric learning has two objectives. The first is
to minimize the average distance between instances and their target neigh-
bors. The second goal is to constrain impostors to be further away from
target neighbors, thus, pushing them out of the local neighborhood. There
exist a distant constraint set R and a neighbor constraint set S, where
∀(i, j, k)(~xi, ~xj, ~xk) ∈ R and ∀(i, j)(~xi, ~xj) ∈ S, yi = yj and yi 6= yk. Af-
ter defining Xij = (~xi − ~xj)(~xi − ~xj)T , we write the distance between ~xi and
~xj as dM(~xi, ~xj) = (~xi−~xj)TM(~xi−~xj) = tr(MXij). Using a quadratic hinge
loss function, the optimization problem and the gradient with respect to M
can be written as shown in Eq (8) and Eq(9), where ST denotes the support
triple set which generates an l2 loss value greater than zero, i.e. (~xi, ~xj, ~xk)
belongs to ST if 1− tr(MXik) + tr(MXjk) > 0.
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FLMNN(M) = min
M�0

∑
(~xi,~xj)∈S

tr(MXij)+

λreg
∑

(~xi,~xj ,~xk)∈R

max(0, 1− tr(MXik) + tr(MXjk))
2 (8)

∂FLMNN

∂M
=

∑
(~xi,~xj)∈S

Xij+

2λreg
∑

(~xi,~xj ,~xk)∈ST

(1− tr(MXik) + tr(MXjk))(Xik −Xij) (9)

Again, when the change of variable M = LLT is used, the gradient of
FLMNN with respect to L can be computed as shown in Eq (10).

∂FLMNN

∂L
=

∑
(~xi,~xj)∈S

2XijL+

4λreg
∑

(~xi,~xj ,~xk)∈ST

(1− tr(LTXikL) + tr(LTXjkL))(XikL−XijL)

(10)

5.2. Maximum Variance Unfolding

Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE)
[3, 4, 5] is among the state of the art manifold learning algorithms and exper-
imentally proven to be the best method to unfold a manifold to its intrinsic
dimension. The main intuition behind MVU is to exploit the local linear-
ity of manifolds and create a mapping that preserves local neighborhoods
at every point of the underlying manifold. It creates a mapping from the
high dimensional input vectors to some low dimensional Euclidean vector
space in the following steps. Firstly, a neighborhood graph is created. Each
input is connected with its k-nearest input vectors (according to Euclidean
distance metric) and all k-nearest neighbors are connected with each other.
The neighborhood graph is ‘unfolded’ with the help of semidefinite program-
ming. The low-dimensional embedding is finally obtained by application of
multidimensional scaling on the learned inner product matrix. Specifically,
given a 0/1 binary indicator matrix U ∈ Rn×n, a Euclidean distance matrix

17



D ∈ Rn×n and W ∈ Rn×n, MUV can be formulated as the optimization
problem3 shown in Eq (11).

FMV U(M) = min
M�0
‖U� (M̂~eT + ~eM̂T − 2M−D)‖2

fro − νtr(WM) (11)

When W = In, it is plain MVU. When W = Y 4, it is the ‘colored’
variant of MVU, which produces low-dimensional representations subject to
class labels or side information [4]. We let M = LLT , ~o = diag(M) and write
the gradient of FMV U(M) with respect to M and L as shown in Eq (12) and
Eq (13). 5

∂FMV U

∂M
=(4̂̂eUo+ 4̂̂oUe)− (4Uô+ 4ôU)− (4

̂̂
UD− 4U�D)−

(8
̂̂
UM− 8U�M)− νW (12)

∂FMV U

∂L
=(8̂̂eUo+ 8̂̂oUe− 8Uô− 8ôU− 8

̂̂
UD + 8U�D− 16

̂̂
ULLT+

16U� LLT )L− 2νWL (13)

This formulation allows us to run the L-bfgs algorithm and iteratively
improve the result. After the algorithm terminates, the final configuration L
is used as the optimal solution to the program.

6. Experimental results

In this section, we demonstrate the effectiveness and efficiency of BIL-
GO algorithm on the two learning tasks: Mahalanobis metric learning and
maximum variance unfolding. All algorithms are implemented in Matlab
on an Intel 2.50 GHz CPU with 4GB RAM. We test on 12 well-known
real-world benchmark datasets6, which contain high dimensional (d ≥ 103)

3Here � denotes the Hadamard product. ~e denotes a column vector having all elements
equal to one. ̂ is the diagonal operator, it is equlevent to the ‘diag’ Matlab function:
when ∆ is a matrix, ∆̂ denotes a column vector formed from the main diagonal of ∆,
when ∆ is a vector, ∆̂ denotes a diagonal matrix with ∆ in the main diagonal entries.

4Y is the label matrix defined earlier in Section 5.1
5Here we use the property of Hadamard product: ~xT (A�B)~y = tr(~̂xA~̂yBT ).
6www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 2: Convergence behavior of BILGO, the Journée et al.’s method and Random Conic
Pursuit method on the ‘w1a’ and ‘a1a’ dataset.

data vectors and are usually large scale (more than 104 elements each).
Some Matlab codes and sample datasets for tests are available at: http:

//yuanganzhao.weebly.com/.

6.1. Global Convergence

In this section, we verify the global convergence property of BILGO. We
demonstrate the asymptotic behavior of BILGO using the Kernel Target
Alignment metric learning model (BILGO-KTA) on ‘w1a’ and ‘a1a’ dataset.
In Figure 2, we compare the Journée et al.’s update rule [15] and Ran-
dom Conic Pursuit [18] against that of BILGO-KTA. We plot the values
{FKTA(Mk), γkslack, λ

k
max, α, β, testing accuracy, training accuracy} at every

iteration k (k = 1,...,300). For Random Conic Pursuit, we use Matlab func-
tion ‘mvnrnd’ to sample a random vector ~x ∈ Rd×1 from the multivariate nor-
mal distribution with mean zero and covariance Σ. Here Σ = (1−χ)Mk+χId,
where χ is set to 0.5 in our experiments. For BILGO, we only constrain α
to be α ≥ 0 instead of 1 ≥ α ≥ 0. The results in Figure 2 lead to several in-
teresting observations. Firstly, we observe that Journée et al.’s method gets
stuck at a critical point where λmax ≈ 0 and γslack � 0, while BILGO-KTA
converges to the global minimum where the KKT conditions are fully sat-
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isfied, i.e. λmax ≈ 0, γslack ≈ 0. Secondly, although Random Conic Pursuit
selects the rank-1 conic randomly, it can still decrease the objective func-
tion iteratively and tends to converge the global minimum with both λmax

and γslack decreasing to 0. This phenomenon is more pronounced on ‘a1a’
dataset. We attribute this phenomenon to the bilateral strategy used in
Random Conic Pursuit. However, Random Conic Pursuit converges much
slower than BILGO-KTA. Thirdly, we observe that as BILGO iterates, α is
approaching to 1 and β is approaching to 0. Moreover, we find that α ≤ 1
always holds. This observation indicates that further constraining α ≤ 1 is
not needed in practice. Finally, as for efficacy of the learning tasks, we find
that BILGO achieves the lowest objective, thus it results in the best train-
ing accuracy. However, BILGO does not necessarily obtain the best testing
accuracy while Journée et al.’s approach does. The regularization function
of the learning task is responsible for these results.

6.2. Accuracy and Efficiency on Metric Learning

In this section, we demonstrate the accuracy and efficiency of BILGO
by applying it to metric learning tasks. We use BILGO-KTA and BILGO-
LMNN to denote the BILGO solver for the two metric learning optimization
problems respectively. Moreover, we use “L-bfgs + exact line search” as it
is suggested in [2] to improve the intermediate result in every 5 iterations of
BILGO-KTA, giving rise to its local search version BILGO-KTA-LS.

After learning the optimal Mahalanobis distance function from the train-
ing set, we use a kNN classifier (k=3) to classify each test sample. The
hyper-parameter λreg is set by a typical two-fold cross-validation procedure
searching over the values λreg = {10−3, 10−2, 10−1, 100, 101, 102, 103}.

We compare BILGO-KTA metric learning method against three full rank
methods: ITML7 [9], Boost-Metric8 [16], LMNN9 [29], and two low rank
methods: SURF 10 [6] and KTA-Lbfgs11. We use the default stopping cri-
terion for each of these methods. BILGO is terminated when the relative
change in {λmax, γslack} or F (·) is small enough. We find ε1 = 10−3 and

7http://www.cs.utexas.edu/~pjain/itml/
8http://code.google.com/p/boosting/
9http://www.cse.wustl.edu/~kilian/

10http://www.montefiore.ulg.ac.be/~meyer/
11 This is a metric learning algorithm that minimizes the objective in Eq (5) using the

local-search L-bfgs method described in [12] with a random initial solution.

20

http://www.cs.utexas.edu/~pjain/itml/
http://code.google.com/p/boosting/
http://www.cse.wustl.edu/~kilian/
http://www.montefiore.ulg.ac.be/~meyer/


Table 1: Comparison of running times (in seconds) with state-of-the-art metric learning
solvers. OOM indicates “out of memory”, and OOT indicates “out of time”.

Data Set SURF ITML Boost-
Metric

LMNN BILGO-
LMNN

KTA-
Lbfgs

BILGO-
KTA

BILGO-
KTA-
LS

splice 8±3 2.8±1 8±4 18±10 15±6 0.8±0.5 0.2±0.1 0.2±0.1
isolet 10±2 230±112 302±140 510±121 107±16 157±20 56±10 107±12
optdigits 1±0.5 0.5±0.1 17±3 17±5 33±9 1±0.3 0.8±0.2 0.3±0.1
dna 23±4 10±4 83±30 232±50 202±32 3±1 2±2 2±1
a1a 15±3 15±6 450±213 138±36 310±23 10±4 8±2 6±2
protein 35±11 100±11 1749±351 2310±412 76±23 51±16 50±14 31±4
mushrooms 7±3 6±3 79±22 14±4 50±14 5±2 3±1 2±1
w1a 26±6 20±6 2588±153 830±112 213±35 18±1 15±3 8±2
usps 35±5 450±87 578±121 120±21 53±11 39±9 25±4 28±5
mnist 612±87 740±81 OOT 1286±174 612±77 601±121 361±31 301±31
gisette 411±58 OOT OOT OOT 489±64 138±35 89±13 58±9
realsim 992±243 OOM OOM OOM 2545±312 108±31 220±56 68±14

ε2 = 10−5 to be a good trade-off between accuracy and runtime. Since SURF
uses a low rank representation, we have M = LLT ,L ∈ Rd×r. To make a
fair comparison, we set r = max(15, k), where k is the number of iterations
required by BILGO-KTA-LS to converge. k takes on values between 8 and
30 in our experiments 12. We select 2000 pairs/triplets of constraints for
training for all algorithms except the KTA-based algorithms. The experi-
mental results are reported in Table 1 and Table 2. Several conclusions can
be drawn here.

1. As for efficiency, it is demonstrated in Table 1 that BILGO significantly
outperforms the full rank methods. While ITML remains competitive
in efficiency on low dimensional datasets, it cannot utilize the low rank
property of the solution and thus rapidly becomes intractable as the
dimensionality d grows (e.g. in the realsim dataset). Moreover, the
greedy BILGO-LMNN method gives comparable results to the low rank
method SURF, which suffers from slow convergence, if the randomized
initial solution is far from the global solution. Since BILGO implicitly
stores M using the low rank representation L and uses a sparse eigen-
value solver, it usually obtains a good solution in a few iterations (also
see Figure 2).

12Since the required rank of BILGO-KTA-LS is often small, which may not be suitable
for SURF, we assume r is lower-bounded by 15.
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Table 2: Comparison of error rates with state-of-the-art metric learning solvers. OOM
indicates “out of memory”, and OOT indicates “out of time”.

Data Set SURF ITML Boost-
Metric

LMNN BILGO-
LMNN

KTA-
Lbfgs

BILGO-
KTA

BILGO-
KTA-
LS

splice 21.5±1.1 32.3±1.8 16.8±1.0 19.6±1.2 18.1±1.9 19.4±1.4 18.9±1.0 20.4±1.6
isolet 5.5±1.3 7.8±03.2 9.4±0.7 8.5±1.1 7.8±2.1 5.4±1.2 5.9±1.5 5.4±1.2
optdigits 2.4±0.3 1.9±0.1 1.8±0.1 1.4±0.0 2.4±0.2 2.3±0.5 2.4±0.1 2.5±0.5
dna 8.2±1.0 9.8±0.9 6.2±1.1 4.8±1.0 5.2±0.5 4.8±0.4 5.9±0.5 4.8±0.2
a1a 18.3±1.9 18.3±0.3 18.1±1.2 20.3±2.1 18.3±1.2 19.0±1.0 17.9±0.1 18.2±1.0
protein 38.2±3.3 41.3±2.8 36.1±2.4 39.1±3.2 40.1±2.3 37.9±2.3 36.3±3.3 36.9±2.3
mushrooms 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.1 0.0±0.0 0.0±0.0
w1a 2.1±0.1 1.5±0.0 1.8±0.0 2.4±0.1 1.2±0.1 2.1±0.0 1.5±0.1 2.1±0.0
usps 4.6±1.0 5.0±1.5 5.0±0.0 4.3±0.1 5.2±1.0 5.0±0.9 4.9±1.1 5.1±0.9
mnist 6.3±0.4 3.5±0.4 OOT 7.3±2.3 6.1±0.8 5.1±1.2 5.1±0.1 5.3±1.2
gisette 5.0±1.0 OOT OOT OOT 4.5±1.0 4.0±1.1 4.3±1.2 4.0±1.1
realsim 4.0±1.5 OOM OOM OOM 4.2±0.5 3.8±1.0 3.0±1.5 3.7±1.1

2. In terms of accuracy, we observe in Table 2 that LMNN is still one of
the most accurate metric learning solvers. However, it lacks stability,
especially for large scale datasets, mainly due to the large number of
constraints. As opposed to LMNN that picks and cycles through a sub-
set of metric constraints, the KTA model can handle all the constraints
implicitly. That explains why KTA implementations (BILGO-KTA and
BILGO-KTA-LS) are faster and more stable. We observe that BILGO-
KTA-LS and BILGO-KTA perform with consistently high stability in
both problem domains.

3. We study the impact of the local search on a metric learning classi-
fier. Although BILGO-KTA-LS iteratively reduces the objective, it
does not necessarily achieve better accuracy than BILGO-KTA. Thus,
an approximate solution is often good enough for a metric learning
task. Moreover, BILGO-KTA-LS often takes less time to converge than
BILGO-KTA, because the use of L-bfgs enables its convergence rate to
be super-linear.

4. Finally, we study the impact of the greedy strategy on a metric learning
classifier. Note that BILGO-KTA-LS and KTA-Lbfgs use the same
objective function and stopping criterion. We observe that BILGO-
KTA-LS is about 2 times faster than KTA-Lbfgs. This is the case
because KTA-Lbfgs is initialized randomly leading to slow convergence,
while BILGO-KTA-LS benefits greatly from the efficient matrix-free
sparse eigenvalue solver and quickly obtains a good solution.
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Figure 3: Convergence behavior of BILGO (red) and Nesterov’s projective gradient (blue)
on the ‘w1a’ dataset.

6.3. Efficiency on Maximum Variance Unfolding

In this section, we demonstrate the efficiency of BILGO by applying it
to maximum variance unfolding (MVU) for manifold learning. The MVU
problem, as we have mentioned in the introduction section, can be solved
by interior point method or projected gradient descent [1, 10]. However, the
interior point method will become rapidly intractable as the number of train-
ing instances become large due to its time complexity of O(n6.5). Therefore,
we drop the comparisons with the interior point method and only compare
against Nesterov’s first order optimal method [30, 10], which is known to
achieve a much faster convergence rate than the traditional methods such
as subgradient or näıve projected gradient descent methods. So, comparison
with the BILGO algorithms is meaningful.

We verify the efficiency of BILGO-LS by demonstrating the asymptotic
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Figure 4: Convergence behavior of BILGO (red) and Nesterov’s projective gradient (blue)
on the ‘mnist’ dataset.

behavior of both BILGO-LS (BILGO with local search) and Nesterov-PG
(Nesterov’s projective gradient method) on two datasets: ‘w1a’ and ‘mnist’.
To generate data, we randomly sample n points from the datasets. To gen-
erate the indicator matrix U, we use the 3-NN graph. We have verified that
the 3-NN graph derived from our data is connected. We solve the plain
MVU optimization problem using both methods. For BILGO-LS, we use
low-rank optimization to accelerate the algorithm. In every 5 iterations, a
local-search L-bfgs is performed to refine the solution L. The computational
results of both methods are shown in Figure 3 and Figure 4. We observe
that the objective values of BILGO-LS converge more quickly than those of
Nesterov-PG. For a small-scale MVU problem, Nesterov-PG is comparable
to BILGO-LS. However, since full eigenvalue decomposition is an expensive
operator especially for high dimensional matrix spaces, Nesterov-PG shows
poor performance for large scale problems. We also report the objectives and
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Table 3: Comparisons with Nesterov’s projective gradient method. The results separated
by ‘/’ are objective and time (in seconds), respectively.

w1a mnist
n BILGO-LS Nesterov-PG BILGO-LS Nesterov-PG

500 4.95/23.67 9.23/28.07 0.35/20.57 0.11/22.96
1000 0.48/124.81 4.01/207.01 0.29/123.28 0.48/203.57
1500 6.04/252.35 22.24/680.23 0.25/251.10 0.64/693.59
2000 1.56/398.39 2.45/1488.12 1.16/437.90 1.16/1527.46
2500 10.05/1133.15 11.33/2936.65 0.44/619.67 1.29/2882.82
3000 6.60/1290.15 8.00/4150.07 0.29/795.64 0.65/4880.54

run-times for both BILGO-LS and Nesterov-PG, as n is increased in Table
3. Here, the improvement of BILGO algorithm over that of Nesterov-PG, in
terms of efficiency, is more obvious. For example, for an MVU problem of size
3000 (on ‘mnist’ dataset), BILGO-LS is six times faster than Nesterov-PG
while also achieving a lower objective value.

6.4. Hessian-Free Newton for computing the leading eigenvector

Finally, we evaluate the efficiency of our Hessian-free Newton method in
computing the leading eigenvector of a large-scale matrix. Two versions of
this method (denoted ‘Newton-Lanczos’ and ‘Newton-CG’ respectively) are
tested in this experiment. For comparison, we include the popular Matlab
function ‘eigs’ [31]. We simply initialize v0 =rand(d, 1) in MATLAB and stop
the algorithm when the relative change in f is less than 10−12. We use the
default stopping criterion for ‘eigs’. The matrix A is generated randomly
and the three algorithms {‘eigs’, ‘Newton-CG’, ‘Newton-Lanczos’} are used
to estimate the leading eigenvector of A. Given the true eigenvector ṽmax and

the output ṽ from the algorithms, the accuracy is defined as 1 − ṽT
maxAṽmax

ṽT Aṽ
.

The results in Table 4 show that the Newton-Lanczos is consistently more
than two times faster than Newton-CG. Newton-Lanczos is also reasonably
faster than the Matlab solver for large dimensional matrices.

7. Conclusions and Future Work

In this paper, we theoretically analyse a new bilateral greedy optimiza-
tion(denoted BILGO) strategy in solving general semidefinite programs on
large-scale datasets. Utilizing a new bilateral greedy optimization strate-
gy, BILGO is capable of efficiently finding the global minimum of the SDP
problem. When the objective is continuously differentiable, BILGO enjoys a
sublinear convergence rate. However, exploiting a well designed local-search
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Table 4: Comparisons with ‘eigs’. The results separated by ‘/’ are accuracy and time (in
seconds), respectively.

d eigs Newton-CG Newton-Lanczos
1000 0.00e-00/00.23 2.17e-16/00.72 2.77e-16/00.41
2000 0.00e-00/01.35 1.11e-15/02.80 1.55e-15/01.30
3000 1.58e-16/03.91 6.61e-15/06.19 0.00e-00/03.51
4000 3.57e-15/16.01 0.00e-00/14.62 3.16e-15/11.00
5000 1.71e-15/09.82 2.08e-14/19.38 0.00e-00/09.44
6000 0.00e-00/17.35 1.24e-14/41.65 1.67e-15/12.72
7000 4.13e-16/37.31 7.22e-15/49.76 0.00e-00/26.66
8000 0.00e-00/39.42 2.07e-14/75.19 8.87e-15/27.03
9000 3.82e-15/65.56 5.10e-15/120.1 0.00e-00/46.17

low-rank optimization strategy, BILGO can provide huge savings in compu-
tational cost and achieve a superlinear convergence rate. We apply BILGO
to two important machine learning tasks: Mahalanobis metric learning and
maximum variance unfolding. Extensive experiments show that BILGO is
effective in efficiently solving large-scale machine learning tasks (e.g. metric
and manifold learning) that can be formulated as SDP problems.

Our future work is most likely to proceed along three directions. First-
ly, past study [32, 33] has shown that many non-smooth and linear con-
strained optimization problems with an appropriate simple primal-dual min-
imax structure can be solved by Nesterov’s smoothing technique. We plan
to apply the bilateral and low-rank optimization to solve non-smooth and
linear constrained semidefinite programming problems [18]. Secondly, BIL-
GO is a greedy monotone algorithm with sublinear convergence rate, it is
equally interesting to study the theoretical behavior of the additional ‘away’
step [34, 22] in BILGO and consider boosting BILGO to achieve linear con-
vergence rate. Finally, we are also interested in extending the rank-1 matrix
update scheme to linear support vector machines [27] and tensor subspace
analysis [35].
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