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Abstract

Total Variation (TV) is an effective and popular
prior model in the field of reqularization-based im-
age processing. This paper focuses on TV for image
restoration in the presence of impulse noise. This
type of noise frequently arises in data acquisition and
transmission due to many reasons, e.qg. a faulty sen-
sor or analog-to-digital converter errors. Removing
this noise is an important task in image restora-
tion. State-of-the-art methods such as Adaptive Out-
lier Pursuit(AOP) [{2], which is based on TV with
Loo-norm data fidelity, only give sub-optimal perfor-
mance. In this paper, we propose a new method,
called oTV -PADMM, which solves the TV-based
restoration problem with fo-norm data fidelity. To
effectively deal with the resulting non-convex non-
smooth optimization problem, we first reformulate it
as an equivalent MPEC' (Mathematical Program with
Equilibrium Constraints), and then solve it using a
proximal Alternating Direction Method of Multipli-
ers (PADMM). Our £yTV -PADMM method finds a
desirable solution to the original {y-norm optimiza-
tion problem and is proven to be convergent under
mild conditions. We apply LTV -PADMM to the
problems of image denoising and deblurring in the
presence of impulse noise. QOur extensive erperi-
ments demonstrate that £oTV -PADMM outperforms
state-of-the-art image restoration methods.

1. Introduction

Image restoration is an inverse problem, which
aims at estimating the original clean image u from a
blurry and/or noisy observation b. Mathematically,
this problem is formulated as:

b= (Ku®e,)+e,, (1)

where K is a linear operator, &,, and €, are the noise
vectors, and ® denotes an elementwise product. Let
1 and 0 be column vectors of all entries equal to one
and zero, respectively. When g,, = 1 and g, # 0 (or
€m # 0and g, = 0), Eq corresponds to the addi-
tive (or multiplicative) noise model. For convenience,
we adopt the vector representation for images, where
a 2D M x N image is column-wise stacked into a
vector u € RM*N _ So, for completeness, we have
1,0,b,u,&,4,, € R*, and K € R**",

In general image restoration problems, K rep-
resents a certain linear operator, e.g. convolution,
wavelet transform, etc., and recovering u from b is
known as image deconvolution or image deblurring.
When K is the identity operator, estimating u from
b is referred to as image denoising [35]. The prob-
lem of estimating u from b is called a linear inverse
problem which, for most scenarios of practical in-
terest, is ill-posed due to the singularity and/or the
ill-conditioning of K. Therefore, in order to stabilize
the recovery of u, it is necessary to incorporate prior-
enforcing regularization on the solution. Therefore,
image restoration can be modelled globally as the
following optimization problem:

min {(Ku,b) + X Q(V,u, Vyu) (2)

where ¢(Ku, b) measures the data fidelity between
Ku and the observation b and V, € R"*" and
V, € R™™ are two suitable linear transformation
matrices such that V,u € R® and V,u € R" com-
pute the discrete gradients of the image u along
the z-axis and y-axis, respectivelyﬂ Q(Vzu,Vyu)
is the regularizer on V u and V,u, and X is a

1In practice, one does not need to compute and store
the matrices V; and V, explicitly. Since the adjoint of the
gradient operator V is the negative divergence operator —div,
ie., (r,Vzu) = (—diver,u), (s, Vyu) = (—divys, u) for any



positive parameter used to balance the two terms
for minimization. Apart from regularization, other
prior information such as bound constraints [4], [46]
or hard constraints can be incorporated into the
general optimization framework in Eq .

1.1. Related Work

This subsection presents a brief review of existing
TV methods, from the viewpoint of regularization,
data fidelity, and optimization algorithms. For more
discussions on the connection with existing work,
please refer to the supplementary material.

Regularization: Several regularization models
have been studied in the literature (see Table .
The Tikhonov-like regularization [I] function ¢y
is quadratic and smooth, therefore it is relatively
inexpensive to minimize with first-order smooth opti-
mization methods. However, since this method tends
to overly smooth images, it often erodes strong edges
and texture details. To address this issue, the total
variation (TV) regularizer was proposed by Rudin,
Osher and Fatemi in [33] for image denoising. Several
other variants of TV have been extensively studied.
The original TV norm 4y, in [33] is isotropic, while
an anisotropic variation (,, is also used. From a
numerical point of view, 4, and 4, cannot be
directly minimized since they are not differentiable.
A popular method is to use their smooth approx-
imation Qg and Qunup, (see [32] for details). Very
recently, the Potts model [19} 28] Qpo¢, which is
based on the fp-norm, has received much attention.
It has been shown to be particularly effective for
image smoothing [40] and motion deblurring [41].
For more applications of the Potts model, we refer
the reader to [5l [9].

Data Fidelity Models: The fidelity function £(-, -)
in Eq usually penalizes the difference between
Ku and b by using different norms/divergences. Its
form depends on the assumed distribution of the
noise model. Some typical noise models and their
corresponding fidelity terms are listed in Table [2]
The classical TV model [33] only considers TV min-
imization involving the squared /s fidelity term for
recovering images corrupted by additive Gaussian
noise. However, this model is far from optimal when
the noise is not Gaussian. Other works [43, [16] ex-
tend classical TV to use the ¢;-norm in the fidelity
term. This norm is suitable for image restoration in

r,s € R”, the inner product between vectors can be evaluated
efficiently. Fore more details on the computation of V and
div operators, please refer to [8] [36] [3].

Table 1: Regularization Models

Regularization Function Desc. and Ref.

Qui(g,h) = )" &l +h} Tikhonov-like, []

1
Qivy (g, h) = ijl (g2 +hn?)2 isotropic, [33} 39]

Quv, (g, h) =Y " | gl + |hl anisotropic, [35, 3]

Quev(gh) = 3" (&2 +h? + )2 | smooth TV, [121[36]

Qpub (g, h) = 27:1 w(giihy)
ey — {gng,;h,ug: llg: by, < 1 Huber-like, [32]

ligiih;llz — 55 otherwise

Potts model, [40]

Qpot (g, h) = Z::1 lg;lo + hilo
A7)

Table 2: Data Fidelity Models

Data Fidelity Function Noise and Ref.

£3(Ku, b) = [|[Ku — b||3 add. Gaussian [33] 8]

£1(Ku, b) = |[Ku — bl|; add. Laplace [43] [16]

loo (Ku,b) = ||[Ku — b||eo add. uniform [15], [36]

£p(Ku,b) = (Ku—b®log(Ku),1) | mult. Poisson [26], [34]

£y(Ku,b) = (log(Ku)+bOg=,1) | mult. Gamma [2] [39]

Lo2(Ku,b) = ||[Ku—b + zHg
st Jlzllo < k

mixed Gaussian impulse
42l [45]

add./mult. impulse

£o(Ku,b) = [|[Ku—b
o(Ku, b) = |[Ku — bllo [13],[this paper]

the presence of Laplace noise. Moreover, additive
uniform noise [I5} [36], multiplicative Poisson noise
[26], and multiplicative Gamma noise [39] have been
considered in the literature. Recently, a sparse noise
model using an fpo-norm for data fidelity has been
investigated in [42] to remove impulse and mixed
Gaussian impulse noise. In this paper, we consider
fo-norm data fidelity and show that it is particularly
suitable for reconstructing images corrupted with
impulse noise.

Optimization Algorithms: The optimization
problems involved in TV-based image restoration
are usually difficult due to the non-differentiability
of the TV norm and the high dimensionality of the
image data. In the past several decades, a plethora
of approaches have been proposed, which include
time-marching PDE methods based on the Euler-
Lagrange equation [33], the interior-point method
[12], the semi-smooth Newton method [31], the
second-order cone optimization method [2I], the
splitting Bregman method [22] [44], the fixed-point
iterative method [I4], Nesterov’s first-order optimal
method [30, 4, [37], and alternating direction meth-
ods [35], 23, [39]. Among these methods, some solve
the TV problem in its primal form [35], while oth-
ers consider its dual or primal-dual forms [12], [16].



In this paper, we handle the TV problem with £g-
norm data fidelity using a primal-dual formulation,
where the resulting equality constrained optimiza-
tion is solved using proximal Alternating Direction
Methods of Multipliers (PADMM). It is worthwhile
to note that the Penalty Decomposition Algorithm
(PDA) in [27] can also solve our problem, however,
it lacks numerical stability. The penalty function
can be very large (> 108), and the solution can be
degenerate when the minimization subproblem is
not solved exactly. This motivates us to design a
new fp-norm optimization algorithm in this paper.

1.2. Contributions and Organization

The main contributions of this paper are two-fold.
(1) £p-norm data fidelity is proposed to address the
TV-based image restoration problem. Compared
with existing models, our model is particularly suit-
able for image restoration in the presence of impulse
noise. (2) To deal with the resulting NP—har(ﬂ 4o
norm optimization, we propose a proximal ADMM
to solve an equivalent MPEC form of the problem.

The rest of the paper is organized as follows. Sec-
tion [2] presents the motivation and formulation of
the problem for impulse noise removal. Section [3]
presents the equivalent MPEC problem and our prox-
imal ADMM solution. Section [4] provides extensive
and comparative results in favor of our £, TV method.
Finally, Section [5] concludes the paper.

2. Motivation and Formulations
2.1. Motivation

This work focuses on image restoration in the pres-
ence of impulse noise, which is very common in data
acquisition and transmission due to faulty sensors
or analog-to-digital converter errors, etc. Moreover,
scratches in photos and video sequences can be also
viewed as a special type of impulse noise. However,
removing this kind of noise is not easy, since cor-
rupted pixels are randomly distributed in the image
and the intensities at corrupted pixels are usually in-
distinguishable from those of their neighbors. There
are two main types of impulse noise in the literature
[16, 25]: random-valued and salt-and-pepper impulse
noise. Let [Umin, Umax| be the dynamic range of an
image, where un,in = 0 and umax = 1 in this paper.
We also denote the original and corrupted intensity
values at position 7 as u; and T (u;), respectively.

2The £p norm problem is known to be NP-hard [29], since
it is equivalent to NP-complete subset selection problems.

Random-valued impulse noise: A certain per-
centage of pixels are altered to take on a uniform
random number d; € [Umin, Umax]-

dia
T(ui) = {(Ku)i,

with probability ., 3)
with probability 1 — 7.,

Salt-and-pepper impulse noise: A certain per-
centage of pixels are altered to be either uy;, or

umax-
Umin,  With probability r,/2
T(u;) =  Umax,  Wwith probability ry,/2 (4)
(Ku);, with probability 1 — g,

The above definition means that impulse noise cor-
rupts a portion of pixels in the image while keep-
ing other pixels unaffected. Expectation maximiza-
tion could be used to find the MAP estimate of u
by maximizing the conditional posterior probability
p(u|T (u)), the probability that u occurs when 7 (u)
is observed. The MAP estimate of u can be obtained
by solving the following optimization problem.

max log p(7 (u)[u) + log p(u). (5)

We now focus on the two terms in Eq (5). (i) The
expression p(7 (u)|u) can be viewed as a fidelity term
measuring the discrepancy between the estimate
u and the noisy image 7 (u). The choice of the
likelihood p(7 (u)|u) depends upon the property of
noise. From the definition of impulse noise given
above, we have that

n —[|7(a) —blo

n

p(T()w) = 1-r=

where 7 is the noise density level as defined in Eq
and Eq () and || - || counts the number of non-
zero elements in a vector. (ii) The term p(u) in
Eq is used to regularize a solution that has a
low probability. We use a TV prior of the form:
p(u) = 4 exp(—0 - Qy(Vou, Vyu)), where 9 is a
normalization factor, ¢ Q¢ (Vgzu, Vyu) is the TV
prior. Replacing p(7 (u)|u) and p(u) into Eq (5]) and
ignoring a constant, we obtain the following ¢,V
model:

" 1/p
min [ Ku = bllo + A3 [[(Vaw)l? + [(Vyuyl?]
=1

where A is a positive number related to ¢, o, and
r. The parameter p can be 1 (isotropic TV) or 2



(anisotropic TV), and (V,u); and (Vyu); denote
the ith component of the vectors V,u and V,u,
respectively. For convenience, we define ¥x € R?":
n
1 \Y%
Ielha & 305l + o) ¥ & | 7

In order to make use of more prior information, we
consider the following box-constrained model:
i Ku-b AV 6
Jmin o® (Ku—b) o+ A[Vul,a  (6)
where o € {0, 1} is specified by the user. For exam-
ple, in our experiments, we set o = 1 for the random-

. . 0, b; = Umin O Umax
valued impulse noise and o; = L otherwine

for the salt-and-pepper impulse noise.

In what follows, we focus on optimizing the gen-
eral formulation in Eq @ But first, we present
an image restoration example on the well-known
‘barbara’ image using our proposed ¢oTV-PADMM
method for solving Eq @ in Figure

2.2. Equivalent MPEC Reformulations

In this section, we reformulate the problem in
Eq @ as an equivalent MPEC from a primal-dual
viewpoint. First, we provide the variational charac-
terization of the fp-norm using the following lemma.

Lemma 1. For any given w € R™, it holds that

lwllo = Olgn‘j ) 1,1—-v), st.vo|w| =0, (7)

<

and v* = 1—sign(|w|) is the unique optimal solution
of the minimization problem in Eq@.

Proof. Refer to the supplementary material. [J

The result of Lemma [1| implies that the £yp-norm
minimization problem in Eq@ is equivalent to

i 1,1-—
Jmin | (11— v) AVl

st. vOlo® (Ku—-b)|=0 (8)

If u* is a global optimal solution of Eq @, then
(u*, 1—sign(|Ku* —b))) is globally optimal to Eq (8).
Conversely, if (u*,v*) is a global optimal solution
of Eq , then u* is globally optimal to Eq @
Although the MPEC problem in Eq is ob-
tained by increasing the dimension of the original
fo-norm problem in Eq @, this does not lead to
additional local optimal solutions. Moreover, com-
pared with Eq @, Eq is a non-smooth non-
convex minimization problem and its non-convexity

:| c R2n><n.

Figure 1: An example of an image recovery result using
our proposed £oTV-PADMM method. Left column: cor-
rupted image. Middle column: recovered image. Right
column: absolute residual between these two images.

is only caused by the complementarity constraint
v©olo® (Ku-b)|=0.

Such a variational characterization of the £y-norm
is proposed in [I7, 24, 18], but it is not used to
develop any optimization algorithms for £y-norm
problems. We argue that, from a practical perspec-
tive, improved solutions to Eq @ can be obtained
by reformulating the fp-norm in terms of comple-
mentarity constraints. In the following section, we
will develop an algorithm to solve Eq (8)) based on
proximal ADMM and show that such a “lifting” tech-
nique can achieve a desirable solution of the original
fo-norm optimization problem.

3. Proposed Optimization Algorithm

This section is devoted to the solution of Eq .
This problem is rather difficult to solve, because it is
neither convex nor smooth. Our solution is based on
the proximal ADMM method, which iteratively up-
dates the primal and dual variables of the augmented
Lagrangian function of Eq .

First, we introduce two auxiliary vectors x € R?"
and y € R™ to reformulate Eq as:

minp<uv<i (1,1 = v) + Allx|lp1 (9)
st. Vu=x, Ku—b=y, vooOo|y|=0
Let £5: R" xR® x R x R" x R*" x R* x R" - R
be the augmented Lagrangian function of Eq (ED
Eﬂ(ll,V, XaY7£7C7ﬂ-) = <17 1- V> + )\HX'

p1t
(V%8 + 2 Vu—x|” + (Ku—b—y,¢)+

8 8
CIKu—b-y|*+ (vooolyl.m + 5 veonlyl?



where &, ¢ and 7 are the Lagrange multipliers as-
sociated with the constraints Vua=x, Ku—b =y
and v ® 0 @ |y| = 0, respectively, and S > 0 is the
penalty parameter. The detailed iteration steps of
the proximal ADMM for Eq @D are described in
Algorithm [I] In simple terms, ADMM updates are
performed by optimizing for a set of primal variables
at a time, while keeping all other primal and dual
variables fixed. The dual variables are updated by
gradient ascent on the resulting dual problem. In
Algorithm [I}, for convenience, we denote the aug-
mented Lagrange function at the k*" iteration as
£§(~), where all the primal and dual variables except
the indicated function argument(s) are fixed to their
current estimates.

Algorithm 1 Proximal ADMM (PADMM)
for the Non-Convex MPEC in Eq @

(S.0) Choose a starting point (u’, v%,x° y°, £° ¢°).
Set kK = 0. Select the parameters f = 1 and s €

(0, sreTaTRT)-
BIVIP+BIK]
(S.1) Solve the following minimization problems

with D := 11— (VT V + SK"K):
1
T e arg min L’E(u) + §||U- - ukHIQD (10)
0<u<1
vF*! = argmin Eg(v) (11)
0<v<1
(x"+1, y**1) = arg min ﬁg(XJ)- (12)

Xy
(S.2) Update the Lagrange multipliers:

€ =€+ p(vut - xh), (13)

=P BKu" —b -yt (19)

= ah L ploovialy®). (1)
(S.3) if (k is a multiple of 30), then 3 = 3 x /10
(S.4) Set k:=k+ 1 and then go to Step (S.1).

Next, we focus our attention on the solutions of
subproblems arising in Algorithm
(i) u-subproblem. Proximal ADMM introduces a
convex proximal term 1|u — u*|| to the objective,
which leads to a strong convex minimization

u" ! = argmin §||Vu —xF 4 £7/8)% +
0<u<1i 2

B : 1
CIKu—b - y* + ¢H/) + S — . (16)

After an elementary calculation, subproblem
can be simplified as

k+1

1
u :argmiHQ—Hufng

o<u<1 <R
with gF = u* — k(VTeF + KT¢F) + k[BVT (xF —

Vu*) 4+ SK” (b + y* — Ku*)]. Then, the solution
u® of has the following closed form expression:

k+1

u" ! = min(1, max(0, g")).

(ii) v-subproblem. Subproblem reduces to the
following minimization problem:

vl = argmin é||v® s||12 = (v, cb),

0<v<1

where c* = 1—o00 " ©y*|, s* = 0©y*. Therefore,

the solution v* can be computed as:
k+1 c”
A% = min(1, max(0, .
(L max(0. 55))

(iii) (x,y)-subproblem. Variable x in Eq is
updated by solving the following problem:

k+1

x"*1 = arg min gnx — b2 + Alxlp1,

x€ER2"

where h* := —VuFt! — ¢¥/3. Tt is not difficult to
check that for p =1,

xkH = sign(hk) © max (|hk| - )‘/ﬂ7())7

and when p = 2,

xhHl ] A B [ h" }
¢ = | max(0,1 - —————) v
[ Xiin [(hi; 0y, | b,

Variable y in Eq is updated by solving the
following problem:

B g
y* =argmin Sy —a'[* + SIw" o y| +7*/8]7,
where q* = Ku*"!' —b 4 ¢*/8 and wk = 0 © vF 1,
A simple computation yields that the solution y*

can be computed in closed form as:

y" 1 = sign(q¥) © max (0,

|qk| — " ®Wk//8)
1+vkowk 77
The exposition above shows that the computa-

tion required in each iteration of Algorithm [I] is
insignificant.



Proximal ADMM has excellent convergence in
practice, but the optimization problem in Eq is
non-convex, so additional conditions are needed to
guarantee convergence to a KKT point. Inspired
by [38], we prove that under mild assumptions, our
proximal ADMM algorithm always converges to a
KKT point. Specifically, we have the following con-
vergence result.

Theorem 1. Convergence of Algorithm[1]. Let
X £ (u,v,x,y) and Y £ (& ¢ m). {ka Yk}icﬂ
be the intermediate results of Algorithm[1] after the k-
th iteration. Assume that limy_,o (Y*+!1 —Y*) = 0.
Then there exists a subsequence of {X* Y*} whose
accumulation point satisfies the KKT conditions.

Proof. Refer to the supplementary material. [

4. Experimental Validation

In this section, we provide empirical validation
for our proposed ¢yTV-PADMM method by con-
ducting extensive image denoising experiments and
performing a thorough comparative analysis with
the state-of-the-art. For more experimental results
on image denoising and deblurring, please refer to
the supplementary material.

In our experiments, we use 9 well-known test im-
ages of size 512 x 512. All code is implemented
in MATLAB using a 3.20GHz CPU and 8GB
RAM. Since past studies [7, [14] have shown that
the isotropic TV model performs better than the
anisotropic one, we choose p = 2 as the order of the
TV norm here. In our experiments, we apply the
following algorithms:

(i) ¢,TV-SBM, the Split Bregman Method (SBM)
of [22], which has been implemented in [20]. We
use this convex optimization method as our baseline
implementation.

(ii) MFM, Median Filter Methods. We utilize adap-
tive median filtering to remove salt-and-pepper im-
pulse noise and adaptive center-weighted median
filtering to remove random-valued impulse noise.

(iii) TSM, the Two Stage Method[10, 111 [6]. The
method first detects the damaged pixels by MFM
and then solves the TV image inpainting problem.

(iv) £o2TV-AOP, the Adaptive Outlier Pursuit
(AOP) method described in [42]. We use the im-
plementation provided by the author. Here, we note
that AOP iteratively calls the ¢;TV-SBM proce-
dure, mentioned above.

(v) £oTV-PDA, the Penalty Decomposition Algo-
rithm (PDA) [27] for solving the oT'V optimization
problem in Eq @

(vi) 6TV-PADMM, the proximal ADMM de-
scribed in Algorithm|[T]for solving the £oT'V optimiza-
tion problem in Eq @ Our MATLAB code is avail-
able online at http://yuanganzhao.weebly.com/.

4.1. Experiment Setup

For the image denoising task, we use the follow-
ing strategy to generate noisy images. We corrupt
the original image by injecting random-value and
salt-and-pepper noise with different densities (10%
to 70%). Then, we run all the previously mentioned
algorithms on the generated noisy images. For ¢,TV -
PADMM and £yTV-PDA, we use the same stopping
criterion to terminate the optimization. For ¢, TV -
SBM and £goTV-AOP, we adopt the default stop-
ping conditions provided by the authors. To evalu-
ate these methods, we compute their Signal-to-Noise
Ratios (SNRs). Since the corrupted pixels follow
a Bernoulli-like distribution, it is generally hard to
measure the data fidelity between the original images
and the recovered images. Therefore, we consider
three ways to measure SNR.

s 1= u’ — o

N I
S RO(U’) n— Huo _UOHO-E’
—-u
SNRy(u) = 10logy, ” U|1
—u
SNRy(u) = 10logy, ” ulg’

where u? is the original clean image and @ is the
mean intensity value of u’, and || - [|o.c is the soft
{p-norm which counts the number of elements whose
magnitude is greater than a threshold e. We adopt

e =22 in our experiments.

255
4.2. Convergence of /,TV-PADMM

Here, we verify the convergence property of our
LoTV-PADMM method by considering the ‘camera-
man’ image subject to 30% random-valued impulse
noise. We set A\ = 8 for this problem. We record
the objective and SNR values for £oTV-PADMM at
every iteration k and plot these results in Figure [2]

We make two important observations from these
results. (1)) The objective value (or the SNR value)
does not necessarily decrease (or increase) monoton-
ically, and we attribute this to the non-convexity


http://yuanganzhao.weebly.com/

Objective (10°)

Figure 2: Asymptotic behavior for optimizing Eq @

0 0 8 120
Iteration Number

to denoise the corrupted 'cameraman’ image. We plot the value

of the objective function (solid blue line) and the SNR value (dashed red line) against the number of optimization
iterations. At specific iterations (i.e. 1, 10, 20, 40, 80, and 160), we also show the denoised image. Clearly, the
corrupting noise is being effectively removed throughout the optimization process.

of the optimization problem and the dynamic up-
dates of the penalty factor in Algorithm (ii)
The objective and SNR values stabilize after the
200th iteration, which means that our algorithm
has converged, and the increase of the SNR value
is negligible after the 120th iteration. This implies
that one may use a looser stopping criterion without
sacrificing much restoration quality.

4.3. General Image Denoising Problems

In this subsection, we compare the performance of
all 6 methods on general denoising problems. Table[3]
shows image recovery results when random-value or
salt-and-pepper impulse noise is added. We make the
following interesting observations. (i) The £p2T'V-
AOP method greatly improves upon ¢;TV-SBM,
MFM and TSM, by a large margin. These results
are consistent with the reported results in [42]. (ii)
The £oTV-PDA method outperforms £527V-AOP in
most test cases because it adopts the £p-norm in the
data fidelity term. (iii) In the case of random-value
impulse noise, our ¢yT'V-PADMM method is better
than ¢oTV-PDA in SN Ry value while it is compara-
ble to /oTV-PDA in SNR; and SN R5. On the other
hand, when salt-and-pepper impulse noise is added,
we find that £oTV-PADMM outperforms ¢oTV-PDA
in most test cases. Interestingly, the performance
gap between ¢yTV-PADMM and ¢oTV-PDA grows
larger, as the noise level increases. (iv) For the same
noise level, /oTV-PADMM achieves better recovery
performance in the presence of salt-and-pepper im-
pulse noise than random-valued impulse noise. This
is primarily due to the fact that random-valued noise
can take any value between 0 and 1, thus, making it

more difficult to detect which pixels are corrupted.

5. Conclusions and Future Work

In this paper, we propose a new method for im-
age restoration based on total variation (TV) with
fo-norm data fidelity, which is particularly suitable
for removing impulse noise. Although the result-
ing optimization model is non-convex, we design an
efficient and effective proximal ADMM method for
solving the equivalent MPEC problem of the original
fo-norm minimization problem. Extensive numer-
ical experiments indicate that the proposed ¢oTV
model significantly outperforms the state-of-the-art
in the presence of impulse noise. In particular, our
proposed proximal ADMM solver is more effective
than the penalty decomposition algorithm used for
solving the ¢, TV problem [27] .

There are several research directions that are
worthwhile to pursue for future work. One is to
extend the present result to rank minimization prob-
lems. Another is to incorporate other priors into the
Lo-norm data fidelity for the problems of image/video
recovery. The last is to apply the proposed MPEC-
based proximal ADMM algorithm to other sparse
optimization applications.
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Table 3: General Denoising Problems. The results separated by ¢/’ are SNRy, SN Ry and SN Ry, respectively.

Alg.
Img.

04 TV-SBM

MFM

TSM

‘ LogaTV-AOP

£oTV-PDA

L0TV-PADMM

Random-Value Impulse Noise

walkbridge+10%
walkbridge+30%
walkbridge+50%
walkbridge+70%
walkbridge+90%

92/7.74/12.25
82/6.17/10.37
67/4.17/7.13
46/2.07/3.55
30/0.35/0.64

95/12.31/15.55
89/8.62/11.01
76/4.94/5.72
56/1.95/1.74
32/-0.21/-1.06

95/11.85/12.87
85/5.84/7.82
69/2.70/4.77
50/1.26/2.16
30/0.02/-0.00

95/12.13/13.75
89/7.78/11.47
79/5.42/8.73
59/3.02/4.97
30/0.41/0.75

0.97/13.82/16.60
0.91/9.66/12.81
84/7.03/10.11
65/4.00/6.20
34/0.75/1.30

97/13.72/15.83
.91/9.27/11.67
.85/6.96/9.20

76/5.12/7.04
56,/2.63/3.89

pepper+10%
pepper+30%
pepper+50%
pepper+70%
pepper+90%

99/14.98/22.29
97/11.57/16.61
85/6.92/9.61
59/3.02/4.25
30/0.55/0.55

99/19.10/21.53
96/12.25/13.61
85/6.69/6.72
63/2.76/2.10
35/0.09/-1.03

07/13.48/15.78
87/6.28/9.52
71/3.46/5.45
52/1.63/2.38
31/0.29/0.09

99/13.60/20.32
98/12.04/16.81
94/9.68/13.09
79/5.19/6.21
35/0.89/1.00

00/20.16/24.57
98/15.09/19.70
96/11.77/15.68
84/6.77/8.87
39/1.33/1.72

99/17.98/21.03

.98/14.50/18.14
.96/11.56/14.14
.93/8.93/11.34

76/4.25/4.81

mandrill+10%
mandrill4-30%
mandrill4+50%
mandrill4+70%
mandrill4+90%

92/7.40/6.95
76/3.81/5.88
65/2.90/4.59
51/1.58/2.51
37/0.24/0.45

89/8.08/8.96
83/5.95/6.64
73/3.63/3.70
57/1.35/0.65
36/-0.59/-1.90

03/9.64/9.64
83/4.74/4.92
69/1.99/3.36
52/0.95/1.49
34/-0.08/-0.35

93/9.64/9.64
85/5.83/6.78
74/3.62/5.02
62/2.33/3.44
39/0.54/0.91

95/10.83/11.01
86/6.65/7.23
77/4.63/5.54
64/2.87/3.93
42/0.78/1.22

95/10.38/9.65
.86/6.42/6.46

78/4.39/4.47
70/3.08/3.44
58/1.91/2.49

lenna+10%
lenna+30%
lenna+50%
lenna+70%
lenna+90%

98/11.39/18.21
96/9.69/15.25
86/6.41/9.74
61/2.86/4.23
38/0.55/0.65

99/17.95/22.98
96/11.50/13.87
86/6.31/6.70
65/2.51/1.97
37/-0.17/-1.28

98/13.72/14.33
89/6.27/9.84
T4/3.47/5.74
54/1.64/2.56
33/0.16/0.03

©99/14.22/19.13
98/10.73/16.55
94/8.64/12.53
78/4.99/6.97
45/0.92/1.13

99/17.42/21.71
98/13.08/17.68
95/10.24/14.43
85/6.42/9.19
47/1.34/1.92

199/16.74/20.10

97/12.62/15.99

.95/9.88/12.69
.91/7.61/9.83

77/4.39/5.55

jetplane+10%
jetplane+30%
jetplane+50%
jetplane+70%
jetplane+90%

98/11.55/17.53
95/9.21/13.69
78/4.72/7.61
43/0.54/1.49
31/-1.00/-1.25

99/17.50/20.98
95/10.34/11.51
80/4.52/4.00
53/0.61/-0.69
25/-1.80/-3.65

08/12.79/13.26
87/4.99/7.25
69/1.49/2.75
47/-0.51/-0.51
26/-1.85/-2.85

99/13.06/19.08
97/10.41/15.05
92/7.92/10.56
67/3.24/4.76
14/-1.60/-2.18

99/16.86/19.95
97/12.42/15.62
94/9.32/12.24
74/4.36/6.37
26/-1.20/-1.49

08/15.31/16.59

.97/11.48/12.40
.94/8.97/10.10
.89/6.63/7.29

73/3.30/3.53

cameraman+10%
cameraman+30%
cameraman-+50%
cameraman-+70%
cameraman+90%

98/13.62/20.50
93/10.00/14.60
74/5.56/7.71
59/2.70/3.38
34/0.78/0.72

199/20.12/24.95

95/12.29/14.17
82/6.44/6.78
59/2.67/2.32
34/0.29/-0.54

98/14.19/15.65
87/6.67/9.81
69/3.50/5.43
49/1.76/2.44
29/0.49/0.32

©99/14.73/21.81
97/12.35/17.52
91/9.09/12.04
68/3.68/4.19
41/1.06/0.94

©09/18.80/23.21
97/14.22/17.82
94/10.79/14.08
74/5.23/6.81
41/1.29/1.35

98/17.25/19.45

.97/12.86/15.13

.95/10.90/12.56
.90/8.52/10.01

.67/3.56/3.91

boat+10%
boat+30%
boat+50%
boat+70%
boat+90%

96/10.39/16.32
93/8.80/13.78
80/5.80/9.03
55/2.48/3.91
35/0.42/0.79

98/16.25/20.15
94/10.76/13.20
82/5.92/6.49
61/2.31/1.93
35/-0.12/-1.00

08/13.46/14.37
88/6.26/9.32
72/3.04/5.43
52/1.35/2.40
31/0.05/0.13

98/13.89/18.22
96/9.97/14.65
90/7.77/11.12
71/4.21/5.92
31/0.66/1.18

98/16.38/19.94
96/11.93/15.70
92/9.26/12.89
77/5.44/7.98
37/1.01/1.79

98/15.78/18.10

94/10.98/13.39

.92/8.77/10.59
.87/6.86/8.56

71/3.78/4.84

pirate+10%
pirate430%
pirate+50%
pirate+70%
pirate4+90%

93/10.06/15.58
88/8.19/12.78
65/4.69/7.27
42/2.05/2.93
26/0.36/0.12

97/14.97/18.50

91/10.11/12.22
76/5.53/6.00
53/2.20/1.81
29/0.05/-0.92

96/13.26/14.26
85/6.43/8.82
67/3.16/4.92
46/1.48/2.02
26/0.21/-0.14

97/13.26/17.13
93/9.36/13.87
83/6.95/10.28
55/2.86/3.85
28/0.46/0.25

97/15.66/18.60
93/11.46/14.88
87/8.64/11.83
62/4.02/5.61
31/0.74/0.66

97/15.46/17.78
.93/11.00/13.12
.89/8.70/10.60
.82/6.74/8.54

51/2.26/2.40

house+10%
house+30%
house+50%
house+70%
house+90%

COOOROOOO0O00000000000000000000000000000000000

-00/17.32/27.50

98/13.65/20.27
88/8.29/12.00
49/2.99/4.25
29/0.85/0.89

coocorloocoooloooooooooglocoooloccoolooooooooog o000

100/23.11/29.74

97/13.79/15.43
85/7.31/7.38
61/3.01/2.35
32/0.37/-0.78

08/13.52/16.73
89/6.74/10.24
71/3.76/5.76
50/1.83/2.51
29/0.48/0.21

QOO0 OO00000000BI0000QI0000000000000000000000 000

00/17.02/29.42
99/14.71/23.67
97/11.89/16.93
78/6.06/8.20
38/1.04/1.01

coocorloocoooloooooooooglococooloccoolooooooooogoooog

00/24.42/32.64
00/18.78/26.78
98/14.72/20.80
85/7.82/10.83
36/1.41/1.84

coorploccoolocooolococogoccoolocoog|ococogoccorocs

COO0OHOOOODO0OO0OO0O|0O000O2|00002000O0000000000S0000 0

100/22.94/28.08

99/17.70/23.57

.98/14.40/19.99
.95/11.20/14.70
.83/6.17/6.82

Salt-

and-Pepper Impulse Noise

walkbridge+10%
walkbridge+30%
walkbridge+50%
walkbridge+70%
walkbridge+90%

01/7.54/12.36
84/6.51/10.66
76/5.04/7.80
59/2.63/4.50
36/1.10/1.94

06/12.88/17.26
94/10.43/14.27
89/8.12/11.42
82/6.06/8.67
67/3.66/5.08

0.98/15.83/19.88
0.96/11.66/16.44
0.92/9.31/13.96
0.87/7.33/11.51
0.73/4.78/7.76

0.98/15.84/19.88
0.96/11.66/16.44
0.92/9.30/13.94
0.87/7.32/11.50
0.73/4.77/7.73

99/17.16/22.66
96/11.96/17.08
92/9.15/13.84
85/6.89/10.99
57/3.29/5.81

.99/17.48/23.16
.97/12.28/17.54
.93/9.52/14.30
.87/7.37/11.56

74/4.82/7.82

pepper+10%
pepper+30%
pepper+50%
pepper+70%
pepper+90%

99/15.16/22.48
97/11.91/16.29
90/8.00/9.81
69/4.06/6.20
33/0.97/1.58

99/14.77/20.14
98/14.60/18.35
97/12.86/16.10
95/10.56/13.34
89/7.18/8.48

00/20.48/24.91
99/16.84/22.92
99/14.86/21.54
98/12.48/18.52
93/8.84/12.70

00/20.48/24.91
99/16.85/22.94
99/14.82/21.49
98/12.47/18.49
93/8.77/12.55

00/23.21/30.49
99/17.69/24.78
99/14.53/21.09
97/11.39/16.90
75/4.84/7.90

.00/23.89/30.95
.00/18.46/25.59
.99/15.44/22.41
.98/12.69/18.73
.93/9.04/12.88

mandrill+10%
mandrill4-30%
mandrill4+-50%
mandrill4-70%
mandrill+90%

91/6.36/6.95
75/4.00/6.04
69/3.15/4.45
55/1.59/2.70
37/0.47/0.83

93/9.75/11.31
90/7.77/9.03
84/5.69/6.57
76/3.84/4.30
63/1.97/1.89

97/13.08/14.27
92/8.88/10.71
87/6.63/8.48
80/4.87/6.49
69/3.08/4.28

97/13.08/14.27
92/8.88/10.71
87/6.62/8.47
80/4.87/6.49
69/3.08/4.27

98/14.39/17.08
93/9.30/11.79
87/6.71/8.82
79/4.76/6.59
60/2.42/3.83

98/14.54/17.17
.93/9.44/11.88
.88/6.81/8.82
.80/4.90/6.54
.69/3.13/4.39

lenna+10%
lenna+30%
lenna+50%
lenna+70%
lenna+90%

08/11.44/18.12
96/9.86/14.77
90/7.11/9.39
69/3.76/6.16
42/1.02/1.61

200/16.18/23.62

99/13.59/19.23
97/11.16/15.78
95/8.96/12.49
87/6.01/7.47

00/20.52/28.42
99/15.55/23.03
99/12.92/19.87
97/10.66/16.41
91/7.55/11.09

00/20.52/28.42
99/15.55/23.04
99/12.92/19.87
97/10.65/16.41
91/7.53/11.03

00/20.74/29.04
99/15.40/22.66
08/12.49/18.93
96/9.90/15.17
75/4.63/7.70

100/21.07/29.89
.00/15.81/23.67
.99/13.07/20.10
.97/10.78/16.54
.92/7.70/11.27

jetplanc+10%
jetplane+30%
jetplane+50%
jetplane+70%
jetplane+90%

98/11.64/17.60
95/9.60/13.67
89/6.96/9.03
71/3.22/4.02
42/0.70/1.02

.00/16.96/23.40

98/13.56/17.86
96/10.89/14.14
93/8.48/10.50
87/5.61/6.01

00/20.38/26.82

99/15.47/21.87

98/12.72/18.45

96/10.16/14.57
89/6.57/8.64

00/20.38/26.82
99/15.47/21.88
98/12.72/18.45

89/6.56/8.60

96/10.16/14.57

00/20.73/28.03
99/15.27/21.63
98/12.07/17.27
94/9.18/13.27
54/2.44/4.85

100/21.31/29.20
.99/15.90/22.74
.98/12.87/18.53
.96/10.28/14.57
.89/6.80/8.70

cameraman-+10%
cameraman+30%
cameraman+50%
cameraman+70%
cameraman+90%

08/13.76/20.61
.94/10.60/14.03
.84/6.71/9.22
.65/4.00/5.31
.48/1.50/1.49

700/19.83/27.21
.99/15.91/21.06
.97/13.08/17.21
.94/10.56/13.48
.88/7.51/8.45

00/22.43/30.74
00/17.93/25.93
99/15.07/21.87
97/12.14/17.25
90/8.35/11.20

00/22.43/30.74
99/17.90/25.84
99/15.05/21.83
97/12.14/17.23
90/8.34/11.19

poocoonecoonloocoglocoorocoos

700/22.71/29.79
0.99/17.43/24.24
0.98/14.16/19.99
0.95/11.06/15.47
0.70/4.68/7.47

:00/23.83/32.14
.00/18.56/26.55
.99/15.31/22.04
.97/12.31/17.26
.90/8.67/11.34

boat+10%
boat+30%
boat+50%
boat+70%
boat+90%

196/10.40/16.28
.93/8.90/13.31
.86,/6.57/8.82
.66/3.52/5.45
.51/1.52/1.98

99/15.31/21.41
.97/12.76/17.46
.95/10.40/14.23
.91/8.19/10.97
.82/5.54/6.80

99/19.02/24.93
99/14.53/20.95
97/12.02/17.86
95/9.69/14.38
86/6.69/9.34

99/19.02/24.93
99/14.54/20.96
97/12.01/17.86
.95/9.69/14.38
86/6.66/9.27

1.00/20.01/27.23
0.99/14.65/21.10
0.97/11.67/17.23
0.93/9.04/13.55
0.68/4.04/7.16

.00/20.39/28.04
.99/15.09/22.00
.98/12.23/18.12
.95/9.79/14.42
.87/6.85/9.41

pirate+10%
pirate+30%
pirate+50%
pirate+70%
pirate4+90%

94/10.18/15.69
.90/8.66/12.90
.80/6.43/8.96
.58/3.21/5.49
.29/1.02/1.78

98/15.29/20.67
.96/12.58/16.77
.93/10.19/13.71
.87/7.99/10.56
.76/5.36/6.67

08/17.54/22.44
97/13.80/19.47
96/11.62/17.05
92/9.48/14.10
80/6.50/9.64

98/17.53/22.43
97/13.76/19.39
95/11.56/16.94
92/9.46/14.07
80/6.47/9.58

0.99/19.58/25.95
0.98/14.23/19.98
0.95/11.34/16.57
0.89/8.78/13.22
0.55/3.87/6.39

.99/19.97/26.63
.98/14.66/20.69
.96/11.87/17.36
.92/9.56/14.20
.81/6.60/9.72

house+10%
house+30%
house+50%
house+70%
house+90%

coooplooocooloooogoooogooooolccoooloooooooooooo00g

100/17.45/27.43
.99/13.99/19.51
.92/9.32/12.44
.79/6.03/8.38
.33/1.74/2.66

coocoploococooloooogooooroooopcooonlooooooooogoooog

100/23.13/33.35
.99/18.39/25.86
.99/15.25/21.58
.97/12.55/17.24

.92/9.13/10.95

00/26.60/40.15
00/21.48/34.08
00/18.21/29.65
00/14.98/24.09
95/10.43/15.48

orrrKHoooOoO|lcoocoolooorrooookrlcooorloooooloooor

00/26.58/40.11
00/21.48/34.08
00/18.21/29.65
00/14.97/24.08
95/10.35/15.24

OCHHHHOOOOOOOOOOOOOOKHOOOOKIOOOOKIOOOOO0O00OK

1.00/26.96/40.08
1.00/20.87/32.12
1.00/17.14/26.82
0.98/13.56/20.92
0.73/5.60/9.26

OHKFHHKEOOCOOOCOOOHOOOHKHOOOOHIOOCOHHIOOOOO|IOOOHHIOOOOO

.00/28.08/42.12
.00/22.24/34.92
.00/18.76/30.02
.00/15.47/24.45
.96/11.06/15.95
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The supplementary material is organized as fol-
lows. Section 1 presents the details of our proofs.
Section 2 discusses the connection with existing work.
Section 3 presents some additional experimental re-
sults.

1. Proofs
1.1. Proof of Lemma 1

Here, we are prove the variational formulation of
the £y-norm.

Proof. This lemma is very natural. The total num-
ber of zero elements in w can be computed as

n
n —||lwl|lp = ma vi, st.ve d 1
Il = s, 3 v (1)

where ® £ {v | v; ® |w;| = 0, Vi € [n]}. Note that
when w; = 0, v; = 1 will be achieved by maximiza-
tion, when w; # 0, v; = 0 will be enforced by the
constraint. Thus, v; = 1 — sign(Jw;|). Since the
objective function in Eq (1)) is linear, maximization
is always achieved at the boundaries of the feasible
solution space. Thus, the constraint of v; € {0,1}
can be relaxed to 0 < v; < 1, we have:

||W||0 = n—org‘z}%(l Zlv,,, st.ved
1=
= min (1,1-v), st.ved
0<v

1.2. Proof of Convergence of Algorithm 1

The global convergence of ADMM for convex prob-
lems was given by He and Yuan in [5] under the
variation inequality framework. However, since our

optimization problem is non-convex, the convergence
analysis for ADMM needs additional conditions. In
non-convex optimization, convergence to a station-
ary point (local minimum) is the best convergence
property that we can hope for. By imposing some
conditions, Wen et al. [§] managed to show that
the sequence generated by ADMM converges to a
KKT point. In this section, along a similar line,
we establish the convergence property of proximal
ADMM.

First of all, we present the first-order KKT con-
ditions of our ¢,V optimization problem. For sim-
plicity, we define:

A2{z|0<z<1). (2)

Based on the augmented Lagrangian function of
the £oT'V optimization problem, we naturally derive
the following KKT conditions of the optimization
problem for {u*, v* x* y* &, ¢, 7*}:

(VIeg* + KT¢* u—u*), Yue A
<7r*@0®|y*‘—1,v—v*>, VveA
ONx" [lp — &

OV oIyt —¢* (3)
Vu* —x*

Ku* —b-y*

= ooV Oy

m m IN IA

o O O O O o o

whose existence can be guaranteed by Robinson’s
constraint qualification. The following theorem es-
tablishes the convergence properties of the proposed
algorithm, under the assumption that the iterates
generated by Algorithm 1 exhibit no jumping be-
havior. Note that a similar condition was used in

).



Theorem 1. Convergence of Algorithm 1. Let
X £ (w,v,x,y) and Y = (& ¢,m). {Xkayk}iil
be the intermediate results of Algorithm 1 after the k-
th iteration. Assume that limj_, o (Y*+! — Y*) = 0.
Then there exists a subsequence of {X* Y*} whose
accumulation point satisfies the KKT conditions.

Proof. (i) {&,¢,w}-subproblem. By the limit of
{5’“, ¢k, wk)]; in the assumption and the update rule

of {&F+1 ¢FHL xk+11 in Algorithm 1, we obtain
lim Vu*! — x"1 =, 4)
k—o0
lim Ku*™ —b -yt =0, (5)
k—o0
lim o ® v @ [y =0 (6)
k— o0

(ii) y-subproblem. By the limit of ¢* and 7¥, and
the update rule of y**! in Algorithm 1, we have:

lim {y"™! € arg min §||Kul“r1 —b+¢HB—y|?
k—o00 y 2
Hiyloo v o m* ) + Doo vi o y?)

which is equivalent to:

lim —¢*" M 47l ovEl oo @ d|y* L =0 (7)

k—o0

Moreover, we have the following limit:

lim y** —y* = 0. (8)
k—o0
(iii) z-subproblem. By the limit of £€* and the update
rule of x**1, we have:

lim x** € argmin Al|x||,1
k—o00 xER2"

B

Folx = (T g,

which is equivalent to:
lim —&" ™ + ON||x||,1 =0 (9)
k—o0

Clearly, we obtain the following limit:

klim xMt _xk =0, (10)
—00
(iv) v-subproblem. By the limit of y* and 7%, we

have:

lim v**! € arg min é||v® 0@ yrtL|?

k—o0 0<v<1 2

—(v,1-006 ko \yk+1|>7

which is equivalent to:

klim (T oo [y —1,v —v*1) >0, ¥w e A (11)
—00

(v) u-subproblem. By the optimality of u**! for the

u-subproblem, we have:

VueA, 0<(VTek + vl (vub —xF) + K¢k +
BKT(Ku® — b — y") + D(uf! — u¥),u — u* 1)

Take the limit of the equality constraints, we have:
<VT£k + KTCk + D(uk+1 _ uk)7 u— uk+1> Z O,
VueA.

lim
k—o0
(12)
On the other hand, it is easy to validate that the

function Lo(u,v¥ x* y* € ¢, %) is jointly convex
with respect to {u,&,{}. We define:

u vlie —K™¢
w2 | ¢| and F(w) 2 Vu — x*
¢ Ku—b —y*

Notice that the mapping F' is monotone by convexity.
It follows that

(W —w*, F(wF 1)) > (whHl —w* F(w*)) > 0, (13)

From Eq , Eq and the first inequality in
Eq, we have:

lim (u**! —u*, VT(ﬁkJrl —&)+ KT(CICJrl ¢+

k—oc0

<€k+1 _ 5*, V(uk+1 _ u*)> + <<k+1 _ C*,K(uk'H _ u*)> >0

which can be simplified as:

lim 2t —ut, VI ET - )+ KT(CM - ¢7) 2 0(14)

By Eq , it holds that (w**! —w*, F(wk*t1)) >0,
then we have:

lim (uf*t —u*, VT — K¢ >0

k—o0

Combining Eq , Eq and Eq , we have:

lim (u**! — u*, D(u® — u* 1)) >0 (16)

k— o0

(15)

From the Pythagoras relatiorﬂ and the inequality
above, as k — oo it follows that

o —uw = e (Rt - u R
2(uf ! — u* D(u® — uFtt))
> et | et -G (1)
>t —uwB +o. (18)

IPythagoras relation: |b —a||? = ||c —a||? + ||b — c||® +
2(c—a,b—c)



Together with the strict positive definiteness of D,
Eq implies that the sequences {||u® —u*||p} is
monotone non-increasing. Moreover, the sequence
{|lu* —u*||p} and {u*} are bounded. On the other
hand, from Eq , we have:

k k k k
[u* =G < uf B -t - u

< Juf-uB+0

which implies that the sequences |[u* — u**1||Z is
also monotone non-increasing.

We denote C' = |[u® — u*||3 — |[u® — u*||3. Sum-
ming Eq over i = 0,1,..., k, we have:

k
D Iut —ut G
i=0

> (k+1)[u" —u*

¢ =

Therefore, we have limj, o0 [0 — u* |3, = &

0. By the strict positive definiteness of D, we have
limy,_, o [Juf — u*+1|| = 0.

Notice that Eq holds for each u € A. Taking
the limit £ — oo with u € A to this inequality, we
obtain that

Vued, (VI¢h+KT¢F u—ubt?)
Z <D(uk+1 _ uk)’ uk+1 _ 11>
> — D@ —u?)[[[[u* - ]|

0 (19)

where the last inequality holds by the Cauchy-
Schwarz Inequality. Based on Eqs (4l5[647H9I1 1Ji19)),
we conclude that as k — oo, there exists a subse-
quence of {X* Y*} whose accumulation point satis-
fies the KKT conditions in Eq .

2. Discussions on the connection with
Existing Work

In this section, we discuss the connection be-
tween the proposed method ¢yTV-PADMM and
prior work.

2.1. Connection with convex optimization

method ¢, TV

The goal of image restoration in the presence
of impulse noise has been pursued by a number of
authors (see, e.g., [13,3]) using ¢, TV, which can be
formulated as follows:

min [Ku—bli+ [Vulp,  (20)

0

It is generally believed that ¢;TV is able to remove
the impulse noise properly. This is because £1-norm
provides the tightest convex relaxation for the £g-
norm over the unit ball in the sense of /,.-norm. It is
shown in [2] that the problem of minimizing |[Ku —
b||; is equivalent to ||[Ku—bl|o with high probability
under the assumptions that (i) Ku — b is sparse at
the optimal solution u* and (ii) K is a random
Gaussian matrix and sufficiently “incoherent” (i.e.,
number of rows in K is greater than its number of
columns). However, these two assumptions required
in [2] do not necessarily hold true for our TV
optimization problem. Specifically, when the noise
level of the impulse noise is high, Ku — b may not
be sparse at the optimal solution u*. Moreover,
the matrix K is a square identity or ill-conditioned
matrix. Generally, {17V will only lead to a sub-
optimal solution.

2.2. Connection with sparse plus low-rank ma-
trix decomposition

Sparse plus low-rank matrix decomposition [J]
15], [6] is becoming a powerful tool that effectively
corrects large errors in structured data in the last
decade. It aims at decomposing a given corrupted
image B (which is of matrix form) into its sparse
component (S) and low-rank component (L) by solv-
ing

1113118 [ISllo + A rank(L), s.t. B=L+S.

Here the sparse component represents the foreground
of an image which can be treated as outliers or
impulse noise, while the low-rank component corre-
sponds to the background, which is highly correlated.
This is equivalent to the following optimization prob-
lem:

mIi‘n IB —Ljlo + A rank(L),

which is also based on £yp-norm data fidelity. While
they consider the low-rank prior in their objective
function, we consider the Total Variation (TV) prior
in ours.

2.3. Connection with the Adaptive Outlier Pur-
suit algorithm

Very recently, Yan [I2] proposed the following
new model for image restoration in the presence of
impulse noise and mixed Gaussian impulse noise:

min |[Ku—b—2z|3+ X |Vulp1, st |z]o <k

(21)



They further reformulate the problem above into

min [[v© (Ku—b)[3+ X\ [Vl

st.0<v<1l (v,l)<n-—k

and then solve this problem using an Adaptive Out-
lier Pursuit(AOP) algorithm. The AOP algorithm is
actually an alternating minimization method, which
separates the minimization problem over v and v
into two steps. By iteratively restoring the images
and updating the set of damaged pixels, it is shown
that AOP algorithm outperforms existing state-of-
the-art methods for impulse noise denoising, by a
large margin.

Despite the merits of the AOP algorithm, we must
point out that it incurs three drawbacks, which are
unappealing in practice. First, the formulation in
Eq is only suitable for mixed Gaussian impulse
noise, i.e. it produces a sub-optimal solution when
the observed image is corrupted by pure impulse
noise. (ii) Secondly, AOP is a multiple-stage algo-
rithm. Since the minimization sub-problem over u
EI needs to be solved exactly in each stage, the al-
gorithm may suffer from slow convergence. (iii) As
a by-product of (i), AOP inevitably introduces an
additional parameter (that specifies the Gaussian
noise level), which is not necessarily readily available
in practical impulse denoising problems.

In contrast, our proposed ¢,TV method is free
from these problems. Specifically, (i) as have been
analyzed in Section 2, i.e. our £yp-norm model is opti-
mal for impulse noise. Thus, our method is expected
to produce higher quality image restorations, as seen
in our results. (ii) Secondly, we have integrated £o-
norm minimization into a unified proximal ADMM
optimization framework, it is thus expected to be
faster than the multiple stage approach of AOP. (iii)
Lastly, while the optimization problem in Eq
contains two parameters, our model only contains
one single parameter.

2.4. Connection with other /,-norm optimization
techniques

Actually, the optimization technique for the £-
norm regularization problem is the key to han-
dling impulse noise. Existing methods such as £,-
norm approximation, the smoothing method [10} [11],
the Smoothly Clipped Absolute Deviation (SCAD)
penalty method[14], the Minimax Concave Plus

21t actually reduces to the 2TV optimization problem.

(MCP) penalty method [4] and the reweighted ¢;-
norm minimization [I] are not appealing since they
only give approximate solutions for the £4TV prob-
lem. In addition, the simple projection gradient
descent methods [I5] are inapplicable to our model
since they assume the objective function is smooth.

Very recently, Lu et al. propose a Penalty Decom-
position Algorithm (PDA) for solving the £y-norm
optimization algorithm [7]. As has been remarked in
[7], ADMM can also be used for solving ¢,TV mini-
mization simply by replacing the quadratic penalty
functions in the PDA by augmented Lagrangian func-
tions. Nevertheless, as observed in our preliminary
experiments and theirs, the practical performance
of their ADMM is worse than that of PDA.

Actually, in our experiments, we found PDA is
rather unstable. The penalty function can reach
very large values (> 108), and the solution can be
degenerate when the minimization problem of the
augmented Lagrangian function in each iteration is
not exactly solved. This motivates us to design a
new {yp-norm optimization algorithm in this paper.
We consider a proximal ADMM algorithm to the
MPEC formulation of ¢yp-norm since it has a primal-
dual interpretation. Extensive experiments have
demonstrated that proximal ADMM for solving the
“lifting” MPEC formulation for £yT'V produces better
image restoration qualities.

3. More Experiments

In this section, we present some additional ex-
perimental results to demonstrate the superiority of
our proposed £oTV-PADMM method. Due to page
limitations, we were not able to add these results in
the submission.

We test the deblurring problem in the presence of
impulse noise in our experiments. For £p2TV-AOP,
we adapt the author’s image denoising implementa-
tion to the image deblurring setting. Since Median
Filter Methods (MFM) are not convenient to solve
the deblurring problems, we do not test them in
here. To generate artificial noisy and blurred images,
we blur the original images and then add random-
valued noise and salt-and-pepper noise with different
densities. We use the following MATLAB scripts to
generate a blurring kernel of radius R:

[x,y] = meshgrid(-R:R,-R:R)
K = double(x."2 + y."2 <= R."2) (22)
P = K/sum(K(:))
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Figure 1: Asymptotic behavior for optimizing Eq (6) to deblur the corrupted ’cameraman’ image. We plot the value
of the objective function (solid blue line) and the SNR value (dashed red line) against the number of optimization
iterations. At specific iterations (i.e. 1, 10, 20, 40, 80, and 160), we also show the deblurred image. Clearly, the
corrupting noise is being effectively removed throughout the optimization process.

We verify the convergence of £,TV-PADMM by
considering the blurred ‘cameraman’ image subject
to 30% random-valued inpulse noise. As seen in
Figure [1} the asymptotic behavior on image deblur-
ring problems strengthen our conclusions drawn in
Section 5.2 in the submission.

3.1. General Image Deblurring Problems

In this subsection, we demonstrate the perfor-
mance of all methods with their optimal regulariza-
tion parameters on general deblurring problems. We
choose R =7 in Eq in generating the blur ker-
nel. Table [I] shows the recovery results for random-
valued impulse noise and salt-and-pepper impulse
noise, respectively. We have the following interesting
observations. (i) £p2TV-AOP significantly outper-
forms ¢, TV -SBM, and the performance gap becomes
larger as the noise level increases. This is because
the key assumption in the #; model is that Ku —b is
sparse at the optimal solution v*. This does not hold
when the noise level is high. (ii) {yTV-PDA outper-
forms £o2TV-AOP for high level (> 30%) random-
valued impulse noise. However, for salt-and-pepper
impulse noise, yTV-PDA gives worse performance
than £p2TV-AOP in most cases. This phenomenon
indicates that the Penalty Decomposition Algorithm
is not stable for deblurring problems. (iii) By con-
trast, our £oT'V-PADMM consistently outperforms
all methods, especially when the noise level is large.
We attribute this result to the “lifting” technique
that is used in our optimization algorithm.

3.2. Scratched Image Denoising Problems

In this subsection, we demonstrate the superi-
ority of the proposed ¢yTV-PADMM in real-world
image restoration problems. Specifically, we corrupt
the images with scratches which can be viewed as
impulse nois«ﬂ, see Figure [2| We only consider re-
covering images using {yoTV-AOP, {,TV-PDA and
LoTV-PADMM. We show the recovered results in
Figure [3] For better visualization of the images
recovered by all methods, we also show auxiliary
images ¢ in Figure [d] which show the complement of
the absolute residual between the recovered image u
and the corrupted image b (i.e., c = {1 — |b — ul}).
Note that when c; is approximately equal to 1, the
color of the corresponding pixel at position ¢ in the
image is white. A conclusion can be drawn that
our method ¢yTV-PADMM generates more ‘white’
images c¢ than the other two methods, since it can
identify the ‘right’ outliers in the corrupted image
and make the correction using their neighborhood
information.

3.3. Colored Image Denoising Problems

Our proposed method can be directly extended
to its color version. Since color total variation is
not the main theme of this paper, we only provide a
basic implementation of it. Specifically, we compute
the color total variation channel-by-channel, and
take a ¢;-norm of the resulting vectors. Suppose

3Note that this is different from the classical image in-
painting problem that assumes the mask is known. In our
scratched image denoising problem, we assume the mask is
unknown.



we have RGB channels, then we have the following
optimization problem:

3
min 3" (JloF © (Ku* — b*) o + A V|1 )

o<ul<1
o<u2<1 k=1
0<u3<1

where of and u” are the prior and the solution of
the kth channel. The grayscale proximal ADMM
algorithm in Algorithm 1 can be directly extended
to solve the optimization above. We demonstrate its
applicability in colored image denoising problems in
Figure [5| The regularization parameter A is set to 8
for the three images in our experiments.
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Table 1: General Deblurring Problems. The results separated by ‘/” are SN Rg, SNR: and SN Ra, respectively.

Alg.
Img.

Corrupted

0, TV-SBM

TSM

‘ L2 TV-AOP

LoTV-PDA

£gTV-PADMM

Random-Valued Impulse Noise

walkbridge+10%
walkbridge+30%
walkbridge+50%
walkbridge+70%
walkbridge+90%

0.63/2.86/3.44
0.52/1.07/-0.00
0.42/-0.19/-1.87
0.31/-1.18/-3.20
0.21/-1.97/-4.19

0.72/4.61/8.23
0.67/4.09/7.40
0.58/3.23/5.84
0.46/1.97/3.50
0.32/0.63/1.17

0.72/4.59/8.22
0.61/3.66/6.80
0.46/2.43/4.67
0.33/1.11/2.31
0.25/0.15/0.50

0.81/5.62/10.10
0.79/5.42/9.71
0.75/4.93/8.42
0.65/3.22/4.70
0.33/0.44/0.62

0.75/5.00/8.98
0.74/4.84/8.68
0.73/4.66/8.34
0.69/4.31/7.71
0.42/1.60/2.82

0.92/7.23/18.71
0.89/6.74/12.48
0.86/6.34/11.66
0.80/5.59/10.07
0.64/3.37/5.47

pepper+10%
pepper+30%
pepper+50%
pepper+70%
pepper+90%

0.81/4.92/4.49

0.66/2.09/0.30
0.52/0.40/-1.78
0.38/-0.82/-3.20
0.23/-1.77/-4.26

0.91/8.34/13.04
0.83/6.82/10.58
0.71/4.61/6.76
0.52/2.34/3.40
0.26/0.61/0.88

0.93/8.35/13.64
0.83/5.72/9.99
0.58/3.38/5.94
0.36/1.61/2.87
0.25/0.42/0.73

0.96/9.72/15.86
0.96/9.70/15.90
0.95/9.27/14.20
0.82/4.93/5.20
0.38/0.89/0.87

0.94/9.02/14.68
0.93/8.77/14.13
0.92/8.49/13.46
0.90/7.83/12.23
0.53/2.45/3.53

0.99/11.12/19.78
0.99/10.81/19.27
0.98/10.31/17.73
0.97/9.88/16.55
0.86/6.33/7.75

mandrill4+10%
mandrill+30%
mandrill+-50%
mandrill+-70%
mandrill+90%

0.59/1.58/1.27
0.49/0.03/-1.71
0.40/-1.10/-3.43
0.30/-1.99/-4.66
0.21/-2.73/-5.64

0.67/3.02/4.86
0.66/2.83/4.56
0.61/2.43/4.01
0.48/1.54/2.69
0.39/0.50/0.86

0.65/2.71/4.31
0.60/2.30/3.84
0.50/1.65/2.94
0.41/0.90/1.75
0.35/0.25/0.50

0.68/2.97/4.56
0.69/3.05/4.68
0.68/2.92/4.43
0.65/2.54/3.63
0.42/0.59/0.73

0.68/3.08/4.96
0.67/2.99/4.80
0.67/2.90/4.65
0.65/2.75/4.37
0.49/1.45/2.46

0.80/4.56/7.93
0.77/4.23/7.25
0.75/3.91/6.56
0.72/3.52/5.75
0.65/2.64/4.02

lenna+10%
lenna+30%
lenna+50%
lenna+70%
lenna+90%

0.80/4.15/3.67
0.66/1.54/-0.28
0.51/-0.11/-2.38
0.37/-1.30/-3.78
0.23/-2.22/-4.82

0.01/7.52/11.82
0.87/6.66/10.55
0.73/4.66/7.46
0.56/2.46/3.73
0.42/0.76/1.08

0.91/7.19/11.87
0.82/5.21/9.15
0.61/3.12/5.65
0.44/1.53/2.92
0.34/0.45/0.79

0.95/8.51/14.31
0.94/8.28/13.71
0.93/7.94/12.62
0.85/5.07/5.77
0.45/0.94/0.91

0.93/7.81/12.75
0.92/7.60/12.31
0.91/7.38/11.79
0.89/6.91/10.90
0.58/2.51/3.90

0.99/9.74/17.81
0.99/9.48/17.22
0.97/9.12/15.96
0.95/8.55/14.61
0.85/5.59/7.20

lake+10%
lake+430%
lake+50%
lake+70%
lake+490%

0.71/4.74/4.91

0.59/2.57/1.26
0.46/1.08/-0.76
0.34/0.02/-2.07
0.22/-0.85/-3.11

0.81/7.21/10.91
0.69/5.79/9.28
0.42/3.58/6.18
0.19/1.74/3.12
0.11/0.63/1.12

0.83/7.23/11.26
0.65/5.20/8.87
0.35/3.13/5.57
0.22/1.60/2.93
0.15/0.44/0.83

0.90/8.66/13.84

0.89/8.46/13.31

0.86/7.90/11.94
0.66/4.38/5.45
0.21/0.62/0.76

0.84/7.68/12.05
0.83/7.46/11.60
0.82/7.19/11.08
0.79/6.73/10.20
0.31/2.21/3.60

0.97/9.97/17.85
0.96/9.63/17.07
0.92/9.08/15.10
0.89/8.48/13.61
0.73/5.45/7.02

jetplane+10%
jetplane+30%
jetplane+50%
jetplane+70%
jetplane+90%

0.76/3.29/2.13
0.63/0.70/-1.80
0.49/-0.95/-3.90
0.36/-2.13/-5.27
0.22/-3.05/-6.31

0.86/6.27/9.17
0.82/5.44/7.55
0.77/4.32/6.24
0.33/1.01/2.54
0.11/-0.80/-0.49

0.88/6.12/9.67

0.69/3.29/6.48

0.34/0.89/2.59
0.21/-0.75/-0.37
0.15/-1.89/-2.53

0.93/7.96/12.61
0.93/7.79/12.07
0.91/7.01/8.95
0.63/1.34/1.75

0.21/-1.73/-2.56

0.89/6.81/10.48
0.88/6.59/9.99
0.87/6.32/9.47
0.84/5.78/8.51
0.30/-0.03/0.52

0.98/9.15/16.43
0.98/8.77/15.86
0.95/8.35/13.97
0.93/7.67/12.33
0.80/4.55/5.26

blonde+10%
blonde+30%
blonde+50%
blonde+70%
blonde+90%

0.80/3.49/2.75
0.66/1.00/-1.17
0.51/-0.56/-3.18
0.37/-1.73/-4.59
0.23/-2.64/-5.63

0.87/5.57/7.79
0.88/5.81/8.44
0.85/5.09/7.09
0.67/3.02/4.50
0.37/0.77/1.32

0.88/5.71/8.82
0.83/4.43/7.44
0.62/2.74/4.94
0.42/1.26/2.53
0.30/0.22/0.65

0.90/6.17/9.36
0.90/6.26/9.48
0.90/6.18/9.13
0.86/4.88/6.01
0.42/0.77/0.91

0.90/6.34/9.93
0.90/6.22/9.64
0.89/6.08/9.34
0.88/5.81/8.80
0.62/2.54/3.93

0.97/7.43/13.53
0.95/7.29/12.57
0.93/6.98/11.46
0.92/6.65/10.62
0.85/5.01/6.30

cameraman-+10%
cameraman+30%
cameraman+50%
cameraman+70%
cameraman+90%

0.78/5.03/4.83

0.64/2.39/1.05
0.50/0.75/-0.96
0.36/-0.45/-2.36
0.22/-1.38/-3.40

0.84/7.14/10.46
0.69/4.54/6.41
0.67/3.49/4.23
0.60/2.30/2.40
0.38/1.05/0.98

0.89/7.87/12.20
0.74/5.26/8.84
0.56/3.07/5.31
0.37/1.57/2.50
0.26/0.58/0.70

0.94/10.10/15.92
0.94/9.99/15.74
0.91/8.46/11.52
0.72/3.61/3.51
0.38/0.87/0.75

0.90/8.65/13.00
0.90/8.41/12.47
0.89/8.12/11.92
0.86/7.48/10.75
0.53/2.14/2.71

0.99/11.14/19.67
0.97/10.83/18.41
0.96/10.45/17.27
0.94/9.75/15.28
0.78/4.94/5.20

barbara+10%
barbara+30%
barbara+50%
barbara+70%
barbara+90%

0.69/3.62/3.84

0.57/1.54/0.21
0.45/0.12/-1.76
0.34/-0.93/-3.09
0.22/-1.78/-4.12

0.77/5.65/9.13
0.73/5.02/8.42
0.55/3.40/5.94
0.43/1.89/3.22
0.30/0.55/0.90

0.79/5.66,/9.20
0.67/4.31/7.61
0.47/2.69/4.94
0.34/1.31/2.55
0.26/0.33/0.62

0.83/6.47/10.22
0.83/6.31/9.95
0.81/6.07/9.63
0.68/3.54/4.49
0.34/0.61/0.65

0.81/6.05/9.78
0.80/5.92/9.57
0.79/5.77/9.34
0.77/5.45/8.84
0.43/1.91/3.19

0.90/7.61/12.63
0.88/7.28/11.92
0.85/6.79/10.99
0.84/6.45/10.31
0.72/4.39/6.14

boat+10%
boat+30%
boat+50%
boat+70%
boat+90%

0.74/3.88/3.83

0.61/1.55/0.09
0.48/0.00/-1.95
0.35/-1.12/-3.31
0.22/-2.01/-4.35

0.85/6.54/10.33
0.73/5.19/8.54
0.67/3.96/6.16
0.60/2.55/3.70
0.35/0.76/1.31

0.85/6.33/10.23
0.74/4.50/8.15
0.51/2.61/5.10
0.32/1.17/2.64
0.22/0.09/0.67

0.91/7.79/12.82

0.90/7.60/12.25

0.87/6.99/10.90
0.77/4.25/5.32
0.34/0.47/0.75

0.87/6.79/11.08

0.86/6.61/10.70

0.84/6.39/10.25
0.82/6.00/9.51
0.50/2.04/3.41

0.98/8.92/16.56
0.97/8.53/15.93
0.93/8.15/14.11
0.91/7.57/12.68
0.79/5.30/7.51

pirate+10%
pirate+30%
pirate+50%
pirate+70%
pirate+90%

0.68/4.06/4.50

0.56,/2.00/0.91
0.45/0.61/-1.02
0.33/-0.46/-2.38
0.21/-1.28/-3.37

0.65/4.87/8.13
0.65/4.84/7.99
0.49/3.13/5.16
0.35/1.53/2.32
0.24/0.43/0.41

0.79/6.25/10.14
0.61/4.56/7.87
0.43/2.78/4.72
0.30/1.33/2.13
0.23/0.34/0.28

0.88/7.79/13.13

0.87/7.58/12.67
0.83/6.64/9.73
0.59/2.90/3.28
0.29/0.50/0.23

0.82/6.75/11.11

0.81/6.52/10.67

0.79/6.28/10.25
0.75/5.73/9.23
0.38/1.56/2.13

0.95/9.18/16.75
0.93/8.80/15.53
0.91/8.42/14466
0.87/7.60/12.77
0.66/3.58/4.64

Salt-and-Pepper Impulse Noise

walkbridge+10%
walkbridge+30%
walkbridge+50%
walkbridge+70%
walkbridge+90%

0.61/2.00/0.88

8/-0.54/-3.25
5/-2.12/-5.31
1/-3.25/-6.67
8/-4.17/-7.73
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0.72/4.62/8.25
0.69/4.25/7.63
0.62/3.63/6.52
0.53/2.68/4.70
0.39/1.11/1.70

0.80/5.61/10.08
0.79/5.40/9.68
0.77/5.18/9.27
0.75/4.95/8.81
0.73/4.68/8.31

0.81/5.61/10.09
0.79/5.40/9.68
0.77/5.15/9.22
0.75/4.94/8.78
0.73/4.66/8.26

0.76/5.03/9.03
0.75/4.90/8.79
0.73/4.75/8.52
0.71/4.54/8.12
0.60/3.52/6.41

0.94/7.47/14.36
0.92/7.19/13.73
0.90/6.84/12.92
0.86/6.35/11.77
0.79/5.42/9.85

pepper+10%
pepper+30%
pepper+50%
pepper+70%
pepper+90%

0.80/3.59/1.32
0.62/0.15/-3.20
0.45/-1.74/-5.37
0.28/-3.05/-6.80
0.11/-4.04/-7.86

0.92/8.60/13.53

0.87/7.47/11.65
0.77/5.64/8.59
0.63/3.50/5.14
0.27/0.51/0.68

0.96/9.67/15.85
0.96/9.55/15.60
0.95/9.46/15.36
0.95/9.09/14.66
0.94/8.81/14.07

0.96/9.67/15.85
0.96/9.55/15.60
0.95/9.47/15.39
0.95/9.08/14.65
0.94/8.77/13.90

0.94/9.10/14.82
0.94/8.92/14.42
0.93/8.68/13.89
0.91/8.32/13.15
0.81/5.79/9.18

0.99/11.43/20.30
0.99/11.21/19.76
0.99/10.81/19.12
0.98/10.17/18.09
0.96/9.43/15.99

mandrill4+10%
mandrill4+30%
mandrill4+50%
mandrill4+70%
mandrill4+90%

0.58/0.68/-1.29
0.45/-1.69/-5.17
0.32/-3.22/-7.19
0.19/-4.34/-8.55
0.07/-5.24/-9.59

0.67/3.03/4.86
0.66/2.87/4.60
0.63/2.62/4.21
0.55/1.96/3.30
0.38/0.44/0.74

0.67/2.91/4.51
0.67/2.88/4.46
0.66/2.85/4.44
0.66/2.82/4.41
0.65/2.72/4.26

0.67/2.90/4.46
0.67/2.90/4.43
0.67/2.85/4.40
0.66/2.82/4.41
0.65/2.73/4.26

0.68/3.09/4.97
0.68/3.03/4.86
0.67/2.95/4.73
0.66/2.84/4.54
0.60/2.38/3.93

0.86/5.26/9.65
0.83/4.90/8.89
0.80/4.46/7.85
0.75/3.95/6.68
0.70/3.26/5.28

lenna+10%
lenna+30%
lenna+50%
lenna+70%
lenna+90%

0.79/2.85/0.49
0.61/-0.45/-3.93
0.44/-2.35/-6.13
0.26/-3.64/-7.55
0.09/-4.64/-8.64

0.91/7.60/11.97
0.89/6.95/10.92
0.80/5.43/8.51
0.63/3.30/5.09
0.43/0.71/0.74

0.95/8.53/14.39
0.95/8.34/13.95
0.93/7.92/12.93
0.93/7.86/12.90
0.91/7.02/10.91

0.95/8.51/14.35
0.94/8.31/13.86
0.93/7.93/12.77
0.93/7.84/12.85
0.91/7.20/10.93

0.93/7.89/12.87
0.92/7.72/12.51
0.91/7.54/12.10
0.90/7.25/11.51
0.80/5.23/8.47

0.99/9.92/18.38
0.99/9.74/17.99
0.99/9.51/17.34
0.98/9.08/16.37
0.95/8.33/18.97

lake+10%
lake+30%
lake+50%
lake+70%
lake+90%

0.69/3.86/2.43
0.54/1.04/-1.79
0.39/-0.66/-3.89
0.23/-1.87/-5.29
0.08/-2.82/-6.35

0.82/7.25/10.98
0.74/6.15/9.70
0.51/4.19/6.88
0.23/1.96/3.35
0.09/0.16/0.19

0.90/8.65/13.81
0.88/8.44/13.39
0.87/8.20/12.90
0.86/7.88/12.15
0.84/7.57/11.48

0.90/8.66/13.82
0.88/8.44/13.39
0.87/8.19/12.88
0.86/7.87/12.13
0.84/7.53/11.37

0.85/7.74/12.13
0.84/7.56/11.79
0.83/7.37/11.39
0.81/7.07/10.79
0.64/5.12/8.25

0.98/10.32/18.46

0.97/10.08/17.87
0.96/9.71/17.04
0.93/9.27/15.86
0.88/8.16/13.37

jetplane+10%
jetplane+30%
jetplane+50%
jetplane+70%
jetplane+90%

0.75/2.30/-0.47
58/-0.89/-4.88
.42/-2.66/-6.95
.25/-3.95/-8.38
.93/-9.45
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0.87/6.43/9.38
0.81/5.25/7.15
0.76/4.19/5.23
0.71/2.95/2.84
0.63/1.45/0.81

0.93/7.97/12.63
0.93/7.71/11.99
0.91/7.44/11.39
0.90/7.03/10.50
0.89/6.73/9.85

0.03/7.96/12.62
0.93/7.65/11.82
0.91/7.40/11.27
0.90/7.02/10.23
0.89/6.75/9.95

0.89/6.90/10.56
0.88/6.72/10.21
0.87/6.50/9.74
0.86/6.17/9.10
0.72/3.59/6.16

0.99/9.56/17.73
0.99/9.28/17.15
0.98/9.20/16.14
0.96/8.39/14.77
0.92/7.39/11.79

blonde+10%
blonde+30%
blonde+50%
blonde+70%
blonde490%

4

8/2.15/-0.50
1/-1.05/-4.94
4/-2.87/-7.07
7/-4.17/-8.51
9/-5.15/-9.58
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0.89/6.22/9.45
0.88/5.86/8.54
0.87/5.40/7.51
0.76/3.88/5.27
0.45/1.04/1.38

0.89/6.01/9.11
0.89/6.09/9.24
0.89/6.05/9.17
0.89/5.96/8.95
0.88/5.78/8.71

0.89/6.02/9.12
0.90/6.09/9.22
0.90/6.08/9.18
0.89/5.96/8.97
0.88/5.82/8.82

0.90/6.39/9.96
0.90/6.29/9.77
0.89/6.18/9.52
0.88/6.00/9.15
0.83/4.80/7.41

0.98/7.93/14.34
0.97/7.73/13.76
0.96/7.43/13.02
0.94/7.07/12.01
0.91/6.34/10.28

cameraman+10%
cameraman+30%
cameraman+50%
cameraman+70%
cameraman+90%

78/3.95/2.20

3/0.67/-2.15
7/-1.16/-4.26
2/-2.44/-5.66
7/-3.43/-6.73
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0.87/7.81/11.29
0.72/4.77/6.59
0.68/3.62/4.47
0.64/2.67/2.56
0.50/1.24/0.56

0.95/10.15/16.11
0.94/9.97/15.68
0.93/9.58/14.75
0.92/9.09/13.60
0.91/8.79/12.90

0.95/10.14/16.08
0.94/9.98/15.69
0.93/9.53/14.58
0.92/9.03/13.41
0.90/8.59/12.37

0.91/8.74/13.07
0.90/8.56/12.70
0.89/8.30/12.20
0.88/8.00/11.52

0.77/5.67/8.57

0.99/11.33/20.85
0.99/11.09/20.35
0.98/11.20/19.35
0.97/10.34/17.90
0.93/9.33/14.61

barbara+10%
barbara+30%
barbara+50%
barbara+70%
barbara+90%

0.67/2.62/1.08
0.52/-0.15/-3.10
0.37/-1.86/-5.22
0.22/-3.06/-6.62
0.08/-3.99/-7.66

0.80/5.95/9.47
0.76/5.39/8.81
0.63/4.07/6.89
0.46/2.36/4.01
0.29/0.43/0.64

0.83/6.49/10.29
0.83/6.32/10.03
0.82/6.16/9.82
0.81/6.03/9.61
0.80/5.88/9.39

0.83/6.49/10.28
0.82/6.32/10.03
0.82/6.17/9.82
0.81/6.03/9.60
0.80/5.85/9.32

0.81/6.10/9.84
0.81/5.99/9.68
0.80/5.88/9.49
0.78/5.69/9.20
0.65/4.22/7.29

0.94/8.02/14.04
0.92/7.70/13.24
0.89/7.41/12.40
0.87/7.01/11.48
0.83/6.33/10.23

boat+10%
boat+30%
boat+50%
boat+70%
boat+90%

0.73/2.76/0.95
0.57/-0.28/-3.36
0.41/-2.08/-5.50
0.25/-3.33/-6.92
0.09/-4.31/-8.00

0.85/6.57/10.38
0.79/5.65/9.22
0.69/4.35/6.85
0.64/3.09/4.20
0.53/1.44/1.42

0.91/7.80/12.86
0.90/7.60/12.40
0.89/7.34/11.84
0.87/6.99/11.05
0.86/6.63/10.40

0.91/7.80/12.86
0.90/7.55/12.29
0.89/7.34/11.83
0.87/6.99/11.02
0.85/6.54/10.20

0.87/6.86/11.15
0.86/6.71/10.86
0.85/6.53/10.46
0.84/6.30/10.01
0.73/4.60/7.75

0.98/9.34/17.36
0.98/9.10/16.77
0.97/8.81/15.98
0.95/8.29/14.83
0.89/7.23/12.15




(a) Recovered by £o2TV-AOP (b) Recovered by £oTV-PDA (c) Recovered by £oTV-PADMM

(d) Recovered by £o2TV-AOP (e) Recovered by £oTV-PDA (f) Recovered by ¢oTV-PADMM

(g) Recovered by £o2TV-AOP (h) Recovered by £oTV-PDA (i) Recovered by £oTV-PADMM
Figure 3: Scratched Image Denoising Problems.
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Figure 4: Scratched Image Denoising Problems.
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(a) clean color ‘pepper’ image. (b) corrupted ‘pepper’ image. SN Ry =(c) recovered ‘pepper’ image. SNRy =
0.75, SNR; = 3.06, SNR2 = 1.95. 0.95, SNR; = 8.00, SNRy = 14.01.

(d) clean color ‘lenna’ image. (e) corrupted ‘lenna’ image. SN Ry =(f) recovered ‘lenna’ image. SNRy =
0.75,SNR1 = 3.30, SNRy = 1.15. 0.97, SNRy = 12.77, SNR> = 16.44.

(g) clean color ‘jetplane’ image. (h) corrupted ‘jetplane’ image.(i) recovered ‘jetplane’ image. SNRy =
SNRy = 0.74, SNR;y = -0.27,0.89, SNRy =3.21, SNRy = 7.49.
SNRy = —2.42.
Figure 5: Colored Image Denoising Problems.



