

IEEE Conference on Computer Vision and Pattern Recognition 2015

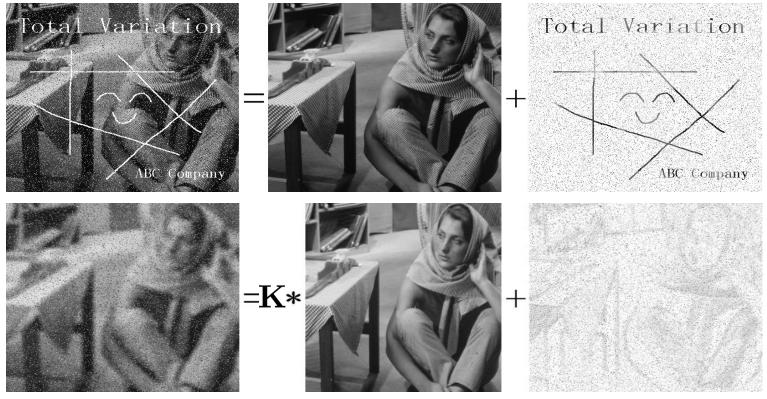
LOTV: A New Method for Image Restoration in the Presence of Impulse Noise

Ganzhao Yuan¹, Bernard Ghanem²

South China University of Technology (SCUT)
 King Abdullah University of Science and Technology (KAUST)

June 10, 2015

• Image restoration problem $\mathbf{b} = (\mathbf{Ku} \odot \boldsymbol{\varepsilon}_m) + \boldsymbol{\varepsilon}_a$



(Generated by our method)

Image restoration problem $\mathbf{b} = (\mathbf{Ku} \odot \boldsymbol{\varepsilon}_m) + \boldsymbol{\varepsilon}_a$

Optimization model

$$\min_{\mathbf{u}} \ \ell(\mathbf{K}\mathbf{u},\mathbf{b}) + \lambda \ \Omega(\mathbf{u})$$

Image restoration problem $\mathbf{b} = (\mathbf{Ku} \odot \boldsymbol{\varepsilon}_m) + \boldsymbol{\varepsilon}_a$

Optimization model

$$\min_{\mathbf{u}} \, \ell(\mathbf{K}\mathbf{u}, \mathbf{b}) + \lambda \, \, \Omega(\mathbf{u})$$

 $\Box \Omega(\mathbf{u})$, regularization: **Total Variation (TV)**, Tikhonov-like, Potts, etc.

Image restoration problem $\mathbf{b} = (\mathbf{Ku} \odot \boldsymbol{\varepsilon}_m) + \boldsymbol{\varepsilon}_a$

Optimization model

$$\min_{\mathbf{u}} \, \ell(\mathbf{K}\mathbf{u}, \mathbf{b}) + \lambda \, \, \Omega(\mathbf{u})$$

$\Box \Omega(\mathbf{u})$, regularization: **Total Variation (TV)**, Tikhonov-like, Potts, etc.

 \Box $\ell(\mathbf{Ku}, \mathbf{b})$, data fidelity: Gaussian, Laplace, etc.

Data Fidelity Models

Data Fidelity Function	Noise	Reference
$\ell_2(\mathbf{Ku},\mathbf{b}) = \ \mathbf{Ku} - \mathbf{b}\ _2^2$	add. Gaussian	Rudin et al., Physica'92
$\ell_1(\mathbf{Ku}, \mathbf{b}) = \ \mathbf{Ku} - \mathbf{b}\ _1$	add. Laplace	Yang et al., SISC'09
$\ell_{\infty}(\mathbf{K}\mathbf{u},\mathbf{b}) = \ \mathbf{K}\mathbf{u} - \mathbf{b}\ _{\infty}$	add. uniform	Clason, InvProb'12.
$\ell_p(\mathbf{Ku},\mathbf{b}) = \langle \mathbf{Ku} - \mathbf{b} \odot \log(\mathbf{Ku}), 1 angle$	add. Poisson	Woo et al., SISC'12
$\ell_g(\mathbf{K}\mathbf{u},\mathbf{b}) = \langle \log(\mathbf{K}\mathbf{u}) + \mathbf{b} \odot \frac{1}{\mathbf{K}\mathbf{u}}, 1 angle$	add. Gamma	Aubert et al., SIAP'08
$\ell_{02}(\mathbf{Ku}, \mathbf{b}) = \ \mathbf{Ku} - \mathbf{b} + \mathbf{z}\ _2^2$ s.t. $\ \mathbf{z}\ _0 \le k$	mixed Gaussian impulse	Yan., SIIMS'13
$\ell_0(\mathbf{Ku},\mathbf{b}) = \ \mathbf{Ku} - \mathbf{b}\ _0$	add./mult. impulse	this paper

Clean Image

Gaussian Noise

Uniform Noise

Salt-and-Pepper Noise

Contributions

A new model for impulse noise removal
 based on L0 norm data fidelity

 A new algorithm for L0 norm optimization
 based on MPEC (Mathematical Programming with Equilibrium Constraints)

Motivation and Formulation

Motivation and Formulation

Impulse noise

□ Random-valued, salt-and-pepper

Key observation: Impulse noise corrupts a portion of pixels in the image while keeping other pixels unaffected.

```
■ L0TV model
\min_{\mathbf{0} \le \mathbf{u} \le \mathbf{1}} \|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0 + \lambda TV(\mathbf{u})
```

MPEC Reformulation and Optimization Algorithm

Variational characterization of the L0 norm

 $\|\mathbf{x}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{x}| = \mathbf{0}$

Variational characterization of the L0 norm

 $\|\mathbf{x}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{x}| = \mathbf{0}$

■ L0TV-MPEC Reformulation L0TV : $\min_{\mathbf{0} \le \mathbf{u} \le \mathbf{1}} \|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0 + \lambda TV(\mathbf{u})$

- Variational characterization of the L0 norm
 - $\|\mathbf{x}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{x}| = \mathbf{0}$
- LOTV-MPEC Reformulation LOTV: $\min_{\mathbf{0} < \mathbf{u} < \mathbf{1}} \|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0 + \lambda TV(\mathbf{u})$ $\min_{\mathbf{0} \leq \mathbf{u} \leq \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda T V(\mathbf{u})$ LOTV-MPEC : $0 \le u, v \le 1$ s.t. $\mathbf{v} \odot |\mathbf{K}\mathbf{u} - \mathbf{b}| = \mathbf{0}$

- Variational characterization of the L0 norm
 - $\|\mathbf{x}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{x}| = \mathbf{0}$
- LOTV-MPEC Reformulation

$$\min_{\mathbf{0} \le \mathbf{u}, \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda T V(\mathbf{u})$$

s.t. $\mathbf{v} \odot |\mathbf{K}\mathbf{u} - \mathbf{b}| = \mathbf{0}$

- Variational characterization of the L0 norm
 - $\|\mathbf{x}\|_0 = \min_{\mathbf{0} \le \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} \mathbf{v} \rangle, \ s.t. \ \mathbf{v} \odot |\mathbf{x}| = \mathbf{0}$
- LOTV-MPEC Reformulation

$$\min_{\mathbf{0} \le \mathbf{u}, \mathbf{v} \le \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda T V(\mathbf{u})$$

- s.t. $\mathbf{v} \odot |\mathbf{K}\mathbf{u} \mathbf{b}| = \mathbf{0}$
- Non-Convex
- Complementarity constraint: two non-negative components, only holds when either of the two components is 0.
- Practical perspective: desirable solution.

Proximal ADMM for L0TV-MPEC

$$\min_{\mathbf{0} \leq \mathbf{u}, \mathbf{v} \leq \mathbf{1}} \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda \| \mathbf{x} \|_{p,1}$$

$$s.t. \begin{cases} \nabla \mathbf{u} = \mathbf{x} \\ \mathbf{K} \mathbf{u} - \mathbf{b} = \mathbf{y} \\ \mathbf{v} \odot |\mathbf{y}| = \mathbf{0} \end{cases}$$

Note: $TV(\mathbf{u}) = \|\nabla \mathbf{u}\|_{p,1}$, where p = 1, 2

$$\begin{array}{l} \text{LOTV-PADMM} \\ & \underset{\mathbf{0} \leq \mathbf{u}, \mathbf{v} \leq \mathbf{1}}{\min} \quad \langle \mathbf{1}, \mathbf{1} - \mathbf{v} \rangle + \lambda \| \mathbf{x} \|_{p, 1} \\ & \underset{s.t.}{ \begin{cases}} \mathbf{\nabla} \mathbf{u} = \mathbf{x} \\ \mathbf{K} \mathbf{u} - \mathbf{b} = \mathbf{y} \\ \mathbf{v} \odot | \mathbf{y} | = \mathbf{0} \end{array}
\end{array}$$

Two Features:

Strongly-convex for each minimization sub-problem

- unique closed-form solution, the computation in each iteration is insignificant.
- The algorithm is proven to be convergent to a local minimum under mild conditions.
 18

Experimental Results and Future Work

Competing Methods:

- L1TV-SBM, Split Bregman Method: [Goldstein et al., SIIMS 09]
- MFM, Median Filter Method
- TSM, Two Stage Method: [Chan et al., TIP'05]
- L02TV-AOP, Adaptive Outlier Pursuit: [Yan, SIIMS'13]
- LOTV-PDA, Penalty Decomposition Algorithm: [Lu et al., SIOPT' 13]
- LOTV-PADMM, PADMM for solving MPEC of LOTV: [this paper]

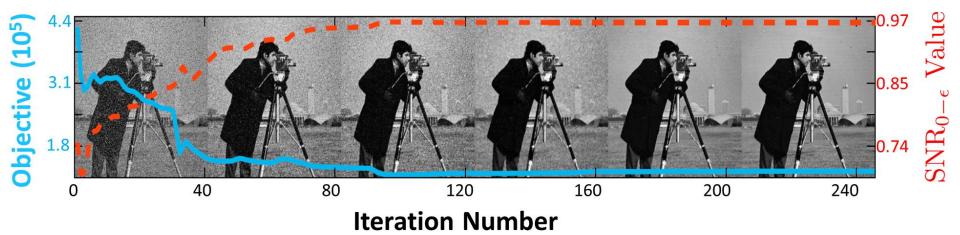
Competing Methods:

- L1TV-SBM, Split Bregman Method: [Goldstein et al., SIIMS 09]
- MFM, Median Filter Method
- TSM, Two Stage Method: [Chan et al., TIP'05]
- L02TV-AOP, Adaptive Outlier Pursuit: [Yan, SIIMS'13]
- LOTV-PDA, Penalty Decomposition Algorithm: [Lu et al., SIOPT' 13]
- LOTV-PADMM, PADMM for solving MPEC of LOTV: [this paper]

Three ways to measure SNR:

• SNR₀(\mathbf{u}, \mathbf{u}^0) $\triangleq \frac{n - \|\mathbf{u}^0 - \mathbf{u}\|_0}{n}$ • SNR₁(\mathbf{u}, \mathbf{u}^0) $\triangleq 10 \log_{10} \frac{\|\mathbf{u}^0 - \bar{\mathbf{u}}\|_1}{\|\mathbf{u} - \bar{\mathbf{u}}\|_1}$ • SNR₂(\mathbf{u}, \mathbf{u}^0) $\triangleq 10 \log_{10} \frac{\|\mathbf{u}^0 - \bar{\mathbf{u}}\|_2^2}{\|\mathbf{u} - \bar{\mathbf{u}}\|_2^2}$

Convergence Behavior



Observations:

- The objective value decreases and SNR value increase, but they do not do so monotonically.
- Both the objective and SNR values stabilize after 120th iteration.

General Image Denoising Problems $\min_{\mathbf{0} \leq \mathbf{u} \leq \mathbf{1}} \|\mathbf{K}\mathbf{u} - \mathbf{b}\|_0 + \lambda TV(\mathbf{u})$ (where $\mathbf{K} = \mathbf{I}$)

General Image Denoising Problems

Alg. Img.	$\ell_1 TV\text{-}SBM$	MFM	TSM	$\ell_{02}TV$ - AOP	$\ell_0 TV$ -PDA	$\ell_0 TV$ - $PADMM$		
	Random-Value Impulse Noise							
pirate+10%	0.93/10.06/15.58	0.97 /14.97/18.50	0.96/13.26/14.26	0.97 /13.26/17.13	0.97/15.66/18.60	0.97 /15.46/17.78		
pirate+30%	0.88/8.19/12.78	0.91/10.11/12.22	0.85/6.43/8.82	0.93 /9.36/13.87	0.93/11.46/14.88	0.93 /11.00/13.12		
pirate+50%	0.65/4.69/7.27	0.76/5.53/6.00	0.67/3.16/4.92	0.83/6.95/10.28	0.87/8.64/11.83	0.89/8.70 /10.60		
pirate+70%	0.42/2.05/2.93	0.53/2.20/1.81	0.46/1.48/2.02	0.55/2.86/3.85	0.62/4.02/5.61	0.82/6.74/8.54		
pirate + 90%	0.26/0.36/0.12	0.29/0.05/-0.92	0.26/0.21/-0.14	0.28/0.46/0.25	0.31/0.74/0.66	0.51/2.26/2.40		
	•		•		•			
Salt-and-Pepper Impulse Noise								
pirate+10%	0.94/10.18/15.69	0.98/15.29/20.67	0.98/17.54/22.44	0.98/17.53/22.43	0.99 /19.58/25.95	0.99/19.97/26.63		
pirate+30%	0.90/8.66/12.90	0.96/12.58/16.77	0.97/13.80/19.47	0.97/13.76/19.39	0.98 /14.23/19.98	0.98/14.66/20.69		
pirate+50%	0.80/6.43/8.96	0.93/10.19/13.71	0.96 /11.62/17.05	0.95/11.56/16.94	0.95/11.34/16.57	0.96/11.87/17.36		
pirate+70%	0.58/3.21/5.49	0.87/7.99/10.56	0.92 /9.48/14.10	0.92 /9.46/14.07	0.89/8.78/13.22	0.92/9.56/14.20		
pirate + 90%	0.29/1.02/1.78	0.76/5.36/6.67	0.80/6.50/9.64	0.80/6.47/9.58	0.55/3.87/6.39	0.81/6.60/9.72		

Observations:

- L0TV-PADMM outperforms all the other methods in most test cases.
 The performance gap grows larger, as the noise level increases.
- L0TV-PADMM is significantly better than L1TV because we address the I0 norm problem directly instead of approximating it.

General Image Deblurring Problems

$$\min_{\mathbf{0}\leq\mathbf{u}\leq\mathbf{1}} \|\mathbf{K}\mathbf{u}-\mathbf{b}\|_0 + \lambda TV(\mathbf{u})$$

(where $\mathbf{K} = \text{Average Kernel}$)

General Image Deblurring Problems

Alg. Img.	Corrupted	$\ell_1 TV\text{-}SBM$	TSM	$\ell_{02}TV$ -AOP	$\ell_0 TV$ -PDA	$\ell_0 TV$ - $PADMM$
cameraman+10%	0.78/5.03/4.83	0.84/7.14/10.46	0.89/7.87/12.20	0.94/10.10/15.92	0.90/8.65/13.00	0.99/11.14/19.67
cameraman + 30%	0.64/2.39/1.05	0.69/4.54/6.41	0.74/5.26/8.84	0.94/9.99/15.74	0.90/8.41/12.47	0.97/10.83/18.41
cameraman+50%	0.50/0.75/-0.96	0.67/3.49/4.23	0.56/3.07/5.31	0.91/8.46/11.52	0.89/8.12/11.92	0.96/10.45/17.27
cameraman+70%	0.36/-0.45/-2.36	0.60/2.30/2.40	0.37/1.57/2.50	0.72/3.61/3.51	0.86/7.48/10.75	0.94/9.75/15.28
${\rm cameraman}{+}90\%$	0.22/-1.38/-3.40	0.38/1.05/0.98	0.26/0.58/0.70	0.38/0.87/0.75	0.53/2.14/2.71	0.78/4.94/5.20
Salt-and-Pepper Impulse Noise						
cameraman+10%	0.78/3.95/2.20	0.87/7.81/11.29	0.95/10.15/16.11	0.95/10.14/16.08	0.91/8.74/13.07	0.99/11.33/20.85
cameraman + 30%	0.63/0.67/-2.15	0.72/4.77/6.59	0.94/9.97/15.68	0.94/9.98/15.69	0.90/8.56/12.70	0.99/11.09/20.35
cameraman+50%	0.47/-1.16/-4.26	0.68/3.62/4.47	0.93/9.58/14.75	0.93/9.53/14.58	0.89/8.30/12.20	0.98/11.20/19.35
cameraman+70%	0.32/-2.44/-5.66	0.64/2.67/2.56	0.92/9.09/13.60	0.92/9.03/13.41	0.88/8.00/11.52	0.97/10.34/17.90
${\rm cameraman}{+}90\%$	0.17/-3.43/-6.73	0.50/1.24/0.56	0.91/8.79/12.90	0.90/8.59/12.37	0.77/5.67/8.57	0.93/9.33/14.61

Observation:

L0TV-PADMM consistently outperforms all the other methods, by a large margin.

Scratched Image Denoising Problems

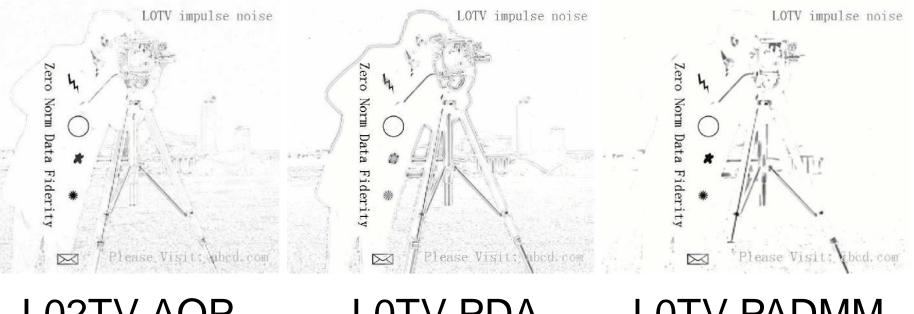
Recovered Images

L02TV-AOP L0TV-PDA L0TV-PADMM

Observation:

 L0TV-PADMM not only removes the scratches, but it also preserves edges and texture details.

Absolute Residuals



L02TV-AOP L0TV-PDA L0TV-PADMM

Observation:

• LOTV-PADMM removes the scratches in the image ONLY.

Color Image Denoising Problems

Clean Image 30% RV Corrupted Recovered

Observation:

LOTV-PADMM is practical for impulse noise removal.

Future Work

- Total Variation Prior \rightarrow Other Prior
 - non-local means, Euler's Elastica, etc.
- MPEC \rightarrow Other Applications that Optimize L0-Norm
- Cardinality Minimization → Rank Minimization
 □ L0 norm of a vector is analogous to the rank of a matrix.

Thank you!

Our code is available online: <u>http://yuanganzhao.weebly.com/</u>

(Poster #101)