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Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive
data. It works by injecting random noise into each query result such that it is provably hard for the adversary
to infer the presence or absence of any individual record from the published noisy results. The main objective
in differentially private query processing is to maximize the accuracy of the query results while satisfying the
privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy,
processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering
them individually. However, to our knowledge there is currently no practical solution to find such a strategy
for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive
methods) or require prohibitively expensive computations for even moderately large domains. Motivated
by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for
answering batch linear queries with high accuracy. LRM works for both exact (i.e., ε-) and approximate (i.e.,
(ε, δ)-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how
to set the privacy parameters, given the user’s utility expectation. Extensive experiments using real data
demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions
under differential privacy, by large margins.
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1. INTRODUCTION

Differential privacy [Dwork et al. 2006b] is an emerging paradigm for publishing statis-
tical information over sensitive data, with strong and rigorous guarantees on individ-
uals’ privacy. Since its proposal, differential privacy has attracted extensive research
efforts, such as in cryptography [Dwork et al. 2006b], algorithms [Dwork et al. 2010;
Hardt and Talwar 2010; McSherry and Talwar 2007], database management [Ding
et al. 2011; Hay et al. 2010; Li et al. 2010; Rastogi and Nath 2010; Xiao et al. 2010,
2011; Peng et al. 2013], data mining [Bhaskar et al. 2010; Friedman and Schuster
2010], social network analysis [Rastogi et al. 2009; Hay et al. 2009; Sala et al. 2011],
and machine learning [Blum et al. 2008; Chaudhuri et al. 2011; Rubinstein et al. 2012].
The main idea of differential privacy is to inject random noise into aggregate query
results such that the adversary cannot infer, with high confidence, the presence or ab-
sence of any given record r in the dataset, even if the adversary knows all other records
in the dataset besides r. The adversary’s maximum confidence in inferring private
information is controlled by a user-specified parameter ε, called the privacy budget.
Given ε, the main goal of query processing under differential privacy is to maximize
the utility/accuracy of the (noisy) query answers while satisfying the preceding privacy
requirements.

This work focuses on a common class of queries called linear counting queries, the
basic operation in many statistical analyses. Similar ideas apply to other types of linear
queries, such as, linear sums. Figure 1(a) illustrates an example electronic medical
record database where each record corresponds to an individual. Figure 1(b) shows
the exact number of HIV+ patients in each state, which we refer to as unit counts. A
linear counting query in this example can be any linear combination of the unit counts.
For instance, let xNY , xNJ, xC A, xW A be the patient counts in states NY, NJ, CA, and
WA, respectively; one possible linear counting query is xNY + xNJ + xC A + xW A, which
computes the total number of HIV+ patients in the four states listed in our example.
Another example linear counting query is xNY /19 + xNJ/8 + xC A/37, which calculates
the weighted average of patient counts in states NY, NJ, and CA, with weights set
according to their respective population sizes. In general, we are given a database with
n unit counts, and a batch QS of m linear counting queries. The goal is to answer all
queries in QS under differential privacy and maximize the expected overall accuracy
of the queries.

Straightforward approaches to answering a batch of linear counting queries usually
lead to suboptimal result accuracy. Consider processing the query set Q = {q1, q2, q3}
under the ε-differential privacy definition, detailed in Section 3. One naive solution,
referred to as noise on result (NOR), is to process each query independently, for example,
using the Laplace mechanism [Dwork et al. 2006b]. This method fails to exploit the
correlations between different queries. Consider a batch of three different queries
q1 = xNY + xNJ + xC A + xW A, q2 = xNY + xNJ, q3 = xC A + xW A. Clearly, the three queries
are correlated since q1 = q2 + q3. Thus, an alternative strategy for answering these
queries is to process only q2 and q3, and use their sum to answer q1. As will be explained
in Section 3, the amount of noise added to query results depends upon the sensitivity
of the query set, defined as the maximum possible total change in query results caused
by adding or removing a single record in the original database. Under ε-differential
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Fig. 1. Example medical record database.

privacy, the sensitivity of the query set {q2, q3} is 1, because adding/removing a patient
record in Figure 1(a) affects at most one of q2 and q3 (i.e., q2 if the record is associated
with state NY or NJ, and q3 if the state is CA or WA) by exactly 1. On the other hand, the
query set {q1, q2, q3} has a sensitivity of 2 (under the ε-differential privacy definition),
since a record in the aforesaid four states affects both q1 and one of q2 and q3. According
to the Laplace mechanism, the variance of the added noise to each query is 2�2/ε2,
where � is the sensitivity of the query set and ε the user-specified privacy budget.
Therefore, processing {q1, q2, q3} directly incurs a noise variance of (2 × 22)/ε2 for each
query; on the other hand, executing {q2, q3} leads to a noise variance of (2 × 12)/ε2 for
each of q2 and q3, and their sum q1 = q2 + q3 has a noise variance of (2 × 2)/ε2 = 4/ε2.
Clearly, the latter method obtains higher accuracy for all queries.

Another simple solution, referred to as noise on data (NOD), is to process each unit
count under differential privacy, and combine them to answer the given linear counting
queries. Continuing the example, this method computes the noisy counts for xNY , xNJ,
xC A and xW A, and uses their linear combinations to answer q1, q2, and q3. This approach
overlooks the correlations between different unit counts. In our example, xNY and xNJ
(and similarly, xC A and xW A) are either both present or both absent in every query, and
thus can be seen as a single entity. Processing them as independent queries incurs
unnecessary accuracy costs when re-combining them. In the example, NOD adds noise
with variance 2/ε2 to each unit count, and their combinations to answer q1, q2, and q3
have noise variance 8/ε2, 4/ε2, and 4/ε2, respectively. NOD’s result utility is also worse
than the aforementioned strategy of processing q2 and q3 and then adding their results
to answer q1.

In general, the query set Q may exhibit complex correlations among different queries
and among different unit counts. As a consequence, it is nontrivial to obtain the best
strategy to answer Q under differential privacy. For instance, consider the following
query set.

q1 = 2xNJ + xC A + xW A

q2 = xNJ + 2xW A

q3 = xNY + 2xC A + 2xW A

NOR is clearly a poor choice since it incurs a sensitivity of 5 under the ε-differential
privacy definition (e.g., a record of state WA affects q1 by 1, and q2 and q3 by 2 each).
The sensitivity of NOD remains 1, and it answers q1, q2, and q3 with noise variance
2×(22+12+12)/ε2, 2×(12+22)/ε2, and 2×(12+22+22)/ε2, respectively, leading to a sum-
square error (SSE) of 40/ε2. The optimal strategy in terms of SSE in this case computes
the noisy results of q′

1 = xNY /8 + xW A, q′
2 = −3xNY /8 − xC A, and q′

3 = xNY /4 − xNJ.
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Then, it obtains the results for q1, q2, and q3 as follows.

q1 = q′
1 − q′

2 − 2q′
3

q2 = 2q′
1 − q′

3

q3 = 2q′
1 − 2q′

2

The sensitivity of the preceding method is also 1 because: (i) adding/removing a
record of state NJ, CA, and WA can only affect queries q′

3, q′
2, and q′

1, respectively, by
at most 1; (ii) adding/removing a record of state NY causes the results of q′

1, q′
2, and

q′
3 to change by at most 1/8, 3/8, and 1/4, respectively, leading to a maximum total

change of 1/8 + 3/8 + 1/4 = 1. We introduce the formal definition of sensitivity later
in Section 3. Hence, independent random noise of variance 2 × 12/ε2 = 2/ε2 is injected
to the results of each of q′

1, q′
2, and q′

3. Their combination q1 = q′
1 − q′

2 − 2q′
3 thus has

a noise variance of 2 × (12 + (−1)2 + (−2)2)/ε2 = 12/ε2. Similarly, combining q′
1 − q′

3
to answer q2 and q3 as earlier incurs a noise variance of 2 × (22 + (−1)2)/ε2 = 10/ε2

and 2 × (22 + (−2)2)/ε2 = 16/ε2, respectively. The SSE for queries q1 − q3 is thus
12/ε2 + 10/ε2 + 16/ε2 = 38/ε2.

Observe that there is no simple pattern in the query set or the optimal strategy.
Since there is an infinite space of possible strategies, searching for the best one is a
challenging problem.

Li et al. [2010] first formalized the prior observations (i.e., answering a correlated
query set with an effective strategy) into the matrix mechanism. However, as we explain
in Section 2.2, the original matrix mechanism lacks a practical implementation because
the solutions in Li et al. [2010] for finding a good strategy are either inefficient (which
incurs prohibitively high computational costs for even moderately large domains) or
ineffective (which rarely obtains strategies that outperform naive methods NOD/NOR).
Later, Li and Miklau [2012] proposed the adaptive mechanism which can be seen as
an implementation of the matrix mechanism. This method, however, still incurs some
drawbacks, as discussed in Section 2.2, which limit its accuracy. Motivated by this,
we propose the first practical realization of the matrix mechanism, called the low-rank
mechanism (LRM), based on the theory of low-rank matrix approximation. LRM applies
to both ε-differential privacy and (ε, δ)-differential privacy, the two most commonly
used differential privacy definitions today. We analyze the utility of LRM under (ξ ,
η)-usefulness [Blum et al. 2008], a popular utility measure. Extensive experiments
demonstrate that LRM significantly outperforms existing solutions in terms of result
accuracy, sometimes by orders of magnitude.

The rest of the article is organized as follows. Section 2 reviews previous studies
on differential privacy. Section 3 provides formal definitions for our problem. Section
4 presents the mechanism formulation of LRM under ε-differential privacy. Section 5
discusses how to solve the optimization problem in LRM. Section 6 extends LRM to
answer queries under (ε, δ)-differential privacy. Section 7 verifies the superiority of our
proposal through an extensive experimental study. Finally, Section 8 concludes.

2. RELATED WORK

Section 2.1 surveys general-purpose mechanisms for enforcing differential privacy.
Section 2.2 presents two methods closely related to the proposed solution, namely the
matrix mechanism and adaptive mechanism.

2.1. Differential Privacy Mechanisms

Differential privacy was first formally presented in Dwork et al. [2006b], though some
previous studies have informally used similar models, such as, Dinur and Nissim
[2003]. The Laplace mechanism Dwork et al. [2006b] is the first generic mechanism
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for enforcing differential privacy, which works when the output domain is a multi-
dimensional Euclidean space. McSherry and Talwar [2007] proposed the exponential
mechanism which applies to any problem with a measurable output space. The gener-
ality of the exponential mechanism makes it an important tool in the design of many
other differentially private algorithms, for example, Cormode et al. [2012], Xu et al.
[2012, 2013], and McSherry and Talwar [2007].

The original definition of differential privacy is ε-differential privacy, which focuses
on providing a strong and rigorous definition of privacy. Besides this, another popular
definition is (ε, δ)-differential privacy, which can be seen as an approximate version of ε-
differential privacy. In many applications, (ε, δ)-differential privacy provides a similarly
strong privacy definition while enabling simpler and/or more accurate algorithms. One
basic mechanism for enforcing (ε, δ)-differential privacy is the Gaussian mechanism
which injects Gaussian noise to the query results calibrated to the L2-sensitivity of the
queries [Dwork et al. 2006a]. Hardt and Roth [2012] employed a k Gaussian measure-
ments strategy to compute the low-rank approximations of large matrices. However,
(ε, δ)-differential privacy might be unsatisfactory in certain situations. For example
De [2012] demonstrated that (ε, δ)-differential privacy is weaker than ε-differential
privacy in terms of mutual information, even when δ is negligible. The proposed solu-
tion applies to both definitions of differential privacy. We present details of these two
privacy definitions in Section 3.

Linear query processing is of particular interest in both the theory and database
communities due to its wide range of applications. To minimize the error of linear
queries under differential privacy requirements, several methods try to build a synopsis
of the original database, such as Fourier transformations [Rastogi and Nath 2010],
wavelets [Xiao et al. 2010], and hierarchical trees [Hay et al. 2010]. The compressive
mechanism [Li et al. 2011] reduces the amount of noise necessary to satisfy differential
privacy for datasets with a sparse representation. By publishing a noisy synopsis under
ε-differential privacy, these methods are capable of answering an arbitrary number of
linear queries. However, most of these methods obtain good accuracy only when the
query selection criterion is a continuous range; meanwhile, since these methods are
not workload aware, their performance for a specific workload tends to be suboptimal.

Workload-aware algorithms address this problem, optimizing the overall accuracy of
a set of given linear queries. This work falls into this category. Notable workload-aware
methods include; (i) multiplicative weights/exponential mechanism (MWEM) [Hardt
et al. 2012]; (ii) the matrix mechanism [Li et al. 2010]; and (iii) the adaptive mechanism
[Li and Miklau 2012]. MWEM publishes a synthetic dataset optimized towards the
given linear query set. In particular, it provides a beautiful theoretical bound on the
maximum error of the given queries, which grows sublinearly to the number of records
in the dataset and logarithmically with the number of queries. In practice, however, this
bound tends to be loose as it is derived from worst-case scenarios. Meanwhile, the target
problem of MWEM is different from ours, as we focus on answering a given set of linear
queries rather than publishing synthetic data. Nevertheless, MWEM can be applied to
our problem, and we compare it against the proposed solution in the experiments. The
matrix mechanism and the adaptive mechanism share some common features as with
proposed solution, and we explain them in detail in Section 2.2. It is worth mentioning
that, as our experiments show the proposed solution outperforms all previous methods
in terms of overall error on a variety of datasets and workload types.

Recently, Nikolov et al. [2013] proposed a workload decomposition method that injects
correlated Gaussian noise to the query results to satisfy (ε, δ)-differential privacy.
They prove that their solution provides an O((log m)2)-approximation to the optimal
mechanism, where m is the number of queries. However, this method is infeasible in
practice, since it involves computing minimum enclosing ellipsoids (MEE) for which

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 11, Publication date: June 2015.



11:6 G. Yuan et al.

the current best algorithm takes mO(m)n time, where n is the number of unit counts
Nikolov et al. [2013] suggest using an approximation method for computing MEE, such
as Khachiyan’s algorithm [Todd and Yildirim 2007]. This approximation algorithm still
takes high-order polynomial time to converge, which makes it prohibitively expensive
for practical applications.

Several theoretical studies have derived lower bounds for the noise level for process-
ing linear queries under differential privacy [Dinur and Nissim 2003; Hardt and Talwar
2010]. Notably, Dinur and Nissim [2003] proved that any perturbation mechanism with
maximal noise of scale O(n) cannot possibly preserve personal privacy if the adversary
is allowed to ask all possible linear queries, and has exponential computation capacity.
By reducing the computation capacity of the adversary to polynomial-bounded Turing
machines, they show that an error scale �(

√
n) is necessary to protect any individual’s

privacy. More recently, Hardt and Talwar [2010] have significantly tightened the error
lower bound for answering a batch of linear queries under differential privacy. Given
a batch of m linear queries, they proved that any ε-differential privacy mechanism
leads to squared error of at least �(ε−2m3Vol(W)), where Vol(W) is the volume of the
convex body obtained by transforming the L1-unit ball into m-dimensional space using
the linear transformations in the workload W . This article extends their analysis to
low-rank workload matrices.

Another related line of research concerns answering queries interactively under
differential privacy. In this setting, the system process queries one at a time, with-
out knowing any future query. Clearly, this problem is more difficult that the non-
interactive setting described so far, where the system knows all queries in the workload
in advance. Most notably, Hardt and Rothblum [2010] proposed the private multiplica-
tive weights mechanism (PMWM), before whose error is asymptotically optimal with
respect to the number of queries answered. The MWEM method described [Hardt et al.
2012] applies similar ideas to the non-interactive setting. Besides PMWM, Hardt and
Talwar [2010] proposed the K-norm mechanism, whose error level almost reaches the
lower bound derived in the same paper. Roth and Roughgarden [2010] introduced the
median mechanism for answering arbitrary queries interactively. However, both the
K-norm and the median mechanisms rely on uniform sampling in a high-dimensional
convex body [Dyer et al. 1991] which theoretically takes polynomial time, but is usually
too expensive to be applied in practice.

Besides linear queries, differential privacy is also applicable to more complex queries
in various research areas due to its strong privacy guarantee. In the field of data min-
ing, Friedman and Schuster [2010] proposed the first algorithm for building a decision
tree under differential privacy. Mohammed et al. [2011] studied the same problem,
and proposed an improved solution based on a generalization strategy coupled with
the exponential mechanism. Ding et al. [2011] investigated the problem of differen-
tially private data cube publication. They presented a randomized materialized view
selection algorithm which reduces the overall error and preserves data consistency.

In the database literature, a plethora of methods have been proposed to opti-
mize the accuracy of differentially private query processing. A tutorial on database-
related differential privacy technologies can be found in Yang et al. [2012]. Cormode
et al. [2012] investigated the problem of multidimensional indexing under differen-
tial privacy, with the novel idea of assigning different amounts of privacy budget
to different levels of the index. Peng et al. [2012] proposed the DP-tree which ob-
tains improved accuracy for higher-dimensional data. Xu et al. [2012, 2013] opti-
mized the procedure of building a differentially private histogram, whose method com-
bines dynamic programming for optimal histogram computation and the exponential
mechanism. Li et al. [2012] study the problem of how to perform frequent itemset
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mining on transaction databases while satisfying differential privacy, with the novel
approach of constructing a basis set and then using it to find the most frequent patterns.

In addition, differential privacy for modeling security in social networks has also
received much attention in recent literature. Rastogi et al. [2009] considered answering
subgraph counting queries in a social network. Their solution assumes a Bayesian
adversary whose prior is drawn from a distribution. They compute a high-probability
upper bound on the local sensitivity of the data and then answer by adding noise
proportional to this bound. Hay et al. [2009] showed how to privately approximate the
degree distribution in the edge adjacency model of a graph. Also, Sala et al. [2011]
developed a differentially private graph model based on dk-series reconstruction. Their
approach mainly extracts a graph’s detailed structure into degree correlation statistics
and injects noise into the resulting dataset, then generates a synthetic graph.

Lastly, differential privacy is also becoming a hot topic in the machine learning
community, especially for learning tasks involving sensitive information, such as med-
ical records. In Chaudhuri et al. [2011], the authors proposed a generic differentially
private learning algorithm which requires strong convexity of the objective function.
Rubinstein et al. [2012] studied the problem of SVM learning on sensitive data, and
proposed an algorithm to perturb the kernel matrix with performance guarantees when
the gradient of the loss function satisfies the Lipschitz continuity property. Zhang et al.
[2012] proposed a functional mechanism for a large class of optimization-based analy-
ses [Zhang et al. 2012]. Later, they proposed the PrivGene framework which combines
genetic algorithms and an enhanced version of an exponential mechanism for differen-
tially private model fitting [Zhang et al. 2013]. General differential privacy techniques
have also been applied to real systems such as network trace analysis [McSherry and
Mahajan 2010] and private recommender systems [McSherry and Mironov 2009].

2.2. Matrix Mechanism and Adaptive Mechanism

In the seminal work of Li et al. [2010], the authors proposed the matrix mechanism
(MM) which formalizes the intuition that a batch of correlated linear queries can be
answered more accurately under ε-differential privacy by processing a different set of
queries (called the strategy) and combining their results. Specifically, given a workload
of linear counting queries, MM first constructs a workload matrix W of size m × n,
where m is the number of queries and n the number of unit counts. The construction of
the workload matrix is elaborated further in Section 3. After this, MM searches for a
strategy matrix A of size r × n, where r is a positive integer. Intuitively, A corresponds
to another set of linear queries such that every query in W can be expressed as a linear
combination of the queries in A. The matrix mechanism then answers the queries in
A under ε-differential privacy, and subsequently uses their noisy results to answer
queries in W .

The main challenge for applying the matrix mechanism to practical workloads is to
identify an appropriate strategy matrix A. Li et al. [2010] provided two algorithms for
this purpose. The first, based on iteratively solving a pair of related semidefinite pro-
grams, incurs O(m3n3) computational overhead, which is prohibitively expensive even
for moderately large values of m and n. The second solution (called the approximate
matrix mechanism (AMM)) computes an L2-approximation of the optimal strategy ma-
trix A. This method, though faster than the first one, still requires high CPU costs and
memory consumption, and scales poorly with the domain size and query set cardinality.
In order to test the approximate matrix mechanism with large data and query sets in
our experiments, we have devised an improved solution, which we call the exponential
smoothing mechanism (ESM), based on the problem formulation of the approximate
matrix mechanism in Li et al. [2010]. ESM is at least as accurate as the method in Li
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et al. [2010] and yet much more efficient. Hence in our experiments we use ESM in
place of AMM. Appendix A.1 provides details of ESM.

There are, however, two main drawbacks of ESM (and also vanilla AMM). First, the
L2-approximation of the optimal strategy matrix often has poor quality. In fact, due
to this problem, in our experiments we found that, under ε-differential privacy, the
accuracy of ESM is often no better than the naive solution NOD that injects noise
directly into the unit counts. A second and more subtle problem is that the formulation
of the optimization program in AMM involves matrix inverse operators which can cause
numerical instability when the final solution (i.e., the strategy matrix) is of low rank,
as explained in Appendix A.1. The proposed low-rank mechanism avoids both problems
and achieves significantly higher result accuracy, as shown in our experiments.

The idea of a matrix mechanism naturally extends to (ε, δ)-differential privacy, us-
ing the Gaussian mechanism instead of the Laplace mechanism as the fundamental
building block. In this case, the optimization program is defined using L2 form, and the
AMM formulation is equivalent to that of MM, meaning that AMM and ESM now solve
the exact optimization program. Hence, in theory, AMM can obtain optimal results.
However, in practice both ESM and the AMM implementation in Li et al. [2010] often
fail to converge to the optimal strategy matrix due to numerical instability incurred by
the matrix inverse operator in the AMM formulation.

Recently, Li and Miklau [2012] proposed another implementation of AMM, called the
adaptive mechanism (AM). For any given workload W , AM attempts to find the best
strategy matrix by computing the optimal nonnegative weights for the eigenvectors
of the workload matrix W . Since the strategy matrix may have one or more columns
whose L2-norms are less than the sensitivity, they refine the strategy matrix by ap-
pending some completing columns to the candidate strategy matrix without raising the
sensitivity. Therefore this postprocessing step can reduce the expected error. AM incurs
two serious drawbacks. First, it involves solving a complicated semidefinite program,
and it is not known whether their solution to the program converges to the optimal
solution. Second and more importantly, such multistep strategy in AM does not offer
any guarantee on optimality. The proposed method LRM is free of these problems and
obtains significantly better performance, as we show in the experiments. Appendix A.2
provides details of AM.

3. PRELIMINARIES

We focus on answering a batch of linear counting queries Q = {q1, q2, . . . , qm} over a sen-
sitive database D. Each query qi ∈ Q is a linear combination of unit counts in the data
domain, denoted as x1, x2, . . . , xn. In the example of Figure 1, the sensitive database
D contains records corresponding to individual HIV+ patients; each unit count is the
number of such patients in a state of the U.S.; each query in the example is a linear
combination of these state-level patient counts. Our goal is to answer Q with minimum
overall error while satisfying differential privacy. In particular, we consider two defi-
nitions of differential privacy, namely ε-differential privacy (i.e., the original definition
of differential privacy) and (ε,δ)-differential privacy (a popular formulation of approxi-
mate differential privacy). Our solutions use the Laplace mechanism (respectively the
Gaussian mechanism) as a fundamental building block to enforce ε-(respectively, (ε, δ)-)
differential privacy. In the following, Section 3.1 presents the definition of ε-differential
privacy and the Laplace mechanism. Section 3.2 covers (ε, δ)-differential privacy and
the Gaussian mechanism. Section 3.3 describes naive approaches to answering a batch
of linear counting queries. Section 3.4 explains important properties of low-rank ma-
trices that are used in our solutions. Table I summarizes frequently used notations
throughout the article.
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Table I. Summary of Frequent Notations

Symbol Meaning
D input database
n number of unit counts
Q input query set
m number of queries in Q
W workload matrix, i.e., the matrix representation of Q

B, L a decomposition of W satisfying W ≈ B · L
s rank of workload matrix W
r number of columns in B (also number of rows in L)

Q(D) exact answer of Q on database D
�(Q) L1 sensitivity of Q
�(Q) L2 sensitivity of Q
ε, δ privacy parameters
ξ, η utility parameters

κ(W ) generalized condition number of matrix W
ρ(W ) ρ-coherence of matrix W
|||X|||1 maximum absolute column sum of matrix X
|||X|||2 spectral norm, maximum singular value of matrix X
|||X|||∞ maximum absolute row sum of matrix X
‖X‖∗ nuclear norm, sum of the singular values of matrix X
‖X‖F Frobenius norm, square root of the sum of squared elements of matrix X

3.1. ε-Differential Privacy and the Laplace Mechanism

The basic idea behind the privacy guarantee of differential privacy is the indistin-
guishability between neighbor databases. Two databases D and D′ are called neighbor
databases iff D′ can be obtained by adding or removing exactly one record from D. In
the example of Figure 1, a neighbor database can be obtained by removing an individ-
ual from the original data, or by adding another one. For linear counting queries, the
essential difference between two neighbor databases D and D′ is that they differ on
exactly one unit count, by exactly one. Formally, let {x1, x2, . . . , xn} be the set of unit
counts corresponding to D and {x′

1, x′
2, . . . , x′

n} be the unit counts for D′. Then, there
exists an i, 1 ≤ i ≤ n, such that xj = x′

j for all j 
= i, and |xi − x′
i| = 1.

Given a set of queries Q, a randomized mechanism M for answering Q satisfies
ε-differential privacy iff for every possible pair of neighbor databases D and D′, the
following inequality holds:

∀R : Pr(M(Q, D) = R) ≤ eε Pr(M(Q, D′) = R), (1)

where R is any possible output of M, and M(Q, D) (respectively M(Q, D′)) is the output of
M given query set Q and input database D (respectively, D′). This inequality indicates
that, given an output R of M, the adversary can only have limited confidence for
inferring whether the input database is D or D′, regardless of his/her background
knowledge. Since D and D′ can be any two neighbor databases that differ in any record,
the prior inequality also limits the adversary’s confidence for inferring the presence or
absence of a record in the input database; hence, it provides plausible deniablity to any
individual involved in the sensitive data.

The Laplace mechanism [Dwork et al. 2006b] is a fundamental solution for enforcing
ε-differential privacy based on the concept of L1-sensitivity. Given a query set Q, its
L1-sensitivity �(Q) is the maximum L1 distance between the exact results of Q on any
pair of neighbor databases D and D′. Formally, we have

�(Q) = max
D,D′

‖Q(D), Q(D′)‖1. (2)

Note that, in the preceding equation, D and D′ can be any pair of neighbor databases.
Hence �(Q) is a property of the query set Q and the data domain, and does not depend
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upon the actual sensitive data D. In the example of Figure 1, the L1-sensitivity of a
single query q1 = xNY +xNJ +xC A+xW A is 1 because any two neighbor databases D and
D′ differ on only one unit count (which can be one of xNY , xNJ, xC A or xW A) by exactly 1.
If we include q2 = xNY + xNJ and q3 = xC A + xW A in the query set Q, the L1-sensitivity
of Q = {q1, q2, q3} is 2, because a change of 1 on any of xNY , xNJ, xC A or xW A affects
the result of q1 by 1, and either one (but not both) of q2 and q3 by 1, leading to an L1
distance of 2.

Given a database D and a query set Q, the Laplace mechanism (denoted as MLap)
outputs a randomized result set R that follows the Laplace distribution with mean
Q(D) and scale �(Q)

ε
, that is,

Pr(MLap(Q, D) = R) ∝ exp
(

ε

�(Q)
‖R − Q(D)‖1

)
. (3)

This is equivalent to adding independent Laplace noise to the exact result of each
query in Q, that is, M(Q, D) = Q(D) + Lap(�(Q)

ε
)m, where m is the number of queries in

Q, and Lap(�(Q)
ε

) is a random variable following zero-mean Laplace distribution with
scale λ = �(Q)

ε
. The probability density function of the zero-mean Laplace distribution

is

f (x) = 1
2λ

exp
(

−‖x‖1

λ

)
. (4)

According to properties of the Laplace distribution, the variance of Lap(λ) is
2λ2 = 2�(Q)2

ε2 . Since the Laplace noise injected into each of the m query results is
independent, the overall expected squared error of the query answers obtained by the
Laplace mechanism is 2m�(Q)2

ε2 . In our running example in Figure 1, to answer the
query set Q = {q1 = xNY + xNJ + xC A + xW A, q2 = xNY + xNJ, q3 = xC A + xW A} under ε-
differential privacy, a direct application of the Laplace mechanism injects independent,
zero-mean Laplace noise of scale 2

ε
to the exact result of each of q1, q2 and q3, since the

L1-sensitivity for this set of queries is 2 (as discussed in Section 1). The overall squared
error for Q is thus 2×3×22

ε2 = 24
ε2 .

3.2. (ε, δ)-Differential Privacy and the Gaussian Mechanism

ε-differential privacy can be difficult to enforce, especially for queries with high L1-
sensitivity or those whose L1-sensitivity is difficult to analyze. Hence, relaxed versions
of ε-differential privacy have been studied in the past, among which a popular def-
inition is the (ε, δ)-differential privacy, also called approximate differential privacy.
This definition involves an additional parameter δ which is a nonnegative real number
controlling how closely this definition approximates ε-differential privacy. Formally, let
Range(M) be the set of all possible outputs of a mechanism M. A randomized mecha-
nism M satisfies (ε, δ)-differential privacy iff, for any two neighbor databases D and
D′, the following holds:

∀R ⊆ Range(M) : Pr(M(Q, D) ∈ R) ≤ eε Pr(M(Q, D′) ∈ R) + δ, (5)

where R is any set of possible results of M. It can be derived that, when δ = 0, (ε,
δ)-differential privacy is equivalent to ε-differential privacy. Accordingly, since δ is
nonnegative, any mechanism that satisfies ε-differential privacy also satisfies (ε, δ)-
differential privacy for any value of δ. When δ > 0, (ε, δ)-differential privacy relaxes
ε-differential privacy by ignoring outputs of M with very small probability (controlled
by parameter δ). In other words, an (ε, δ)-differentially private mechanism satisfies
ε-differential privacy with a probability controlled by δ.
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A basic mechanism for enforcing (ε, δ)-differential privacy is the Gaussian mechanism
[Dwork et al. 2006a], which involves the concept of L2-sensitivity. For any two neighbor
databases D and D′, the L2-sensitivity �(Q) of a query set Q is defined as

�(Q) = max
D,D′

‖Q(D), Q(D′)‖2. (6)

In the running example shown in Figure 1, the L2-sensitivity for the query set
Q = {q1 = xNY + xNJ + xC A + xW A, q2 = xNY + xNJ, q3 = xC A + xW A} is

√
2, since

the exact results of q1 (as well as one of q2 and q3) differ by at most 1 for any two
neighbor databases, leading to an L2-sensitivity of

√
12 + 12 = √

2. Similar to L1-
sensitivity, the L2-sensitivity �(Q) depends on the data domain D and the query set Q,
not the actual data. Given a database D and a query set Q, the Gaussian mechanism
(denoted by MGau) outputs a random result that follows the Gaussian distribution with
mean Q(D) and magnitude σ = �(Q)

h(ε,δ) , where h(ε, δ) = ε√
8 ln(2/δ)

. This is equivalent to

adding m-dimensional independent Gaussian noise Gau( �(Q)
h(ε,δ) )

m, in which Gau( �(Q)
h(ε,δ) ) is

a random variable following a zero-mean Gaussian distribution with scale σ = �(Q)
h(ε,δ) .

The probability density function of the zero-mean Gaussian distribution is

g(x) =
√

1
2πσ 2 exp

(
−‖x‖2

2

2σ 2

)
. (7)

According to properties of the Gaussian distribution, the variance of Gau(σ ) is σ 2 =
�(Q)2

h(ε,δ)2 . Since independent Gaussian noise is injected to each of the m query results,

the total expected squared error for the query set is m�(Q)2

h(ε,δ)2 . In our running example
in Figure 1, to answer the query set Q = {q1 = xNY + xNJ + xC A + xW A, q2 = xNY +
xNJ, q3 = xC A+xW A} under (ε, δ)-differential privacy, a direct application of the Gaussian
mechanism injects independent, zero-mean Laplace noise of scale

√
2

h(ε,δ) to the exact
result of each of q1, q2, and q3, since the L2-sensitivity for this set of queries is

√
2

according to Eq. (6). The overall squared error for Q is thus 3×(
√

2)2

(h(ε,δ))2 = 48 ln(2/δ)
ε2 .

3.3. Naive Solutions for Answering a Batch of Linear Counting Queries

This article focuses on answering a batch of linear counting queries, each of which is a
linear combination of the unit counts of the input database D. Formally, given a weight
vector (w1, w2, . . . , wn)T ∈ R

n, a linear counting query can be expressed as

q(D) = w1x1 + w2x2 + · · · + wnxn.

We aim to answer a batch of m linear queries, Q = {q1, q2, . . . , qm}. The query set Q
thus can be represented by a workload matrix W with m rows and n columns. Each
entry Wij in W is the weight in query qi on the j-th unit count xj . Since we do not
use any other information of the input database D besides the unit counts, in the
following we abuse the notation by using D to represent the vector of unit counts, that
is, D = (x1, x2, . . . , xn)T ∈ R

n. Hence the query batch Q can be answered by

Q(D) = WD =
⎛
⎝∑

j

W1 j x j, . . . ,
∑

j

Wmj xj

⎞
⎠

T

∈ R
m×1.

Two naive solutions for enforcing differential privacy on a query batch are as follows.
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—Noise on data (NOD). The main idea of NOD is to add noise to each unit count. Then,
the set of noisy unit counts are published, which can be used to answer any linear
counting query. Because two neighbor databases differ on exactly one unit count by
exactly 1, both the L1- and the L2-sensitivity for the set of unit counts is 1, according
to their respective definitions. NOD employs the Laplace mechanism to enforce ε-
differential privacy (or the Gaussian mechanism to enforce (ε, δ)-differential privacy)
on the published unit counts, and then combines the noisy unit counts to answer the
query batch Q. Let MNOD,ε and MNOD,(ε,δ) denote the NOD mechanism for enforcing
ε-differential privacy and (ε, δ)-differential privacy, respectively. We have

MNOD,ε(Q, D) = W
(

D + Lap
(

1
ε

)n)
,

MNOD,(ε,δ)(Q,D) = W
(

D + Gau
(

1
h(ε, δ)

)n)
,

where h(ε, δ) = ε√
8 ln(2/δ)

as in the Gaussian mechanism.

Based on the analysis of the Laplace and Gaussian mechanisms, the expected
squared error for MNOD,ε and MNOD,(ε,δ) is 2

ε2

∑
i, j W2

i j and 1
(h(ε,δ))2

∑
i, j W2

i j , respectively.
For both privacy definitions, the error of NOD is proportional to the squared sum of
the entries in W .

—Noise on results (NOR). NOR simply applies the Laplace mechanism (for ε-
differential privacy) or the Gaussian mechanism (for (ε, δ)-differential privacy) di-
rectly on the query set Q. Recall that each query qi ∈ Q is a linear combination of
the unit counts, that is, qi = ∑

j Wij xj . Meanwhile, two neighbor databases differ
on exactly one unit count by exactly 1. Therefore the sensitivity (both L1 and L2)
of qi is max j Wij , that is, the maximum unit count weight in qi. Regarding Q, its
L1-sensitivity is �(Q) = max j

∑
i |Wij |, that is, the highest column absolute sum [Li

et al. 2010]. Similarly, its L2-sensitivity is �(Q) = max j

√∑
i W2

i j , that is, the high-
est column L2-norm value [Li et al. 2010]. Thus MNOR,ε and MNOR,(ε,δ) output the
following results.

MNOR,ε(Q, D) = W D + Lap
(

�(Q)
ε

)m

,

MNOR,(ε,δ)(Q,D) = W D + Gau
(

�(Q)
h(ε, δ)

)m

,

where �(Q) = max j
∑

i |Wij |, �(Q) = max j

√∑
i W2

i j , and h(ε, δ) = ε√
8 ln(2/δ)

.

Similar to the analysis of the Laplace and Gaussian mechanisms, the expected

squared error of the MNOR,ε on query Q is 2m�(Q)2

ε2 = 2mmax j
∑

i W2
i j

ε2 , and that of MNOR,(ε,δ) is
m�(Q)2

h(ε,δ)2 = mmax j
∑

i W2
i j

h(ε,δ)2 . An interesting observation is that, under (ε, δ)-differential privacy,
NOR obtains lower expected squared error than NOD iff mmax j

∑
i W2

i j <
∑

j
∑

i W2
i j .

Note that when m ≥ n this inequality can never hold, implying that NOR is more
effective when the number of queries m is smaller than the number of unit counts n.

3.4. Low-Rank Matrices and Matrix Norms

The rank of a real-value matrix W is the number of nonzero singular values obtained
by performing singular value decomposition (SVD) of W . Specifically, SVD decomposes
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W of size m× n into the product of three matrices: W = U�V . U and V are row-wise
and column-wise orthogonal matrices, respectively, and � is a diagonal matrix with
positive real diagonal values which are the singular values of W . Let s be the number
of such singular values, that is, the rank of W . Then, matrices U , �, and V are of sizes
m× s, s × s, and s × n, respectively. SVD guarantees that s ≤ min{m, n}.

A matrix W of size m × n whose rank is less than min{m, n} is called a low-rank
matrix. This happens when the rows and columns of W are correlated. In the running
example of Figure 1, the workload matrix corresponding to the query set Q = {q1 =
xNY + xNJ + xC A + xW A, q2 = xNY + xNJ, q3 = xC A + xW A} is a low-rank matrix, since the
queries in Q are correlated (i.e., q1 = q2 + q3) and the unit counts are also correlated
(e.g., xNY and xNJ). The main idea of the proposed low-rank mechanism is to exploit
the low-rank property of the workload matrix to reduce the necessary amount of noise
required to satisfy differential privacy.

An important concept used in the proposed solution is the matrix norm, which
is an extension of the notion of vector norms to matrices. Two common definitions
of the matrix norm are: (i) entry-wise norm which treats a matrix W of size m × n
simply as a vector of size m× n consisting of all entries of W , and applies one of the
vector norm definitions (for example, applying the L2-norm to all entries in W obtains
‖W‖2 = (

∑m
i=1

∑n
j=1 |Wij |2)1/2, also called the Frobenius norm, written as ‖W‖F ); and

(ii) induced norm (or operator norm), defined by |||W |||p = maxx 
=0 ‖Wx‖p/‖x‖p, where
x is a vector of size n, and ‖x‖p is the Lp-norm of x. Notably, |||W |||1 is simply the
maximum absolute column sum of W , and |||W |||∞ is simply the maximum absolute
row sum of the matrix W .

4. WORKLOAD DECOMPOSITION

Recall that the example in Figure 1 shows that sometimes it is best to answer a batch
of linear counting queries Q indirectly, by first answering a set of intermediate linear
counting queries under differential privacy, and then to combine their results to an-
swer Q. The proposed low-rank mechanism (LRM) follows this idea. Specifically, given
a workload matrix W corresponding to the query set Q, LRM decomposes W into the
product of two matrices W = BL. B is of size m × r and L is of size r × n. Here, r is
a parameter to be determined which specifies the number of intermediate queries; L
corresponds to the set of intermediate linear counting queries to answer under differ-
ential privacy; B indicates how the results of these intermediate queries are combined
to answer Q. The main challenge lies in how to choose the best decomposition that
minimizes the overall error of Q, as there is a vast search space for possible decom-
positions. In this section, we model the search for the optimal matrix decomposition
as a constrained optimization program which is solved in the next section. For ease
of presentation, we focus on ε-differential privacy in this and the next section, and
defer the discussion of (ε, δ)-differential privacy until Section 6. In addition, we provide
asymptotic error bounds for LRM in Appendix B.

In the following, Section 4.1 formalizes LRM and the optimization program
of workload decomposition. Section 4.2 analyzes the result utility of LRM with
the optimal workload decomposition, and discusses the selection of the privacy
parameter ε. Finally, Section 4.3 presents a relaxed optimization program for workload
decomposition which can further improve the accuracy of LRM for certain workloads.

4.1. Optimization Program Formulation

We first formalize LRM under ε-differential privacy. Given W and its decomposition
W = BL, LRM first applies the Laplace mechanism to the intermediate queries speci-
fied by L. Let �(L) denote the L1-sensitivity of these intermediate queries. Similar to
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the case of NOR discussed in Section 3.3, �(L) is the maximum sum of absolute values
of a column in L, which is

�(L) = max
j

∑
i

|Lij |.

Applying the Laplace mechanism, we obtain the noisy results of the intermediate
queries

LD + Lap
(

�(L)
ε

)r

,

where D denotes the vector of unit counts. Next, LRM multiplies matrix B with the
noisy intermediate results, which essentially recombines the intermediate results to
answer Q. Let MLRM,ε(Q, D) denote LRM under ε-differential privacy, we have

MLRM,ε(Q, D) = B
(

LD + Lap
(

�(L)
ε

)r)
. (8)

Since W = BL, we have Q(D) = W D = BLD. Hence the output MLRM,ε(Q, D) can be
seen as the sum of two components: BLD and B · Lap(�(L)

ε
). The former is the exact

result of Q, and the latter is the noise added in order to satisfy differential privacy. Next
we analyze the error of LRM. First we define the scale of a decomposition as follows.

Definition 4.1 (Scale of a Workload Decomposition). Given a workload decomposi-
tion W = BL, its scale �(B) is the squared sum of the entries in B, that is,
�(B) = ∑

i, j B2
i j .

Meanwhile, we call �(L) the L1-sensitivity of the decomposition W = BL. The follow-
ing lemma shows that the expected squared error of LRM is linear to the scale of the
decomposition, and quadratic to the L1-sensitivity of the decomposition.

LEMMA 4.2. The expected squared error of MLRM,ε(Q, D) using decomposition W =
BL is 2�(B)�(L)2

ε2 .

PROOF. According to Eq. (8), MLRM,ε(Q, D) − Q(D) = B · Lap(�(L)
ε

)r. The expected
squared error of the mechanism is thus (

∑
i j B2

i j)
2(�(L))2

ε2 . Since �(B) = ∑
i j B2

i j , the error

can be rewritten as 2�(B)(�(L))2

ε2 .

Therefore, to find the best workload decomposition, it suffices to solve the optimal B
and L that minimize �(B)

(
�(L)

)2, while satisfying W = BL. However, this optimization
program is difficult to solve because: (i) the objective function involves the product of
�(B) and the square of �(L); and (ii) �(L) may not be differentiable. To address this
problem, we first prove an important property of workload decomposition which implies
that the exact value of �(L) is not important.

LEMMA 4.3. Given a workload decomposition W = BL, we can always construct
another decomposition W = B′L′ satisfying: (i) �(L′) = 1 and (ii) (B′, L′) lead to the
same expected squared error of MLRM,ε as (B, L), that is,

�(B)�(L)2 = �(B′)
(
�(L′)

)2 = �(B′).
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PROOF. We obtain B′ and L′ by B′ = �(L)B, L′ = 1
�(L) L. Based on the definition of

L1-sensitivity, we have

�(L′) = max
j

∑
i

|L′
i j | = max

j

∑
i

∣∣∣∣ Lij

�(L)

∣∣∣∣ = 1
�(L)

�(L) = 1.

Meanwhile, according to Definition 4.1, we have

�(B′) =
∑

i j

(B′
i j)

2 =
∑

i j

�(L)2(Bij)2 = �(B)�(L)2.

This leads to the conclusion of the lemma.

It follows from the previous lemma that there must be an optimal decomposition with
L1-sensitivity equal to 1 because we can always apply Lemma 4.3 to transform an
optimal decomposition whose L1-sensitivity is not 1 to another optimal decompo-
sition whose L1-sensitivity is 1. Therefore it suffices to fix �(L) to 1 in the opti-
mization program. Meanwhile, according to properties of the matrix trace, we have
�(B) = tr(BT B). Thus we arrive at the following theorem.

THEOREM 4.4. Given the workload W, a workload decomposition W = BL minimizes
the expected squared error of the queries if (B, L) is the optimal solution to the following
program.

min
B,L

1
2

tr(BT B)

s.t. W = BL

∀ j
r∑
i

|Lij | ≤ 1

(9)

The constant factor 1/2 in the preceding objective function simplifies the notations
in following sections; it does not affect the optimal solution of the program. We omit the
proof since it is already clear from the earlier discussions. Solving the prior optimization
program is rather difficult, since it involves a nonlinear objective function and complex
constraints. We present a relaxation of the problem in Section 4.3, and our solution in
Section 5.

4.2. Utility Analysis and Budget Selection

In practice, users are often unsure about how to set the privacy parameter ε involved
in ε-differential privacy. Instead, setting the desired utility level of the query results is
much more intuitive. Given the user-specified utility, this section derives the smallest
ε value for LRM that satisfies the utility requirement. Note that smaller values of ε
correspond to stronger privacy protection. We use a common definition of query result
utility called (ξ , η)-usefulness [Blum et al. 2008] as follows.

Definition 4.5. Given a mechanism M, query set Q, sensitive data D, and parame-
ters ξ > 0 and 0 < η < 1, we say that M is (ξ , η)-useful with respect to Q and D under
the ‖ · ‖∗-norm if the following inequality holds

Pr
(‖M(Q, D) − Q(D)‖∗ ≥ ξ

) ≤ η,

where, the ‖ · ‖∗-norm can be any vector norm definition. In our analysis, we consider
the ‖ · ‖1-norm and the ‖ · ‖∞-norm.
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Given user-specified values of ξ and η, we now derive the minimum value for ε with
which LRM achieves (ξ , η)-usefulness. The derivation uses Markov’s inequality and
the Chernoff bound, as follows.

LEMMA 4.6 (MARKOV’S INEQUALITY AND THE CHERNOFF BOUND [BILLINGSLEY 2012]). Given
a nonnegative random variable X and t > 0, the following inequality holds:

Pr(X ≥ t) ≤ E[X]
t

.

Moreover, for any s ≥ 0, we have

Pr(X ≥ t) = Pr(esX ≥ est) ≤ E[esX]
est .

The minimum ε value is given in the following theorem.

THEOREM 4.7 (UTILITY OF LRM UNDER ε-DIFFERENTIAL PRIVACY). Given query set Q,
database D, and user-specified parameters ξ > 0 and 0 < η < 1: (i) MLRM,ε with
the optimal decomposition W = BL solved from Program (9) returns (ξ , η)-useful re-
sults of Q on D under the ‖ · ‖1-norm, when the privacy parameter ε satisfies ε ≥
(2|||B|||1(s·ln 2−ln η))/ξ , (ii) meanwhile, MLRM,ε with the optimal decomposition achieves
(ξ , η)-usefulness under the ‖ · ‖∞-norm, when ε ≥ (2|||B|||∞(

∑s
i=1 ln( i

i−0.5 ) − ln η))/ξ .

PROOF. (i) We first prove the utility of LRM under the ‖·‖1-norm. Let X be the Laplace
noise vector injected into the results of intermediate queries corresponding to L. We
have

‖MP(Q, D) − Q(D)‖1 = ‖B(LD + X) − W D‖1

= ‖B · X‖1 = |||B · X|||1 ≤ |||B|||1 · |||X|||1 = |||B|||1 · ‖X‖1.

According to the Laplace mechanism, X1, X2, . . . , Xr are independently and identi-
cally distributed (i.i.d.) random variables following the zero-mean Laplace distribution
with scale �(L)/ε. Since L is obtained by solving Program (9), we have �(L) = 1.
Therefore the scale of each of the Laplace variables Xi, 1 ≤ i ≤ r is 1/ε. According
to properties of the Laplace distribution, |Xi| follows the exponential distribution with
rate parameter equal to ε. Let Y = ‖X‖1 = |X1|+|X2|+· · ·+|Xr|. Then, according to prop-
erties of the exponential distribution, Y follows the Erlang distribution. Specifically,
the probability distribution function of Y is

Pr (Y = x) = εrxr−1e−εx

(r − 1)!
dx.

For any positive number t such that E[etY ] exists, we have

E[etY ] =
∫ ∞

0
etx · εrxr−1e−εx

(r − 1)!
dx =

(
1 − t

ε

)−r

, t < ε.

Moreover, for any real number c, according to Lemma 4.6, we have

Pr(Y > c) = Pr(etY > etc) ≤ E[etY ]
ect = (1 − t

ε
)−r

ect .
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Setting t = ε
2 and c = ξ

|||B|||1 , we obtain

Pr
(

Y >
ξ

|||B|||1

)
≤ ( 1

2 )−r

e
ξε

2|||B|||1
.

Therefore we have

‖MP(Q, D) − Q(D)‖1 ≤ |||B|||1 · Y

⇒ ∀ξ, Pr(‖MP(Q, D) − Q(D)‖1 ≥ ξ ) ≤ Pr(Y ≥ ξ

|||B|||1 ) ≤ ( 1
2 )−r

e
ξε

2|||B|||1
. (10)

When ε ≥ (2|||B|||1 (r · ln 2 − ln η)) /ξ , the previous probability is thus bound by η. This
finishes the proof for claim (i) in the theorem.

(ii) Next we focus on the ‖ · ‖∞-norm. Let X denote the same meaning as in the proof
of part (i). Then, we have

‖MP(Q, D) − Q(D)‖∞ = ‖B · X‖∞ ≤ |||B|||∞ · ‖X‖∞.

The preceding inequality holds due to the fact that ‖Rx‖∞ ≤ |||R|||∞ · ‖x‖∞ for any
matrix R and vector x. Let Y = ‖X‖∞ = max (|X1|, |X2|, . . . , |Xr|). Similar to part (i)
of the proof, each |Xi|, 1 ≤ i ≤ r follows the exponential distribution with rate ε.
According to the memoryless property of the exponential distribution, we create a
chain of variables as

Y = max (|X1|, |X2|, . . . , |Xr|) = Xλ=rε + Xλ=(r−1)ε + · · · + Xλ=ε . (11)

where each Xλ=x denotes an independent exponential random variable with rate x.
Intuitively, Xλ=rε models the distribution of the smallest value among |X1|, |X2|, . . . , |Xr|;
Xλ=(r−i+1)ε, 1 < i ≤ r models the difference between the i-th smallest value and the
(i − 1)-th smallest value among |X1|, |X2|, . . . , |Xr|. The sum thus yields the maximum
value among |X1|, |X2|, . . . , |Xr|.

Similar to part (i) of the proof, we further derive

E[etY ] = E
[
et(Xλ=rε+Xλ=(r−1)ε+···+Xλ=ε)] = E

[
et(Xλ=rε )

] · E[et(Xλ=(r−1)ε)] · · · · · E[et(Xλ=ε )
]
.

Because E[etXλ=a] = ∫∞
0 etx · ae−axdx = a

a−t for any t < a, we reach

∀t < ε,E[etY ] =
r∏

i=1

iε
iε − t

.

Finally, according to Lemma 4.6, we have the following inequality

Pr(Y > c) = Pr(et·Y > etc)

≤ E[et(Y )]
ect

=
r∏

i=1

iε
iε − t

/ect.
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With the choice of t = ε
2 and c = ξ

|||B|||∞ , we obtain

‖MP(Q, D) − Q(D)‖∞ ≤ |||B|||∞ · ‖X‖∞

⇒ ∀ξ, Pr(‖MP(Q, D) − Q(D)‖∞ > ξ ) ≤ Pr
(
‖X‖∞ >

ξ

|||B|||∞

)
⇒ ∀ξ, Pr(‖MP(Q, D) − Q(D)‖∞ > ξ ) ≤ (∏r

i=1
iε

iε−t

)
/ect =

(∏r
i=1

iε
iε−ε/2

)
/e

ξε

2|||B|||∞ .

When ε ≥ (2|||B|||∞(
∑r

i=1 ln( i
i−0.5 ) − ln η))/ξ , the prior probability is bounded by η.

4.3. Relaxed Workload Decomposition

Program (9) is rather difficult to solve, since it contains a nonlinear objective as well as
complex constraints. To devise a stable numerical solution, we relax the formulation so
that BL does not necessarily match W exactly, but within a small error tolerance. To
do this, we introduce a new parameter γ to bound the difference between W and BL in
terms of the Frobenius norm. This leads to the following optimization program.

min
B,L

1
2

tr(BT B)

s.t. ‖W − BL‖F ≤ γ

∀ j
r∑
i

|Lij | ≤ 1

(12)

The following theorem analyzes the error of LRM with the optimal decomposition
obtained by solving Program (12).

THEOREM 4.8. The expected squared error of MLRM,ε(Q, D) using the optimal decom-
position (B, L) solved from Program (12) is at most

2tr(BT B)/ε2 + γ
∑

i

x2
i .

PROOF. When W 
= BL, there are two sources of error. The first is the added Laplace
noise. According to Lemma 4.2, the error incurred by the Laplace noise is at most
2
ε2 �(B)(�(L))2 ≤ 2

ε2 tr(BT B).
The second source of the error is due to the difference between W and BL. The

incurred expected squared error is bounded by.

((W − BL)D)T (W − BL)D

≤ ‖W − BL‖2
F DT D = ‖W − BL‖2

F

n∑
i=1

x2
i .

The previous inequality is due to the Cauchy-Schwartz inequality. By linearity of
expectation, the expected squared errors can be simply summed up. This leads to the
conclusion of the theorem.

While Theorem 4.8 implies the possibility of estimating the optimal γ , it is not prac-
tical to implement directly, because this estimation depends on the data, that is,

∑
i x2

i .
In our experiments, we test different values of γ , report their relative performance,
and describe guidelines for setting the appropriate γ independently of the underlying
data.
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5. SOLVING FOR THE OPTIMAL WORKLOAD DECOMPOSITION

This section solves the relaxed workload decomposition problem defined in Program
(12). This program is rather difficult to solve because it is neither convex nor differn-
tiable. In the following, Section 5.1 describes an effective and efficient solution based
on the inexact augmented Lagrangian method [Conn et al. 1997; Lin et al. 2010].
Section 5.2 proves that the proposed solution always converges, and analyzes its con-
vergence rate.

5.1. Solution Based on Augmented Lagrangian Method

Observe that Program (12) is a constrained optimization problem with a large num-
ber of unknowns, a nonlinear objective, and rather complex constraints. Since there
is no known analytic solution to such a problem, we focus on numerical solutions.
Furthermore Program (12) is difficult to tackle, even with numerical methods, due to
three main challenges. First and foremost, there is a set of non-differentiable con-
straints ∀ j

∑r
i |Lij | ≤ 1 which rules out many generic techniques for solving con-

strained optimization problems (such as the Lagrange multiplier method) which are
limited to problems with differentiable constraints. Second, the non-differentiable con-
straints involve the unknown matrix L, whereas the objective function involves an-
other unknown matrix B whose relationship to L is rather complex (i.e., in constraint
‖W−BL‖F ≤ γ ); consequently, it is nontrivial to apply specialized methods for handling
the non-differentiable constraints. Finally, Program (12) is not convex with respect to
the unknowns B and L.

The main idea of the proposed solution is to break down Program (12) into simpler,
solvable subproblems. Since the most difficult part of Program (12) is the existence
of the non-differentiable constraints ∀ j

∑r
i |Lij | ≤ 1, we aim to break down the whole

problem into subproblems with only these constraints, as well as an objective function
that only involves the unknown L, not B. Then, we use a specialized technique to
solve each of these subproblems. Specifically, we first eliminate the constraint ‖W −
BL‖F ≤ γ → 0 using the augmented Lagrangian method which runs in multiple
iterations, each of which solves a subproblem with only the constraints ∀ j

∑r
i |Lij | ≤ 1.

Then, inside each iteration, we remove B from the objective function of the subproblem
by alternatively optimizing for B and L. This results in subproblems with only the
constraints ∀ j

∑r
i |Lij | ≤ 1 as well as an objective function that has only L as unknowns.

Each of these subproblems is then solved by applying a special solver called Nesterov’s
first-order optimal gradient method [Nesterov 2003]. An important optimization is that
we apply the inexact augmented Lagrangian method [Conn et al. 1997; Lin et al. 2010]
which does not solve the subproblem in each iteration exactly, leading to both increased
efficiency and stability.

Algorithm 1 shows the proposed solution for Program (12). First, we apply the inexact
augmented Lagrangian method to eliminate the linear constraint ‖W − BL‖F ≤ γ → 0
as follows: we add to the objective function: (i) a positive penalty item β ∈ R and (ii) the
Lagrange multiplier π ∈ R

m×n. β and π are iteratively updated following the strategy
in Conn et al. [1997] and Lin et al. [2010]. In each iteration, the values of β and π are
fixed and the algorithm aims to find values for B and L that minimize the following
subproblem:

min
B,L

J (B, L, β, π ) = 1
2

tr(BT B) + 〈π, W − BL〉 + β

2
‖W − BL‖2

F (13)

s.t. ∀ j
∑

i

|Lij | ≤ 1.
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ALGORITHM 1: Workload Matrix Decomposition

1: Initialize π (0) = 0 ∈ R
m×n, β (0) = 1, k = 1

2: while not converged do
3: while not converged do
4: B(k) ← update B using Equation (14)
5: L(k) ← run Algorithm 3 to update L according to Program (15)
6: Compute τ = ‖W − B(k)L(k)‖F
7: if τ is sufficiently small or β is sufficiently large then
8: return B(k) and L(k)

9: if k is a multiple of 10 then
10: β (k+1) = 2β (k)

11: π (k+1) = π (k) + β (k+1)
(
W − B(k)L(k)

)
12: k = k + 1

Next we eliminate unknowns B from the objective function of the earlier subproblem.
Observe that this is a biconvex optimization problem with respect to Band L, meaning it
is convex with respect to B (respectively, L), once we fix L (respectively, B) to a constant.
Hence we solve it by alternately optimizing B and L (lines 3–5 of Algorithm 1). Note
that, following the inexact augmented Lagrangian multiplier methodology, it is not
necessary to obtain the exact optimal values of B and L instead, a small number of
iterations of the while-loop in lines 4–5 suffices. We first focus on optimizing B, treating
L as constant. Observe that J (·) is convex with respect to B. Hence the optimal B can
be obtained by solving ∂J

∂ B = 0. In particular, the gradient with respect to B is

∂J
∂ B

= B− π LT + βBLLT − βW LT .

Solving B from ∂J
∂ B = 0, we obtain

B = (βW LT + π LT )(βLLT + I)−1. (14)

Next we show how to optimize L with a fixed B. This is equivalent to the following
quadratic program

G(L) = β

2
tr(LT BT BL) − tr((βW + π )T BL)

s.t. ∀ j
∑

i

|Lij | ≤ 1.
(15)

The gradient of the objective G(L) with respect to L in (15) can be computed as

∂G
∂L

= βBT BL − βBT W − BT π. (16)

For all L′, L′′ with ∀ j
∑

i |L′
i j | ≤ 1,∀ j

∑
i |L′′

i j | ≤ 1, we have the following inequalities.

‖G(L′) − G(L′′)‖F

‖L′ − L′′‖F
= ‖βBT BL′ − βBT BL′′‖F

‖L′ − L′′‖F

≤ |||βBT B|||2 · ‖L′ − L′′‖F

‖L′ − L′′‖F
= β · |||BT B|||2

Therefore the gradient of G(L) is Lipschitz-continuous with parameter ω = β ·|||BT B|||2.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 11, Publication date: June 2015.



Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy 11:21

We employ Nesterov’s first-order optimal gradient method [Nesterov 2003] to solve
the program in (15). Nesterov’s method has a much faster convergence rate than tra-
ditional methods such as the subgradient method or naive projected gradient descent.
The updating rule in the projected gradient method is expressed as

L(t+1) = P
(

L(t) − η(t) ∂G
∂L(t)

)
.

where t denotes the iteration counter, P(L) denotes the L1 projection operator on any
L ∈ R

r×n, and η > 0 denotes the appropriate step size. One typical choice for η is the
inverse of the gradient Lipschitz constant 1/ω, however, this can be suboptimal when
the gradient Lipschitz constant is large. One can incooperate Beck and Teboulle’s [2009]
backtracking line search strategy to further accelerate the convergence of the projected
gradient algorithm. We adopt this line search strategy in our algorithm.

L is updated by gradient descent while ensuring that the L1-regularized constraint
on L is satisfied. This is done by the L1 projection operator, formulated as the following
optimization problem:

P(L) = arg min
L̄∈Rr×n

‖L̄ − L‖2
F , s.t. ∀ j

∑
i

|L̄ij | ≤ 1, (17)

We observe that Eq. (17) can be decoupled into n independent L1-regularized subprob-
lems

arg min
l̄∈Rr×1

‖l̄ − l‖2
2, s.t.

∑
i

|l̄i| ≤ 1.

where l = L(t)
j , j = 1, 2, . . . , n, L(t)

j is the jth column of L(t). Such a projection opera-
tor can be solved efficiently by L1 projection methods in O(r log r) time [Duchi et al.
2008] as described in Algorithm 2. The complete algorithm for solving Program (15) is
summarized in Algorithm 3.

ALGORITHM 2: Algorithm for L1 Ball Projection

1: input: A vector l ∈ Rr×1

2: sort l into v such that v1 ≥ v2 ≥ · · · ≥ vr

3: find ρ = max{i ∈ [r] : vi − 1
i

(∑i
k=1 vk − 1

)
> 0}

4: compute θ = 1
ρ

(∑ρ

i=1 vi − 1
)

5: output l̄ ∈ R
r×1, s.t. l̄i = max(li − θ, 0), i ∈ [r]

5.2. Convergence Analysis

This section analyzes the convergence properties of the proposed workload decom-
position algorithm. In each iteration, Algorithm 1 solves a sequence of Lagrangian
subproblems by optimizing B (step 4) and L (step 5) alternatingly. The algorithm stops
when a sufficiently small γ is obtained, or when the penalty parameter β is sufficiently
large. It suffices to guarantee that L converges to a locally optimal solution [Lin et al.
2010; Wen et al. 2012a, 2012b].

In general, penalty methods have the property that, when the global (or local) min-
imizers of the subproblem are found, every limit point is a global (or local) minimizer
of the original problem [Fiacco and McCormick 1968]. This property is preserved by
the augmented Lagrangian multiplier counterparts. Therefore, the proposed solution
for the workload decomposition problem converges whenever the biconvex optimization
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ALGORITHM 3: Nesterov’s Projected Gradient Method

1: input: G(L), ∂G
∂L, L(0)

2: χ = r · n · 10−12, Lipschitz parameter: ω(0) = 1
3: Initializations: L(1) = L(0), τ (−1) = 0, τ (0) = 1, t = 1
4: while not converged do
5: α = τ (t−2)−1

τ (t−1) , S = L(t) + α(L(t) − L(t−1))
6: for j = 0 to · · · do
7: ω = 2 jω(t−1), U = S − 1

ω
∇S

8: Project U to the feasible set to obtain L(t) (i.e., solve Equation (17))
9: if ‖S − L(t)‖F < χ then
10: return;
11: Define function: Jω,S(U ) = G(S) + 〈 ∂G

∂U ,U − S〉 + ω

2 ‖U − S‖2
F

12: if G(L(t)) ≤ Jω,S(U ) then
13: ω(t) = ω; L(t+1) = L(t); break;

14: Set τ (t) = 1+
√

1+4(τ (t−1))2

2
15: t = t + 1
16: return L(t)

subproblem in Program (5.1) converges. Regarding the convergence properties of the bi-
convex optimization subproblem, past study [Bertsekas 1999] on biconvex optimization
has shown that block coordinate descent is guaranteed to converge to the stationary
point for strictly convex problems. However, the subproblem in Program (5.1) is not
strictly convex (though it is convex); meanwhile, the subproblem may have multiple op-
timal solutions which may cause problems to its convergence. Fortunately, for biconvex
optimizations which only involve two blocks Grippo and Sciandrone [2000] show that
the strict convexity of the subproblem is not required; every limit point of {B(k), L(k)} is a
stationary point. Accordingly, the biconvex optimization subproblem exhibits nice con-
vergence properties. In the following we formalize and prove the convergence results
of the proposed algorithm.

We first present the first-order KKT conditions of the optimization problem in Pro-
gram (12). Introducing Lagrange multipliers μ ∈ R

n×1 and π ∈ R
m×n for the inequality

constraints ∀ j
∑r

i |Lij | ≤ 1 and linear constraints W = BL, respectively, we derive the
following KKT conditions of the optimization problem.

μ ≥ 0 (Nonnegativity)

W = BL, ∀ j
r∑
i

|Lij | ≤ 1 (Feasibility)

B = π LT , 0 ∈
n∑
j

μ j
∂
∑r

i |Lij |
∂L

− BT π (Optimality)

∀ j μ j

(
r∑
i

|Lij | − 1

)
= 0 (Complementary Slackness)

(18)

The following theorem establishes the convergence properties of the proposed al-
gorithm under the assumption that the iterates generated by Algorithm 1 exhibit no
jumping behavior. Remark that a similar condition was used in Wen et al. [2012a,
2012b].
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THEOREM 5.1 (CONVERGENCE OF ALGORITHM 1). Let X � (B, L, π ) and {X(k)}∞k=1 be the
intermediate results of Algorithm 1 after the k-th iteration. Assume that {X(k)}∞k=1 is
bounded and limk→∞(X(k+1)−X(k)) = 0. Then any accumulation point of {X(k)}∞k=1 satisfies
the KKT conditions presented in Eq. (18). In other words, whenever {X(k)}∞k=1 converges,
it converges to a first-order KKT optimal point.

PROOF. Since L(k+1) is the global optimal solution of Program (15), by the KKT optimal
condition, there exist μ ≥ 0, μ ∈ R

n×1 and L(k+1) such that the following equation holds:

0 ∈ ∂G
∂L(k+1)

+
n∑
j

μ j
∂
∑r

i |L(k+1)
i j |

∂L(k+1)
. (19)

Note that G is a convex function with respect to L(k+1). Hence the KKT conditions are
both necessary and sufficient conditions for global optimality. Combining Eqs. (16) and
(19), we obtain

βB(k+1)T (B(k+1)T (L(k+1) − L(k))) (20)

= βB(k+1)T (W − B(k+1)T L(k)) + B(k+1)T π −
n∑
j

μ j
∂
∑r

i |L(k+1)
i j |

∂L(k+1)
.

We derive the following equations according to the update rule for B (at line 4 in
Algorithm 1) and the Lagrangian multiplier update rule for π (at line 11 in Algorithm 1),
respectively:

B(k+1) − B(k) = (
βW L(k)T + π L(k)T − B(k)(βL(k)L(k)T + I

))(
βL(k)L(k)T + I

)−1
, (21)

π (k+1) − π (k) = −β(k+1)(W − B(k+1)L(k+1)). (22)

Since {X(k)}∞k=1 is bounded according to our assumption, the sequences {B(k)}∞k=1 and
{L(k)}∞k=1 are also bounded. Hence limk→∞(X(k+1) − X(k)) = 0 implies that both sides of
Eqs. (20), (21), and (22) converge to zero as k approaches infinity. Consequently,

W − B(k)L(k) → 0, π L(k)T − B(k) → 0

∃μ : −B(k+1)T π +
n∑
j

μ j
∂
∑r

i |L(k+1)
i j |

∂L(k+1)
→ 0, (23)

where the first limit in Eq. (23) is used to derive other limits. Therefore the sequence
{X(k)}∞k=1 asymptotically satisfies the KKT conditions in Eq. (18). This completes the
proof.

Next we focus on the convergence rate of the proposed algorithm. The following
theorem states that it converges linearly.

THEOREM 5.2 (CONVERGENCE RATE OF ALGORITHM 1). Let X � (B, L, π ) and {X(k)}∞k=1 be
the intermediate results of Algorithm 1 after the k-th iteration. Assume that {X(k)}∞k=1 is
bounded and limk→∞(X(k+1) − X(k)) = 0. Let (B(k), L(k)) be the solution obtained after the
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k-th iteration and (B∗, L∗) be the optimal solution to Program (12), we have

min
i=1,2,...,k

|tr(B(i)T
B(i)) − tr

(
B∗T B∗)| ≤ O

(
1
k

)
. (24)

In other words, Algorithm 1 converges to the stationary point linearly.

PROOF. Let B(k) denote the solution of the Lagrangian subproblem in the k-th itera-
tion. The following inequality holds on the sequence of Lagrangian subproblems:

J
(
B(k+1), L(k+1), π (k), β(k))

≤ min
W=BL,

∀ j
∑

i |Lij |≤1

J
(
B, L, π (k), β(k))

≤ min
W=BL,

∀ j
∑

i |Lij |≤1

J
(
B, L, π∗, β(k))

= min
W=BL,

∀ j
∑

i |Lij |≤1

1
2

tr(BT B) = 1
2

tr(B∗T B∗). (25)

By the definition of J (·) and the previous inequality, we derive the following inequality

1
2

tr
(
B(k+1)T

B(k+1))
= J

(
B(k+1), L(k+1), π (k), β(k)) − 〈

π (k), W − B(k+1)L(k+1)〉 + β(k)

2

∥∥W − B(k+1)L(k+1)
∥∥2

F

= J
(
B(k+1), L(k+1), π (k), β(k)) − 1

2β(k)

(‖π (k) + β(k)(W − B(k+1)L(k+1))‖2
F − ‖π (k)‖2

F

)
= J

(
B(k+1), L(k+1), π (k), β(k)) − 1

2β(k)

(‖π (k+1)‖2
F − ‖π (k)‖2

F

)
≤ 1

2
tr(B∗T B∗) − 1

2β(k)

(‖π (k+1)‖2
F − ‖π (k)‖2

F

)
. (26)

The third equality holds because of the Lagrangian multiplier update rule:

W − B(k+1)L(k+1) = 1
β(k)

(
π (k+1) − π (k)).

By the nonnegativity of norms, we have

1
2

tr
(
B(k+1)T

B(k+1)) ≥ 1
2

tr
(
B(k+1)T

B(k+1)) − ∥∥W − B(k+1)L(k+1)
∥∥2

F ,

≥ 1
2

tr(B∗T B
∗
) − ∥∥W − B(k+1)L(k+1)

∥∥2
F ,

= 1
2

tr(B∗T B
∗
) − 1

2β(k)

(‖π (k+1)‖2
F − ‖π (k)‖2

F

)
. (27)

Combining Eqs. (26) and (27), we obtain

β(i+1)(tr(B(i+1)T
B(i+1)) − tr

(
B∗T B∗)) = ∥∥π (i+1)

∥∥2
F − ∥∥π (i)

∥∥2
F, ∀i.
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Summing the equality prior over i = 0, 1 . . . , k − 1, we have

k−1∑
i=0

β(i+1)(tr(B(i+1)T
B(i+1)) − tr

(
B∗T B∗)) = ∥∥π (k)

∥∥2
F − ∥∥π (0)

∥∥2
F . (28)

Since β(k) is nondecreasing, we have

min
i=0,1,...,k−1

∣∣tr(B(i+1)T
B(i+1)) − tr

(
B∗T B∗)∣∣ ≤

(‖π (k)‖2
F − ‖π (0)‖2

F

)
/β(0)

k
. (29)

By the, boundedness of ‖π (k)‖2
F − ‖π (0)‖2

F , we complete the proof.

Note that, although our convergence proof assumes that each subproblem is solved
exactly, this is not required in practice, because the inexact augmented Lagrange mul-
tipliers method has been shown to converge practically as fast as the exact augmented
Lagrange multipliers [Lin et al. 2010]. Meanwhile, inexact augmented Lagrange mul-
tipliers require significantly fewer iterations when solving the subproblem, leading to
much higher efficiency.

Complexity Analysis. Each update on B in Eq. (14) takes O(r2m) time, while each
update on L consumes O(r2n) time. Assuming that Algorithm 1 converges to a local
minimum within Nin inner iterations (at line 3 in Algorithm 1) and Nout outer iterations
(line 2 in Algorithm 1), the overall complexity of Algorithm 1 isO(Nin×Nout×(r2m+r2n)).

6. LRM UNDER (ε, δ)-DIFFERENTIAL PRIVACY

This section extends LRM to (ε, δ)-differential privacy. Section 6.1 formulates the
workload decomposition as an optimization program. Section 6.2 analyzes the utility of
LRM. Section 6.3 discusses the algorithm for solving optimal workload decomposition.

6.1. Workload Decomposition

Similar to the case of ε-differential privacy described in Section 4, LRM decomposes the
workload matrix W into W = BL. Then, LRM applies the Gaussian mechanism to the
intermediate queries corresponding to L to enforce (ε, δ)-differential privacy. Finally,
LRM combines the noisy results of the intermediate queries according to B to obtain the
results of Q. Formally, let �(L) be the L2 sensitivity of L, that is, �(L) = max j(

∑
i L2

i j)
1/2.

LRM under (ε, δ)-differential privacy is defined as

MLRM,(ε,δ)(Q, D) = B
(

LD + Gau
(

�(L)
h(ε, δ)

)r)
. (30)

where h(ε, δ) = ε√
8 ln(2/δ)

.

Let �(B) be scale of the decomposition as defined in Definition 4.1, that is, �(B) =∑
i, j B2

i j . The following lemma shows that the error of LRM is linear to �(B), and
quadratic to �(L).

LEMMA 6.1. The expected squared error of MLRM,(ε,δ)(Q, D) with respect to the decom-
position W = BL is 8 ln(2/δ)�B�(L)2/ε2.

PROOF. According to Eq. (30), Q(D) − MLRM(ε,δ)(Q, D) = B(Gau( �(L)
h(ε,δ) )

r). The expected

squared error of LRM is thus
∑

i j B2
i j

2(�(L))2

h(ε,δ)2 . Since �B = ∑
i j B2

i j and h(ε, δ) = ε√
8 ln(2/δ)

,

the error can be rewritten as 8 ln(2/δ)�B�(L)2/ε2.
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Therefore the best decomposition is the one that minimizes �B�(L)2. Similar to the
case of ε-differential privacy, the particular value of �(L) is not important, as stated in
the following lemma.

LEMMA 6.2. Given a workload decomposition W = BL, we can always construct
another decomposition W = B′L′ satisfying: (i) �(L′) = 1 and (ii) (B′, L′) lead to the
same expected squared error of MLRM,(ε,δ) as (B, L).

The proof is similar to that of Lemma 4.3 and omitted for brevity. Based on
Lemma 6.2, we formulate the following optimization program for finding the best
decomposition for MLRM,(ε,δ).

min
B,L

1
2

tr(BT B)

s.t. W = BL

∀ j
r∑
i

L2
i j ≤ 1

(31)

6.2. Utility Analysis and Budget Selection

This section analyzes the utility MLRM,(ε,δ) as well as the choice of privacy parameters
(ε, δ), given a user-specified utility constraint. We use (ξ , η)-usefulness (Definition 4.5)
as the utility measure. The result is stated in the following theorem.

THEOREM 6.3 (UTILITY OF LRM UNDER (ε, δ)-DIFFERENTIAL PRIVACY). Given database D
and workload W, for any ξ > 0 and 0 < η < 1, mechanism MLRM,(ε,δ) using the optimal
decomposition W = BL solved from Program (31) has the following utility guarantees:

(i) when ε ≥
√

6 · ln 2
δ

· ( r
2 ln 3 − ln η)|||B|||2/ξ , the output of MLRM,(ε,δ) is (ξ, η)-useful

under the ‖ · ‖2-norm; (ii) when ε ≥
√

(6 ln r − 3 ln 3)(ln 2 − ln δ)/η|||B|||∞/ξ , the output
of MLRM,(ε,δ) is (ξ, η)-useful under the ‖ · ‖∞-norm.

PROOF. (i) Let X be the Gaussian noise vector injected to the intermediate results in
LRM. According to Eq. (30), we have

‖MLRM,(ε,δ)(Q, D) − Q(D)‖2
2 = ‖B(LD + X) − W D‖2

2 = ‖B · X‖2
2 ≤ |||B|||22 · ‖X‖2

2.

The previous inequality is due to the fact that ‖Rx‖2 ≤ |||R|||2 · ‖x‖2, for any matrix R
and vector x. Accordingly, we derive the following.

‖MLRM,(ε,δ)(Q, D) − Q(D)‖2
2 ≤ |||B|||22 · ‖X‖2

2

⇒ ∀ξ, Pr
(‖MLRM,(ε,δ)(Q, D) − Q(D)‖2

2 ≥ ξ2
) ≤ Pr

(‖X‖2
2 · |||B|||22 ≥ ξ2

)
⇒ ∀ξ, Pr

(‖MLRM,(ε,δ)(Q, D) − Q(D)‖2 ≥ ξ
) ≤ Pr

(‖X‖2
2 ≥ ξ2

|||B|||22
)

Next we focus on properties of X. According to the Gaussian mechanism, the elements
of X, that is, X1, X2, . . . , Xr follow i.i.d. zero-mean Gaussian distribution with scale
σ = �(L)

h(ε,δ) . Since the decomposition W = BL is solved from Program (31), we have

�(L) = 1. Thus σ = 1
h(ε,δ) =

√
2 ln(2/δ)

ε
.

Let t, c be any positive number, we have

Pr
(‖X‖2

2 ≥ c
) = Pr

(
‖X‖2

2

tσ 2 >
c

tσ 2

)
= Pr

(
e

‖X‖2
2

tσ2 > e
c

tσ2

)
≤ E

[
e

‖X‖2
2

tσ2
]

e
c

tσ2
,

where the last inequality holds due to Markov’s inequality.
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Consider the random variable Yi = exp ( X2
i

tσ 2 ), where t is an arbitrary positive number
such that E[Yi] exists. According to the probability density function of the Gaussian
distribution (Eq. (7)), we have

E[Yi] =
∫ ∞

−∞
g(x)e( x2

tσ2 )dx =
∫ ∞

−∞

√
1

2πσ 2 e(− x2

2σ2 )e
x2

tσ2 dx =
√

t
t − 2

,∀t > 2.

Based on the preceding derivations and the fact that Xi ’s are independent variables,
we obtain

Pr
(‖X‖2

2 ≥ c
) ≤

∏r
i=1

(
Ee

X2
i

tσ2
)

e
c

tσ2
=

∏r
i=1 E[Yi]

e
c

tσ2
= ( t

t−2 )r/2

e
c

tσ2
.

With the choice of t = 3, c = ξ2

|||B|||22
, and σ =

√
2 ln(2/δ)

ε
, this leads to

Pr(‖Mε,δ(Q, D) − Q(D)‖2 ≥ ξ ) ≤ ( t
t−2 )r/2

e
c

tσ2
= 3r/2

e
ξ2ε2

6 ln(2/δ)|||B|||22

.

When ε ≥
√

6 · ln 2
δ

· ( r
2 ln 3 − ln η)|||B|||2/ξ , the previous probability is bound by η.

(ii) Let X be the Gaussian noise vector injected to the intermediate results as in part
(i) of the proof. We have

‖Mε,δ(Q, D) − Q(D)‖2
∞ = ‖B · X‖2

∞ ≤ |||B|||2∞ · ‖X‖2
∞ = |||σ B|||2∞ ·

∥∥∥∥ 1
σ

X
∥∥∥∥

2

∞
.

The preceding inequality holds due to the fact that ‖Rx‖∞ ≤ |||R|||∞ · ‖x‖∞ for any
matrix R and vector x. Let Z = ‖ 1

σ
X‖2

∞ = (max( 1
σ

X1, · · · max( 1
σ

Xr))2. We derive

‖Mε,δ(Q, D) − Q(D)‖2
∞ ≤ |||σ B|||2∞ · ‖ 1

σ
X‖2

∞
⇒ ∀ξ, Pr(‖Mε,δ(Q, D) − Q(D)‖2

∞ ≥ ξ2) ≤ Pr(|||σ B|||2∞ · Z ≥ ξ2)

⇒ ∀ξ, Pr(‖Mε,δ(Q, D) − Q(D)‖∞ ≥ ξ ) ≤ Pr
(
Z ≥ ξ2

|||σ B|||2∞
)
.

By Markov’s inequality, we obtain

Pr
(

Z ≥ ξ2

|||σ B|||2∞

)
≤ E[Z]

ξ2

|||σ B|||2∞
.

Note that the prior bound is tight, even though the Chernoff bound can not be applied
here.

Next we derive an upper bound for the expected value of Z. Let Y = 1
σ

X. Clearly,
Y1, Y2, . . . , Yr are independent, standard normal random variables. Hence Y 2

i ’s (1 ≤ i ≤
r) are i.i.d. χ2

1 variables, that is, Chi-square random variables with 1 degree of freedom.
The probability density function fi for Yi is thus

fi(x) = 1√
2π

x− 1
2 e− x

2 .

Since the function exp(·) is convex and positive, by Jensen’s inequality, for any t such
that E[etZ] exists, we have

etE[Z] ≤ E[etZ] = E
[

max
i

etY 2
i

]
≤

r∑
i=1

E[etY 2
i ]. (32)

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 11, Publication date: June 2015.



11:28 G. Yuan et al.

Meanwhile, for any t < 1
2 , we have E[etY 2

i ] = ∫ +∞
0 etx 1√

2π
x− 1

2 e− x
2 dx = (1−2t)−

1
2 . Combine

this with Eq. (32), we obtain an upper bound of the expected value of Z:

E[Z] ≤ ln r
t

− 1
2t

ln(1 − 2t).

With the choice of t = 1
3 , we have E[Z] ≤ 3 ln r + 3

2 ln 3. Since ∀ j
∑

i L2
i j ≤ 1, the

sensitivity over the batch query workload Q is 1. Since σ =
√

2 ln(2/δ)
ε

, we obtain the
following

∀ξ, Pr(‖Mε,δ(Q, D) − Q(D)‖∞ ≥ ξ ) ≤ E[Z] · |||σ B|||2∞/ξ2

≤
(

3 ln r + 3
2

ln 3
)

· |||σ B|||2∞/ξ2

=
(

3 ln r + 3
2

ln 3
)

· (2 ln(2/δ)) · |||B|||2∞/(ξε)2.

When ε ≥
√

(6 ln r − 3 ln 3)(ln 2 − ln δ)/η|||B|||∞/ξ , the preceding probability is bound
by η.

6.3. Solving for the Optimal Workload Decomposition

The optimization program (i.e., Program (31)) for workload decomposition under (ε,
δ)-differential privacy is identical to the one under ε-differential privacy (Program (9)),
except that the former uses L2-sensitivity in the constraints ∀ j

∑r
i L2

i j ≤ 1, whereas the
latter uses L1-sensitivity. Hence, to solve Program (31), we simply adapt Algorithm 1
by modifying the parts related to these constraints.

The only major modification of Algorithm 1 lies in the projection step, which now
needs to project every column in L onto the L2 ball of radius 1, instead of the L1 unit
ball as in Section 5. Specifically, the L2 ball projection is performed by solving the
following optimization program:

min
L̄∈Rr×n

‖L̄ − L‖2
F , s.t. ∀ j

∑
i

L̄2
i j ≤ 1. (33)

This program can be decoupled into n independent L2-regularized subproblems

arg min
l̄∈Rr×1

‖l̄ − l‖2
2, s.t.

∑
i

l̄2
i ≤ 1.

where l = L(t)
j , j = 1, 2, . . . , n, L(t)

j is the j-th column of L(t). Such a projection can
be computed by l̄ = l

max(1,‖l‖2) . Therefore the projection can be computed efficiently in
linear time. Finally, by adapting the proofs in Section 5.2, we can draw the conclusion
that a modified Algorithm 1 for optimizing workload decomposition for LRM under (ε,
δ)-differential privacy also converges to the local KKT optimal point linearly. We omit
the complete proofs for brevity.

7. EXPERIMENTS

This section experimentally evaluates the effectiveness of LRM under ε- and (ε, δ)-
differential privacy definitions. For ε-differential privacy, we compare LRM against six
state-of-the-art methods: Laplace mechanism (LM) [Dwork et al. 2006b], Privlet (WM)
[Xiao et al. 2010], hierarchical mechanism (HM) [Hay et al. 2011], exponential smooth-
ing (ESM) [Yuan et al. 2012] (an implementation of the approximate matrix mechanism
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[Li et al. 2010] described in Appendix A.1), adaptive mechanism (AM) [Li and Miklau
2012] (another implementation of the approximate matrix mechanism [Li et al. 2010;
Li and Miklau 2012] described in Appendix A.2), and the exponential mechanism with
multiplicative weights update (MWEM) [Hardt et al. 2012], whose performance de-
pends on the dataset. For (ε, δ)-differential privacy, we compare LRM against WM,
HM, ESM, AM, and the Gaussian mechanism (GM) [McSherry and Mironov 2009].

Implementations. For AM, we employ the Python implementation that can be ob-
tained from the authors’ Web site (http://cs.umass.edu/∼chaoli). We use the default
stopping criterion provided by the authors. For MWEM, we used Hardt et al.’s [2012]
C# code as listed in that paper’s Appendix. Note that MWEM needs to tune an ad-
ditional parameter T , which denotes the number of iterations, in order to ensure
its performance. We follow the experimental setting in Hardt et al. [2012]. Specif-
ically, we choose T ∈ {10, 12, 14, 16} in our experiments and report the values for
the best setting of T in each case (strictly speaking, such parameter tuning violates
differential privacy, hence the reported results are in favor of MWEM). For all re-
maining methods, we implemented them in Matlab and published all code online
(http://yuanganzhao.weebly.com/). We performed all experiments on a desktop PC with
an Intel quad-core 2.50 GHz CPU and 4GBytes RAM. In each experiment, every algo-
rithm is executed 20 times and the average performance is reported.

Datasets. We use four real-world datasets in our experiments [Hay et al. 2011;
Xu et al. 2013; Hardt et al. 2012]: Search Log, Net Trace, Social Network and UCI
Adult. Search Log includes search keyword statistics collected from Google Trends and
American Online between 2004 and 2010. Each unit count is the number of appear-
ances of a particular keyword. Social Network contains information about users in a
social network, where each unit count is the number of users with a specific degree
in the social graph. Net Trace is collected from a university intranet, where each unit
count is the number of TCP packets related to a particular IP address. The total num-
ber of unit counts in Search Log Net Trace, and Social Network are 65, 536, 32, 768,
and 11, 342, respectively. The UCI Adult data was extracted from the census bureau
database in the U.S. Department of Commerce. It contains 14 features, among which
six are continuous and eight categorical. We use the following strategies to generate
the sensitive data with varying domain size n. For the {Search Log, Net Trace, Social
Network} datasets, we transform the original counts into a vector of fixed size n (do-
main size) by merging consecutive counts in order. For the UCI Adult dataset, we only
consider the combined {workclass, education, occupation, race} attributes (with their
total corresponding domain of size {8 × 16 × 14 × 5 = 8960}) and uniformly choose n
domains. The counting numbers of their corresponding records are used as the domain
data. We observed that all the datasets {Search Log, Net Trace, Social Network} are
dense in that their sparsity exactly equals 100%, while the UCI Adult dataset is sparse
with sparsity roughly 12% ∼ 17%.

Workloads. We generated four different types of workloads, namely WDiscrete,
WRange, WMarginal, and WRelated. In WDiscrete, for each Wij (i.e., the coefficient of
the i-th query on the j-th unit count), we set Wij = 1 with probability 0.02 and Wij = −1
otherwise. In WRange, each query qi sums the unit counts in a range [si, ti] ⊂ [1, n], that
is, Wij = 1 for si ≤ j ≤ ti, and Wij = 0 otherwise. The start- and endpoints si and ti of
each query qi are randomly generated following the uniform distribution. WMarginal
is used in Li and Miklau [2012], containing queries uniformly sampled from the set
of all two-way marginals. For WRelated, we generate s independent linear counting
queries (called base queries) with random weights following (0, 1)-normal distribution.
Let A (of size s × n) denote the workload matrix of the s queries. We also generate
another matrix C of size m × s in a similar way The workload matrix W is then the
product of C and A, that is, the linear combination of base queries according to C.
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Table II. Parameters Used in the Experiments

γ 0.0001, 0.001, 0.01, 0.1, 1, 10
r {0.8, 1.0, 1.2, 1.4, 1.7, 2.1, 2.5, 3.0, 3.6} × rank(W )
n 128, 256, 512, 1024, 2048, 4096, 8192
m 64, 128, 256, 512, 1024

s (during the generation of WRelated ) {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} × min(m, n)

Parameters. We test the impact of five parameters in our experiments: γ , r, n, m,
and s, γ is the relaxation factor defined in Program (12) specifically, r is the number of
intermediate queries in LRM, that is, the number of columns in B (and also the number
of rows in L), n is the number of unit counts, and m is the number of queries in the
batch. Finally, s is the number of base queries during the generation of WRelated. The
ranges and defaults (shown in bold in Table II) of the parameters are summarized in
Table II. Moreover, we test three different values of the privacy budget: ε = 1, 0.1, and
0.01. For (ε, δ)-differential privacy, following Li and Miklau [2012], we set δ = 0.0001.

In the experiments, we measure average squared error and computation time of the
methods. Specifically, the average squared error is the average squared L2 distance
between the exact query answers and the noisy answers. In the following, Section 7.1
examines the impact of γ and r, which are only used in LRM. The results provide
important insights on how to set these two parameters to maximize the utility of LRM.
Then, Sections 7.2 to 7.5 compare LRM against existing methods.

7.1. Impact of γ and r on LRM

In LRM, the relaxation factor γ controls the difference between BL and W . In our
first set of experiments, we investigate the impact of γ on the accuracy and efficiency
of LRM. Figure 2 and Figure 3 report the performance of LRM with varying values
for γ under ε-differential privacy and (ε, δ)-differential privacy, respectively, using the
Search Log dataset. Results on other datasets lead to similar conclusions and are
omitted for brevity.

The results in Figures 2 and 3 show that when ε is relatively low (meaning strong
privacy), the error of LRM is not sensitive to γ , regardless of the workload, for all values
of γ tested in the experiments ((10−4 to 10). Only when ε reaches 1 do large values
of γ (e.g., γ > 1) show negative impact on the performance of LRM. This negative
effect is relatively small under ε-differential privacy; it is more pronounced under (ε,
δ)-differential privacy. The reason is that the error of LRM comes from two sources:
the added noise and the difference between the decomposition BL and the original
workload W . When the privacy requirement is strong (i.e., when ε is relatively low,
or when ε-differential privacy is used), the error introduced by inexact decomposition
is negligible compared to the noise added to satisfy differential privacy. Conversely,
with a looser privacy requirement (high ε- and (ε, δ)-differential privacy definition),
the noise level becomes low and the error in decomposition becomes more evident.
Nevertheless, when γ ≤ 0.1, its impact is insignificant in all settings. Meanwhile, LRM
runs much faster with a larger γ . Overall, γ ≤ 0.1 is a safe choice, and a larger value of
γ is recommended for applications with strong privacy requirements. In the following
experiments, we fix γ to 0.01.

r is another important parameter in LRM that determines the rank of the matrix
BL that approximates the workload W . Specifically, r affects both the approximation
accuracy and optimization speed. When r is too small, for instance, when r < rank(W),
our optimization formulation may fail to find a good approximation, leading to subop-
timal accuracy for the query batch. On the other hand, an overly large r leads to poor
efficiency, as the search space expands dramatically. We thus test LRM with varying r
by controlling the ratio of r to the actual rank rank(W) on the Search Log dataset. We

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 11, Publication date: June 2015.



Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy 11:31

Fig. 2. Effect of relaxation parameter γ on Search Log under ε-differential privacy.

Fig. 3. Effect of relaxation parameter γ on Search Log under (ε, δ)-differential privacy.

Fig. 4. Effect of r on Search Log under ε-differential privacy.

Fig. 5. Effect of r on Search Log under (ε, δ)-differential privacy.

record the average squared error and running time of LRM for all the workloads under
ε- and (ε, δ)-differential privacy, and report them in Figures 4 and 5, respectively.

There are several important observations in Figures 4 and 5. First, a value of r
below rank(W) leads to far worse accuracy (up to two orders of magnitude) compared to
settings with higher values of r. Second, the performance of LRM becomes stable when
r exceeds 1.2 · rank(W) for ε-differential privacy, and 1.0 · rank(W) for (ε, δ)-differential
privacy. This is because the optimization formulation has enough freedom to find the
optimal decomposition when r > rank(W). For (ε, δ)-differential privacy, this result is
expected because any decomposition W = BL with r > rank(W) can be transformed into
a decomposition B′L′ with r = rank(W) by projecting the columns of L and the rows of
B onto the range of L, which does not affect the L2-sensitivity of B. Finally, the amount
of computation for workload decomposition increases linearly with r (note that both

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 11, Publication date: June 2015.



11:32 G. Yuan et al.

Fig. 6. Effect of domain size n on workload WDiscrete under ε-differential privacy with ε = 0.1.

Fig. 7. Effect of domain size n on workload WRange under ε-differential privacy with ε = 0.1.

Fig. 8. Effect of domain size n on workload WMarginal under ε-differential privacy with ε = 0.1.

Fig. 9. Effect of domain size n on workload WRelated under ε-differential privacy with ε = 0.1.

axes are in logarithmic scale). Thus, to balance the efficiency and effectiveness of LRM,
a good value for r is between rank(W) and 1.2 · rank(W). In subsequent experiments,
we set r = 1.2 · rank(W) and r = 1.0 · rank(W) for ε- and (ε, δ)-differential privacy,
respectively.

7.2. Impact of Varying Domain Size n

We now evaluate the accuracy performance of all mechanisms with varying domain size
n. We perform all experiments with ε = 0.1, since the specific value of ε has negligible
impact on the relative performance of different mechanisms. For ε-differential privacy,
we report the results of all mechanisms on the four different workloads in Figures 6,
7, 8, and 9, respectively. On workloads WMarginal and WRelated, the performance
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of AM and ESM is comparable to the naive Laplace mechanism, and significantly
worse than the other methods, sometimes by more than an order of magnitude. This
is mainly because the L2-approximation used by AM and ESM does not lead to a
good optimization of the actual objective function formulated using L1-sensitivity. On
WDiscrete, the Laplace mechanism outperforms all others when the data is nonsparse
and domain size relatively small. This is in part due to the fact that the queries in
WDiscrete are generally independent when m ≥ n. Since the other mechanisms do not
gain from correlations among queries, the Laplace mechanism is optimal in such a
situation. Whereas all other data-independent mechanisms incur an error linear to
the domain size n, LRM’s error stops increasing when the domain size reaches 512.
This is because LRM’s error rate depends on the rank of the workload matrix W ,
which is no larger than min(m, n). This explains the excellent performance of LRM in
larger domains. On WRange, the errors of WM and HM are smaller than that of the
Laplace mechanism when the domain size is no smaller than 512. Moreover, WM and
HM perform better on WRange than on the other workloads, since they are designed
to optimize mainly for range queries. Nonetheless, LRM’s performance is significantly
better than any of them, since it fully utilizes the correlations between the range queries
on large domains. On WMarginal and WRelated, LRM achieves the best performance
in all settings. The performance gap between LRM and other methods is over two
orders of magnitude when the domain size reaches 8192. Since WRelated naturally
leads to a low-rank workload matrix W , this result verifies LRM’s vast benefit from
exploiting the low-rank property of the workload. Finally, we observe some interesting
behaviors of the data-dependent method MWEM. The error incurred by MWEM does
not scale well with domain size n on nonsparse datasets. Moreover, MWEM performs
comparably to LRM on Search Log and Net Trace when n is very large (n ≥ 4096).
However, the performance of MWEM is rather unstable; it incurs much larger error
than LRM on Social Network and UCI Adult, in some cases by more than two orders of
magnitude.

Regarding (ε, δ)-differential privacy, we report the accuracy of all methods in
Figures 10, 11, 12, and 13. LRM obtains the best performance in all settings, espe-
cially when n is large. Its improvement over the naive Gaussian mechanism is over
two orders of magnitude. AM and ESM have similar accuracy. For range queries, the
performances of ESM and AM are comparable to those of WM and HM, which are
optimized for range counts. However, the are accuracies of AM and ESM are rather
unstable on workloads WRange and WMarginal. For ESM, this instability is caused by
numerical errors in the matrix inverse operations, which can be high when the final
solution matrix is low rank. For AM, the problem is with its postprocessing step which
gives approximation solutions with unstable quality. The performance of LRM, on the
other hand, is consistently good in all settings.

7.3. Impact of Number of Queries m

In this section, we test the impact of the query set cardinality m on the performance of
the mechanisms. We mainly focus on settings where the number of queries mis no larger
than the domain size n. For ε-differential privacy, the accuracy results are reported in
Figures 14, 15, 16, and 17. On WRange and WMarginal, LRM outperforms all other
mechanisms when m is significantly smaller than n. As m grows, the performance of
all mechanisms on WRange tends to converge. The degeneration in performance of
LRM is due to the lack of low-rank property when the batch contains too many random
range queries. When m is no less than 256, both WM and HM achieve comparable
accuracy to LRM, since they are optimized for range queries. On WDiscrete, MWEM is
comparable to LRM on the UCI Adult dataset, one possible reason being that MWEM
can make use of the sparsity of the data on the WDiscrete workload. On the WRelated
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Fig. 10. Effect of domain size n on workload WDiscrete under (ε, δ)-differential privacy with ε = 0.1 and
δ = 0.0001.

Fig. 11. Effect of domain size n on workload WRange under (ε, δ)-differential privacy with ε = 0.1 and
δ = 0.0001.

Fig. 12. Effect of domain size n on workload WMarginal under (ε, δ)-differential privacy with ε = 0.1 and
δ = 0.0001.

Fig. 13. Effect of domain size n on workload WRelated under (ε, δ)-differential privacy with ε = 0.1 and
δ = 0.0001.

workload, the accuracy of LRM is dramatically higher than the other methods for all
values of m. This is because the rank of the WRelated workload is fixed to s, regardless
of the number of queries. Finally, we observe that on WDiscrete and WRange, while
the performance of other mechanisms does not differ much from data to data, the
data-dependent method MWEM generally performs better on the UCI Adult dataset
compared to other datasets, due to the high sparsity of UCI Adult.

For (ε, δ)-differential privacy, we report the results in Figures 18, 19, 20, and 21.
We have the following observations from these results. On WDiscrete, WRange, and
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Fig. 14. Effect of number of queries m on workload WDiscrete under ε-differential privacy with ε = 0.1.

Fig. 15. Effect of number of queries m on workload WRange under ε-differential privacy with ε = 0.1.

Fig. 16. Effect of number of queries m on workload WMarginal under ε-differential privacy with ε = 0.1.

Fig. 17. Effect of number of queries m on workload WRelated under ε-differential privacy with ε = 0.1.

WRelated workloads, WM and HM improve upon the naive Gaussian mechanism;
however, on WMarginal, WM and HM incur higher errors than GM. AM and ESM
again exhibit similar performance which is often better than that of WM, HM, and
GM. LRM consistently outperforms its competitors in all test cases.

7.4. Impact of Varying Query Rank s

The previous experiments demonstrate LRM’s substantial performance advantages
when the workload matrix has low rank. In this set of experiments, we manually
control the rank of workload W to verify this observation. Recall that the parame-
ter s determines the size of the matrix Cm×s and the size of the matrix As×n during
the generation of the WRelated workload. When C and A contain only independent
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Fig. 18. Effect of number of queries m on workload WDiscrete under (ε, δ)-differential privacy with ε = 0.1
and δ = 0.0001.

Fig. 19. Effect of number of queries m on workload WRange under (ε, δ)-differential privacy with ε = 0.1
and δ = 0.0001.

Fig. 20. Effect of number of queries m on workload WMarginal under (ε, δ)-differential privacy with ε = 0.1
and δ = 0.0001.

Fig. 21. Effect of number of queries m on workload WRelated under (ε, δ)-differential privacy with ε = 0.1
and δ = 0.0001.

rows/columns, s is exactly the rank of the workload matrix W = C A. In Figures 22 and
23, we vary s from 0.1 × min(m, n) to 1 × min(m, n).

For ε-differential privacy, LRM outperforms all other methods by at least one order
of magnitude when s is low. With increasing s, the performance gap gradually closes.
This phenomenon confirms that the low-rank property is the main reason behind LRM’s
advantages. For (ε, δ)-differential privacy, LRM also gives the best performance in all
test cases; its performance advantage decreases with s, though at a much slower rate
compared to the case of ε-differential privacy.
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Fig. 22. Effect of parameter s with under ε-differential privacy with ε = 0.1.

Fig. 23. Effect of parameter s under (ε, δ)-differential privacy with ε = 0.1 and δ = 0.0001.

Fig. 24. Scalability of LRM under ε-differential privacy.

Fig. 25. Scalability of LRM under (ε, δ)-differential privacy.

7.5. Scalability of the Low-Rank Mechanism

Finally, we demonstrate the efficiency and scalability of LRM under ε- and (ε, δ)-
differential privacy. The running time of LRM is dominated by the optimization module
that solves the best workload decomposition, which is independent of the dataset. In
Figures 24 and 25, we vary the domain size n from 128 to 8192 and the number of
queries m from 64 to 256, respectively, and report the total running time of LRM for
the four different types of workloads in our experiments. LRM scales roughly linearly
with the domain size n and the number of queries m (note that both axes are in
logarithmic scale). Moreover, we observe that for workload WRelated, LRM runs faster
when the rank s of the workload is lower, given the same values of n and m. LRM under
(ε, δ)-differential privacy is slightly more efficient than under ε-differential privacy.
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This is expected, since we set a smaller value of r for (ε, δ)-differential privacy. In all
settings, LRM always terminates within 20 minutes for each experiment. In practice,
this computation time pays off as LRM achieves significantly higher accuracy than
existing methods.

8. CONCLUSIONS AND FUTURE WORK

This article presents the low-rank mechanism (LRM), an optimization framework that
minimizes the overall error of the results for a batch of linear queries under differ-
ential privacy. The proposed method is the first practical one for a large number of
linear queries, with an efficient and effective implementation using well-established
optimization techniques. Experiments show that LRM significantly outperforms other
state-of-the-art differentially private query processing mechanisms, often by orders of
magnitude. The current design of LRM focuses on exploiting the correlations between
different queries. One interesting direction for future work is to further optimize LRM
by utilizing also the correlations between data values, e.g., as is done in Xu et al. [2013],
Rastogi and Nath [2010], and Li et al. [2011].

APPENDIXES

A. IMPLEMENTATION OF THE APPROXIMATE MATRIX MECHANISM

Li et al. [2010] describe two implementations of the matrix mechanism which optimizes
the accuracy of a batch of linear counting queries under ε-differential privacy. The
first directly solves the optimization program of the matrix mechanism, which can be
formulated as

min
A∈Rr×n

‖A‖2
1,∞tr(W A†A†T WT ), (34)

where A† denotes the pseudo-inverse of matrix A, and ‖A‖1,∞ is the maximum L1-norm
of column vectors of A. It is shown that this problem can be formulated as a semidefinite
program with rank constraint and solved by a sequence of semidefinite programs.
However, it incurs high computational overhead which is prohibitively expensive even
for a moderate-sized workload. The second implementation solves an approximate
version of Program (34) as

min
A∈Rr×n

‖A‖2
2,∞tr(W A†A†T WT ), (35)

where ‖A‖2,∞ is the maximum L2-norm of column vectors of A. Under ε-differential
privacy, Program (35) is essentially the L2 approximate of the original matrix mecha-
nism formulation. The solution to Program (35) presented in Li et al. [2010], however,
is rather complicated and incurs high computational cost. In the following two sections,
we describe two implementations of the approximate matrix mechanism: the exponen-
tial smoothing mechanism (ESM) [Yuan et al. 2012] and the adaptive mechanism (AM)
[Li and Miklau 2012] for solving Program (35).

A.1. Exponential Smoothing Mechanism

In this section, we present a simpler and more efficient solution, referred to as the
exponential smoothing mechanism (ESM), based on the methodology of exponential
smoothing. Observe that ‖A‖2

2,∞ = max(diag(AT A))1, and (AT A)−1 = (AT A)† (A has full

1We use the Matlab notations in this article. When � is a matrix, diag(�) denotes a column vector formed
from the main diagonal of �, and when � is a vector, diag(�) denotes a diagonal matrix with � in the main
diagonal entries. Moreover, max(·) retrieves the largest element of an array.
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column rank). Let M = AT A, we reformulate Program (35) as the following positive
definite optimization problem.

min
M∈Rn×n

G(M) = max(diag(M))tr(W M−1WT ) s.t. M � 0

A is given by A = ∑n
i
√

λiviv
T
i , where λi, vi are the i-th eigenvalue and eigenvector

of M, respectively. Calculating the second term tr(W M−1WT ) is relatively straightfor-
ward. Since it is smooth, its gradient can be computed as −M−1WT W M−1. However,
calculating the first term max(diag(M)) is harder since it is nonsmooth. Fortunately,
inspired by d’Aspremont et al. [2007], we can still use a logarithmic and exponential
function to approximate this term.

Approximate the maximum positive number. Since M is positive definite, v =
diag(M) > 0. We let μ > 0 be a sufficient small parameter and define

fμ(v) = μ log
n∑
i

(
exp

(
vi

μ

))
. (36)

We then have max(v) ≤ fμ (v) ≤ max(v) + μ log n. The gradient of the objective function
in Eq. (36) with respect to v can be computed as

∂ f
∂vi

=
exp

(
vi−max(v)

μ

)
∑n

j

(
exp

(
v j−max(v)

μ

)) =
exp

(
vi
μ

)
∑n

j

(
exp

(
v j

μ

)) , ∀i. (37)

Since the second-order Hessian matrix of the objective function in Eq. (36) can be
computed as

∂2 f
∂v∂v

=
diag

(
exp

(
v
μ

))
μ
∑n

j

(
exp

( v j

μ

)) −
exp

(
v
μ

)
exp

(
v
μ

)T

μ
(∑n

j

(
exp

( v j

μ

)))2 = S − T,

we have the upper bound of the spectral norm of the Hessian: ||| ∂2 f
∂v∂v

|||2 = |||S − T|||2 ≤
|||S|||2 + |||T|||2 ≤ 1

μ
+ 1

μ
= 2

μ
. Therefore the gradient of fμ(v) is Lipschitz continuous

with parameter ω = 2
μ

. If we set μ = ε
log n, this becomes a uniform ε-approximation

of max(v) with a Lipschitz-continuous gradient with constant ω = 2
μ

= 2 log n
ε

. In our
experiments, we use μ = 0.01

log n.
To mitigate the problems with large numbers, using the property of the logarithmic

and exponential functions, we can rewrite Eq. (36) and Eq. (37) as

fμ(v) = max(v) + μ log

(
n∑
i

exp
(

vi − max(v)
μ

))

∂ f
∂vi

=
⎛
⎝ n∑

j

exp
(

v j − vi

μ

)⎞⎠
−1

, ∀i.

By the chain rule of differentiation in calculus, the gradient of G(M) can be computed
as:

∂G
∂M

= diag
(

∂ f
∂v

)
· tr(W M−1WT ) + fμ(v) · (−M−1WT W M−1).
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Here diag( ∂ f
∂v

) denotes a diagonal matrix with ∂ f
∂v

∈ R
n as the main diagonal entries.

This formulation allows to run the non-monotone spectral projected gradient descent al-
gorithm [Birgin et al. 2000] on the cone of positive semidefiniteness. We use eigenvalue
decomposition to trim the negative eigenvalues to maintain positive semidefiniteness
of M, and iteratively improve the result. After the algorithm terminates, we return the
final M as the optimal solution to the program.

A.2. Adaptive Mechanism

In this section, we briefly review the adaptive mechanism (AM) proposed in Li and
Miklau [2012], a heuristic solution for the problem in Program (35). AM considers the
following optimization problem:

min
λ∈Rn

n∑
i=1

d2
i

λ2
i

, s.t. (Q� Q)(λ � λ) ≤ 1m, (38)

where Q is from the singular value decomposition of the workload matrix W = QDP
with Q ∈ R

m×n, D ∈ R
n×n, P ∈ R

n×n, and d = diag(D) ∈ R
n, that is, the diagonal values

of D. Furthermore, � is the Hadamard (entry-wise) product, and 1m is a column vector
of all entries equal to one. AM then computes the strategy matrix A by

A = Qdiag(λ) ∈ R
m×n, (39)

where diag(λ) is a diagonal matrix with λ as its diagonal values.
The optimization problem in (40) is nonconvex since it contains a quadratic term

both in the objective and the constraint. By changing variable to λ � λ = u, we have
the following equivalent optimization problem:

min
u∈Rn

n∑
i=1

d2
i

ui
, s.t. (Q� Q)u ≤ 1m, u ≥ 0. (40)

By introducing an auxiliary variable v ∈ R
n, the previous optimization can be reformu-

lated as the semidefinite program

min
u∈Rn,u∈Rn

n∑
i=1

vid2
i , s.t. (Q� Q) u ≤ 1m,

[
ui 1
1 vi

]
� 0, ∀i ∈ [n], (41)

which can be solved by off-the-shelf interior-point solvers.
The complete AM algorithm is summarized in Algorithm 4. Given a workload matrix

W , AM automatically selects a different set of “eigen-queries” Qand uses a nonnegative
combination of Q to compute the strategy matrix Awith respect to the workload matrix.
First, in step 2 the algorithm performs the SVD decomposition of W to derive the
eigen-queries Q. Based on the eigen-queries Q, AM aims to find the optimal linear
combination λ(λ ≥ 0) with λ = √

u by solving the semidefinite program in step 3. In
step 4, the matrix A′ that is constructed is a candidate strategy, but may have one or
more columns whose norm is less than the sensitivity. In this case, AM adds queries
or completes columns in order to further reduce the expected error without raising the
sensitivity. Essentially, AM searches over a reduced subspace of A. Hence, the candidate
strategy matrix A′ solved from the optimization problem in (35) does not guarantee to
be the optimal strategy, since it is limited to a weighted nonnegative combination of
the fixed eigen-queries Q in Eq. (39).
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ALGORITHM 4: Adaptive Mechanism for Approximately Solving Problem (35)
1: Input: workload matrix W ∈ R

m×n

2: Compute the SVD decomposition W = QDP to obtain Q ∈ R
m×n and d = diag(D)∈ R

n.
3: Solve the semidefinite program in Equation (41) and obtain u.
4: Compute A′ = Qdiag(

√
u) ∈ R

m×n and A′′ = diag(
√

max(o)1n − o) ∈ R
n×n where

oi = ‖A′
i‖2

2, i = 1, ...n, o ∈ R
n.

5: Output the strategy matrix A:

A =
[

A′

A′′

]
∈ R

(m+n)×n

B. ASYMPTOTIC ERROR BOUNDS FOR LRM

B.1. LRM Error Bounds under ε-Differential Privacy

In this section, we prove the lower and upper bounds of the error incurred by the optimal
workload decomposition solved from Program (9), and analyze the gap between the two
bounds. First, we establish an error upper bound for LRM in the following lemma.

LEMMA B.1 (ERROR UPPER BOUND UNDER ε-DIFFERENTIAL PRIVACY). Given a workload
matrix W of rank s with singular values {λ1, . . . , λs}, an upper bound of the expected
squared error of MLRM,ε(Q, D) with respect to the optimal decomposition W = B∗L∗ is
2
∑s

k=1 λ2
k/ε

2.

PROOF. Consider the naive method NOD which can be considered as a special case
of LRM by setting B = W and L = I (i.e., identity matrix). Clearly, �(L) = 1. According
to Lemma 4.2, the expected squared error of this decomposition is

2�(B)�(L)2/ε2 = 2‖W‖2
F/ε2 = 2

s∑
k=1

λ2
k/ε

2.

We reach the conclusion of the lemma.

Next we derive a lower bound on the squared error for linear counting queries under
ε-differential privacy using geometric analysis under orthogonal projection [Hardt and
Talwar 2010]. To do so, we first present the following lemma which is used later in our
geometric analysis.

LEMMA B.2. For all orthogonal V ∈ R
s×n, we have the inequality

Vol
(
V Bn

1

) ≥ Vol
(
Bs

2

) · n− s
2 ,

where Vol(Bs
2) denotes the volume of the unit Euclidean ball, and Vol(V Bn

1) denotes
the volume of the unit ball of the L1-norm on R

n after the orthogonal transformation
under V .

PROOF. By Cauchy-Schwarz inequality we have ‖x‖1 ≤ √
n‖x‖ for all x ∈ R

n, therefore
the n-dimensional �1 ball contains an �2 ball of radius n− 1

2 , that is, Bn
1 ⊇ n− 1

2 Bn
2. Given

an orthogonal transformation V , we obtain V Bn
1 ⊇ n− 1

2 V Bn
2. Moreover, because the

orthogonal projection of a Euclidean ball is a lower-dimensional Euclidean ball of the
same radius, it holds that n− 1

2 VBn
2 = n− 1

2 Bs
2. Therefore the volume of VBn

1 is bounded
from below by

Vol
(
V Bn

1

) ≥ Vol
(
n− 1

2 Bs
2

)
= Vol

(
Bs

2

) · n− s
2 .
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We are now ready to prove the error lower bound of LRM.

LEMMA B.3 (ERROR LOWER BOUND UNDER ε-DIFFERENTIAL PRIVACY). Given a workload
matrix W of rank s with singular values {λ1, . . . , λs}, the expected squared error of
any ε-differential privacy mechanism is at least

�

⎛
⎝s4

n

(
2s

s!

s∏
k=1

λk

)2/s

/ε2

⎞
⎠ .

PROOF. Hardt and Talwar [2010, Corollary 3.4] prove that any ε-differential privacy
mechanism for linear counting queries incurs expected squared error no less than2

�
(
k3(Vol

(
PW Bn

1

))2/k
/ε2).

In the precedind formula, Bn
1 is the L1-unit ball. Vol(PWBn

1) is the volume of the unit ball
after the linear transformation PW , in which P is any orthogonal linear transformation
matrix from R

n �→ R
s. To prove the lemma, we construct an orthogonal transformation

P = U T , where U is obtained form the SVD decomposition of W (W = U�V ). According
to properties of SVD decomposition, U T U and V V T are identity matrices. Thus we
have Vol(PWBn

1) = Vol(PUVVT
�VBn

1) = Vol(V (V T �V )Bn
1) = Vol(VBn

1)
∏s

k=1 λk. The last
equality holds due to Hardit and Talwar [2010, Lemma 7.5]. Consider the the convex
body VBn

1. By Lemma B.2, it has a lower bound Vol(Bs
2) · (n− s

2 ). Note that Vol(Bs
2) can be

computed using the Gamma function [Ball 1997]: π s/2

�(1+s/2) . Using the Stirling’s formula,

we know that �(1+s/2) is roughly
√

2πe−s/2(s/2)s/2+1/2, so that Vol(Bs
2) is roughly ( 2πe

s )
s
2 .

Therefore the lower bound can be computed as �( s4

n ( 2s

s!

∏s
k=1 λk)2/s/ε2). We thus reach

the conclusion of the lemma.

Next we compare the error upper and lower bounds. The analysis involves a matrix-
theory concept called the generalized condition number.

Definition B.4 (Generalized Condition Number). Given a workload matrix W , the
generalized condition number κ(W) of W is defined as the product of the spectral norm
of W and that of its pseudo-inverse, or equivalently, the ratio between the largest
singular value of W to the nonzero smallest [Chen and Dongarra 2005; Beltrán 2011].

κ(W) � |||W |||2 · |||W †|||2 = λ1

λs

Note that we always have κ(W) ≥ 1.

THEOREM B.5. When s > 5, the gap between the upper and lower bounds of the error
incurred by mechanism MLRM,ε(Q, D) with the optimal decomposition W = B∗L∗ is
O((κ(W))2 n

s ).

2Hardt and Talwar [2010] used absolute errors from which we derived the squared errors.
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PROOF. The theorem is established by comparing the upper and lower bounds in
Lemmas B.1 and B.3 as follows.

2
∑s

k=1 λ2
k/ε

2

s4

n

( 2s

s!

∏s
k=1 λk

)2/s
/ε2

≤ 2
∑s

k=1 λ2
1

s4

n

( 2s

s!

∏s
k=1 λs

)2/s

≤ 2nsλ2
1( 2s

s!

)2/s
λ2

s s4

= 2nκ(W)2( 2s

s!

)2/s
s3

≤ 1
8

κ(W)2 n
s

The last inequality holds due to the fact that s! < ( s
2 )s when s > 5. Note that all

the prior inequalities are tight and that the equalities hold when κ(W) = 1, that is,
λ1 = λ2 = · · · = λs.

From the preceding theorem, we draw the following interesting observations:
(i) When the rank of the matrix is low (i.e., s is small) and the batch queries are
highly correlated (κ(W) � 1), then the ratio of the upper to the lower bound is large,
meaning that LRM can potentially achieve lower error than NOD; (ii) conversely, when
the rank of the matrix is full rank (s → n and n ≤ m) and the batch queries are almost
random or independent (κ(W) → 1), then the achievable error rate of LRM converges
to the upper error bound obtained by NOD. Therefore, in this situation, NOD might be
good enough and no sophisticated algorithm is needed (which is validated by the ex-
perimental results in Section 7.3). These results are consistent with the work of Ghosh
et al. [2012], who show that the Laplace mechanism is optimal in a strong sense when
answering a single linear query.

B.2. LRM Error Bounds under (ε, δ)-Differential Privacy

We first derive an upper bound for the error of LRM. Unlike the case of ε-differential
privacy, we have a tighter error upper bound than that obtained by naive methods.
We introduce the concept of ρ-coherence of a matrix, which is similar to μ-coherence
[Candès and Recht 2009] and C-coherence [Hardt and Roth 2012] of a matrix in the
low-rank optimization literature.

Definition B.6 (ρ-Coherence of a Matrix). Given a matrix W with its SVD decompo-
sition that W = U�V , where U ∈ R

m×s, � ∈ R
s×s, V ∈ R

s×n. We say the matrix W is
ρ-coherent if

ρ(W) = max
i

‖Vi‖2, i = 1, . . . , n,

where Vi is the i-th column of V . Note that we have 0 < ρ(W) ≤ 1.

LEMMA B.7 (ERROR UPPER BOUND UNDER (ε, δ)-DIFFERENTIAL PRIVACY). Given a work-
load matrix W of rank s with singular values {λ1, . . . , λs}, an upper bound of the expected
squared error of MLRM,(ε,δ)(Q, D) with respect to the optimal decomposition W = B∗L∗ is
(ρ(W))2 ∑s

k=1 λ2
k/h(ε, δ)2.

PROOF. To prove the lemma, we perform SVD decomposition of W , obtaining W =
U�V . Then, we build a decomposition B = ρ(W)U� and L = 1

ρ(W ) V . This is a valid
decomposition of W because BL = ρ(W)U� 1

ρ(W ) V = U�V = W .
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Next we prove that �(L) = 1. According to properties of the SVD transformation, the
column vectors in V are orthogonal vectors; hence, for every column Vj in V , we have
‖Vj‖2 ≤ ρ(W). Therefore �(L) = max j(

∑
i L2

i j)
1/2 = max j

1
ρ(W )‖Vj‖2 = 1.

The expected squared error of this decomposition is then bounded by

�(B) = tr(BT B)/h(ε, δ)2

= tr((ρ(W)U�)T (ρ(W)U�))/h(ε, δ)2

= ρ(W)2tr(�T U T U�))/h(ε, δ)2

= ρ(W)2
s∑

k=1

λ2
k/h(ε, δ)2.

We thus reach the conclusion of the lemma.

Note that, since ρ(W) ≤ 1, the previous error bound is no worse than the error
obtained by NOD. Meanwhile, the proof essentially describes another simple solution
whose accuracy is no worse than NOD.

We now focus on the error lower bound of LRM under (ε, δ)-differential privacy. This
has already been studied in Li and Miklau [2013], and we summarize their results
with our notations in the following lemma.

LEMMA B.8. (ERROR LOWER BOUND UNDER (ε, δ)-DIFFERENTIAL PRIVACY [LI AND MIKLAU

2013]). Given a workload matrix W of rank s with singular values {λ1, . . . , λs}, the
expected squared error of MLRM,(ε,δ)(Q, D) with respect to the optimal decomposition
W = B∗L∗ is at least

1
nh(ε, δ)2

(
s∑

i=1

λi

)2

.

The proof of the prior result in Li and Miklau [2013] is rather complicated. In the
following we provide a simple proof.

PROOF.

min
W=BL,

∀ j
∑r

i L2
i j ≤1

1
h(ε, δ)2 ‖B‖2

F ≥ 1
nh(ε, δ)2 min

W=BL
‖L‖2

F · ‖B‖2
F

= 1
nh(ε, δ)2 (‖W‖∗)2

= 1
nh(ε, δ)2

(
s∑

i=1

λi

)2

.

The first inequality is due to
∑n

j(
∑r

i L2
i j) ≤ n. Note that this inequality is tight, and

that the equality holds when every column of L lies on the surface of the unit ball. The
first equality is due to the variational formulation of nuclear norm (see, e.g., Srebro
et al. [2004]) that

‖W‖∗ = min
B,L

‖L‖F · ||B||F, s.t. W = BL.

We thus reach the conclusion of the lemma.

We next compare the error upper and the error lower bound for LRM under (ε,
δ)-differential privacy.
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THEOREM B.9. The ratio between the error upper and lower bounds of mechanism
MLRM,(ε,δ)(Q, D) with the optimal decomposition W = B∗L∗ is bounded by O((κ(W))2 n

s ).

PROOF. We compare the upper and lower bounds in B.7 and B.8, as follows.

ρ(W)2 ∑s
k=1 λ2

k/h(ε, δ)2

1
n

(∑s
i=1 λi

)2
/h(ε, δ)2

= ρ(W)2 ∑s
k=1 λ2

k
1
n

(∑s
i=1 λi

)2

≤ sλ2
1ρ(W)2

1
nλ2

s s2

= (κ(W)ρ(W))2 n
s

We thus reach the conclusion of the theorem.

The preceding theorem leads to similar conclusions as in the case of ε-differential
privacy, except that here we compare LRM with an improved version of NOD described
in the proof of Lemma B.7. Meanwhile, the previous ratio also involves an additional
parameter ρ, that is, the coherence number of the workload matrix.
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