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Abstract

Semi-definite rank minimization problems model a wide
range of applications in both signal processing and machine
learning fields. This class of problem is NP-hard in general.
In this paper, we propose a proximal Alternating Direction
Method (ADM) for the well-known semi-definite rank reg-
ularized minimization problem. Specifically, we first refor-
mulate this NP-hard problem as an equivalent biconvex M-
PEC (Mathematical Program with Equilibrium Constraints),
and then solve it using proximal ADM, which involves solv-
ing a sequence of structured convex semi-definite subprob-
lems to find a desirable solution to the original rank regular-
ized optimization problem. Moreover, based on the Kurdyka-
Łojasiewicz inequality, we prove that the proposed method
always converges to a KKT stationary point under mild con-
ditions. We apply the proposed method to the widely stud-
ied and popular sensor network localization problem. Our ex-
tensive experiments demonstrate that the proposed algorith-
m outperforms state-of-the-art low-rank semi-definite mini-
mization algorithms in terms of solution quality.
Keywords: Semidefinite Rank Minimization, MPEC, Sen-
sor Network Localization, Kurdyka-Łojasiewicz Inequality,
Proximal ADM, Convergence Analysis

1 Introduction
In this paper, we mainly focus on the following composite
rank regularized semi-definite optimization problem:

min
0�X�κI

g (A(X)− b) + λ rank(X), (1)

where λ and κ are strictly positive scalars, X ∈ Rn×n,
b ∈ Rm, the linear map A(·) : Rn×n → Rm is de-
fined as A(X) = [〈A(1),X〉, ..., 〈A(m),X〉]T , and the ma-
trices A(i) ∈ Rn×n, i = 1, ...,m are given. Moreover,
g(·) is a simple proper lower semi-continuous convex func-
tion such that its Moreau proximal operator proxg(c) ,
minz g(z) + 1

2‖z− c‖22 can be efficiently computed.
Note that we constrain X with a ball of radius κ to en-

sure the boundedness of the solution. This is to guarantee
convergence; however, it interestingly does not increase the
computational complexity of our proposed solver much. If
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no prior information on κ is known, one can set it to a suffi-
ciently large value in practice. We remark that another equal-
ly popular optimization model is to formulate Eq (1) into a
rank-constrianted/fixed-rank optimization problem. Howev-
er, in real applications, the true rank is usually unknown or,
for the constrained problem the low-rank solution may not
even exist. In this sense, Eq (1) is more appealing.

The optimization problem in Eq(1) describes many ap-
plications of interest to both the signal processing and ma-
chine learning communities, including sensor network lo-
calization (Biswas et al. 2006b), near-isometric embedding
(Chinmay Hegde 2015), low-dimensional Euclidean em-
bedding (Dattorro 2011; Recht, Fazel, and Parrilo 2010),
non-metric multidimensional scaling (Agarwal et al. 2007),
low-rank metric learning (Law, Thome, and Cord 2014;
Liu et al. 2015; Cong et al. 2013), low-rank kernel learning
(Meka et al. 2008), optimal beamforming (Huang and Palo-
mar 2010), ellipsoid fitting (Saunderson et al. 2012), optimal
power flow (Louca, Seiler, and Bitar 2013), and cognitive ra-
dio networks (Yu and Lau 2011), to name a few.

We mainly focus on positive semi-definite (PSD) opti-
mization. However, there are many applications (Candès and
Recht 2009; Zhang et al. 2013; 2012) such as matrix com-
pletion and image classification, where the solutions are not
necessarily PSD. Fortunately, one can resolve this issue by
embedding any general matrix with a larger PSD hull (refer
to Semi-definite Embedding Lemma in the supplementary
material). Moreover, many SDP optimization problems are
inherently low-rank. For example, for standard semi-definite
programming it has been proven that the rank of the solu-
tion is upper-bounded by b 1

2 (
√

8m+ 1 − 1)c, where m is
the number of equality constraints (Moscato, Norman, and
Pataki 1998). For metric learning (Roweis and Saul 2000)
and sensor network localization problems (Biswas and Ye
2004), the data distance metric often lives in a much lower
dimensional space.

In this paper, we give specific attention to solving the
popular sensor network localization problem (Biswas et al.
2006b; Zhang et al. 2010; Ji et al. 2013; Wang et al. 2008;
Krislock and Wolkowicz 2010), which falls into the low-
rank semi-definite optimization framework of Eq (1). The
problem of finding the positions of all the nodes given a few
anchor nodes and the relative distance information between
the nodes is called sensor network localization. It is an im-



portant task in wireless network applications such as target
tracking, emergency response, logistics support and mobile
advertising (Ji et al. 2013).
Challenges and Contributions: There are mainly three
challenges of existing work. (a) The general rank minimiza-
tion problem in Eq (1) is NP-hard due to the non-convexity
and discontinuous nature of the rank function. There is lit-
tle hope of finding the global minimum efficiently in all in-
stances. In order to deal with this issue, we reformulate the
rank minimization problem as an equivalent augmented op-
timization problem with a bilinear equality constraint using
a variational characterization of the rank function. Then, we
propose a proximal Alternating Direction Method (ADM)
to solve it. The resulting algorithm seeks a desirable so-
lution to the original optimization problem without requir-
ing any approximation. (b) The second aspect is the sub-
optimality of the semi-definite optimization for sensor net-
work localization. Existing approximation solutions, such as
Schatten’s `p norm method (Ji et al. 2013), only give sub-
optimal solutions. We resolve this issue by considering an
exact method for solving general rank regularized optimiza-
tion. Experimental results show that our method is more ef-
fective than the state-of-the-art. (c) The third aspect is the
convergence of the optimization algorithm. Many existing
convergence results for non-convex rank minimization prob-
lems tend to be either limited to unconstrained problems or
unapplicable to constrained optimization. We resolve this is-
sue by combining the complementarity reformulation of the
problem and a recent non-convex analysis tool called the
Kurdyka-Łojasiewicz inequality(Attouch and Bolte 2009;
Bolte, Sabach, and Teboulle 2014). In fact, we prove that
the proposed ADM algorithm converges to a first-order KK-
T point under mild conditions. To the best of our knowledge,
this is the first multiplier method for solving rank minimiza-
tion problem with guaranteed convergence.
Organization and Notations: This paper is organized as
follows. Section 2 provides a brief description of the sen-
sor location network problem and the related work. Section
3 presents our proposed proximal ADM optimization frame-
work and Section 4 summarizes the experimental results. Fi-
nally, Section 5 concludes this paper. Throughout this paper,
we use lowercase and uppercase boldfaced letters to denote
real vectors and matrices respectively. 〈X,Y〉 is the Eu-
clidean inner product of X with Y, σ(X) is the eigenvalues
of X, and diag(x) is a diagonal matrix with x in the main
diagonal entries. Finally, ‖X‖H , (vec(X)TH vec(X))1/2

denotes the generalized vector norm.

2 Preliminaries and Related Work
2.1 Preliminaries
The sensor network localization problem is defined as fol-
lows. We are given c anchor points A = [a1,a2, ...,ac] ∈
Rc×d, whose locations are known, and u sensor points S =
[s1, s2, ..., su] ∈ Ru×d whose locations we wish to deter-
mine. Furthermore, we are given the Euclidean distance val-
ues χkj between ak and sj for some k, j, and χij between
si and sj for some i, j. Specifically, we model the noisy dis-

tance measurements as:
‖ak − sj‖22 = χ2

kj + εkj , ‖si − sj‖22 = χ2
ij + εij ,

where each (k, j) ∈ Πas and each (i, j) ∈ Πss are some
selected pairs of the known (noisy) distances χ. We denote
the noise variable as ε ∈ R|Π|, where |Π| is the total number
of elements in Π , Πas ∪ Πss. Then, we formulate the
distances in the following matrix representation:

‖si − sj‖22 = eij
TSSTeij,

‖ak − sj‖22 = ( ak
ej )

T
(

Id S

ST STS

)
( ak
ej ) ,

where eij ∈ Ru has 1 at the ith position, −1 at the jth posi-
tion and zero everywhere else. Hence, we formulate sensor
network localization as the following optimization:

Find S ∈ Rd×u,
s.t. eij

TSTSeij = d2
ij + εij , ‖εTij εTkj‖q ≤ δ

( ak
ej )

T
(

Id S

ST STS

)
( ak
ej ) = d2

kj + εkj . (2)

Here q can be 1 (for laplace noise), 2 (for Gaussian noise) or
∞ (for uniform noise), see e.g. (Yuan and Ghanem 2015).
The parameter δ which depends on the noise level need-
s to be specified by the user. By introducing the PSD hull
X = ( Id S

ST STS
) ∈ R(u+d)×(u+d), we have the following

rank minimization problem (Ji et al. 2013):
min
X

rank(X)

s.t. 〈(0; eij)(0; eij)
T ,X〉 = d2

ij + εij

〈(ak; ej)(ak; ej)
T ,X〉 = d2

kj + εkj

X1:d,1:d = Id, ‖εTij εTkj‖q ≤ δ, X � 0, (3)
It is not hard to validate that Eq (3) is a special case of the
general optimization framework in Eq (1).

2.2 Related Work
This subsection presents a brief review of existing related
work, from the viewpoint of sensor network localization and
semi-definite rank minimization algorithms.

Sensor network localization is a well studied problem in
distance geometry (Biswas et al. 2006a; Rallapalli et al.
2010; Krislock and Wolkowicz 2010; Dattorro 2011). Sev-
eral convex/non-convex approaches have been proposed in
the literature. Semi-definite programming relaxation for this
problem was initially proposed by (Biswas and Ye 2004).
The basic idea of this approach is to convert the non-
convex quadratic constraints into linear matrix inequality
constraints by using an SDP lifting technique to remove
the quadratic term in the optimization problem. It was sub-
sequently shown that if there is no noise in the measured
distances, the sensor network localization problem can be
solved in polynomial time under a unique solution assump-
tion (So and Ye 2007). However, if the sensor network
problem does not have a unique solution, there must exist
a higher rank localization solution that minimizes the ob-
jective function. In this case, SDP relaxation always pro-
duces this maximal rank dimensional solution. The classi-
cal way to obtain a low dimensional solution is to project



Table 1: Semi-definite rank minimization algorithms.

Optimization Algorithms and References Description

(a) convex trace norm (Fazel 2002; Candès and Tao 2010) rank(X) ≈ tr(X)

(b) nonlinear factorization (Burer and Monteiro 2003) rank(X) ≤ k, with X ≈ LLT, L ∈ Rn×k

(c) Schatten `p norm (Lu 2014; Nie, Huang, and Ding 2012) rank(X) ≈ ‖σ(X)‖p
(d) log-det heuristic (Fazel, Hindi, and Boyd 2003; Deng et al. 2013) rank(X) ≈ log det(X+ εI)

(e) truncated nuclear norm (Hu et al. 2013; Miao, Pan, and Sun 2015) rank(X) ≤ k ⇔ tr(X) = ‖σ(X)‖top-k

(f) pseudo-inverse reformulation(Zhao 2012) rank(A) = rank(A†A) = tr(A†A)

(g) iterative hard thresholding (Zhang and Lu 2011; Lu and Zhang 2013) minX
1

2
‖X−X′‖2F + rank(X)

(h) MPEC reformulation [this paper],(Yuan and Ghanem 2015) rank(X)=min0�V�I tr(I−V), s.t. 〈V,X〉 = 0

the high dimensional solution to the desirable space us-
ing eigenvalue decomposition, but this generally only pro-
duces sub-optimal results. Second-order cone programming
relaxation was proposed in (Tseng 2007), which has su-
perior polynomial complexity. However, this technique ob-
tains good results only when the anchor nodes are placed
on the outer boundary, since the positions of the estimat-
ed remaining nodes lie within the convex hull of the an-
chor nodes. Due to the high computational complexity of
the standard SDP algorithm, the work of (Wang et al. 2008;
Pong and Tseng 2011) considers further relaxations of the
semi-definite programming approach to address the sensor
network localization problem. Very recently, the work of (Ji
et al. 2013) explores the use of a nonconvex surrogate of
the rank function, namely the Schatten `p-norm, in network
localization. Although the resulting optimization is noncon-
vex, they show that a first-order critical point can be approx-
imated in polynomial time by an interior-point algorithm.

Several semi-definite rank minimization algorithms have
been studied in the literature (See Table 1). (a) Convex trace
norm (Fazel 2002) is a lower bound of the rank function in
the sense of operator (or spectral) norm. It is proven to lead
to a near optimal low-rank solution (Candès and Tao 2010;
Recht, Fazel, and Parrilo 2010) under certain incoherence
assumptions. However, such assumptions may be violated
in real applications. (b) Nonlinear factorization (Burer and
Monteiro 2003; 2005) replaces the solution matrix X by a
nonlinear matrix multiplication LLT. One important fea-
ture of this approach is avoiding the need to perform eigen-
value decomposition. (c) Schatten `p norm with p ∈ (0, 1)
was considered by (Lu 2014; Nie, Huang, and Ding 2012;
Lu et al. 2014) to approximate the discrete rank function.
It results in a local gradient Lipschitz continuous function,
to which some smooth optimization algorithms can be ap-
plied. (d) Log-det heuristic (Fazel, Hindi, and Boyd 2003;
Deng et al. 2013) minimizes the first-order Taylor series ex-
pansion of the objective function iteratively to find a local
minimum. Since its first iteration is equivalent to solving the
trace convex relaxation problem, it can be viewed as a re-
finement of the trace norm. (e) Truncated trace norm (Hu et
al. 2013; Miao, Pan, and Sun 2015; Law, Thome, and Cord
2014) minimizes the summation of the smallest (n − k)
eigenvalues, where k is the matrix rank. This is due to the
fact that these eigenvalues have little effect on the approxi-
mation of the matrix rank. (f) Pseudo-inverse reformulations
(Zhao 2012) consider an equivalent formulation to the rank

function: rank(A) = tr(A†A). However, similar to matrix
rank, the pseudo-inverse function is not continuous. Fortu-
nately, one can use a Tikhonov regularization technique 1

to approximate the pseudo-inverse. Inspired by this fact, the
work of (Zhao 2012) proves that rank minimization can be
approximated to any level of accuracy via continuous op-
timization. (g) Iterative hard thresholding (Zhang and Lu
2011) considers directly and iteratively setting the largest (in
magnitude) elements to zero in a gradient descent format. It
has been incorporated into the Penalty Decomposition Al-
gorithm (PDA) framework (Lu and Zhang 2013). Although
PDA is guaranteed to converge to a local minimum, it lacks
stability. The value of the penalty function can be very large,
and the solution can be degenerate when the minimization
subproblem is not exactly solved.

From above, we observe that existing methods either pro-
duce approximate solutions (method (a), (c), (d) and (g)), or
limited to solving feasibility problems (method (b) and (e)).
The only existing exact method (method (g)) is the penalty
method. However, it often gives much worse results even as
compared with the simple convex methods, as shown in our
experiments. This unappealing feature motivates us to de-
sign a new exact multiplier method in this paper. Recently,
the work of (Li and Qi 2011) considers a continuous varia-
tional reformulation of the low-rank problem to solve sym-
metric semi-definite optimization problems subject to a rank
constraint. They design an ADM algorithm that finds a sta-
tionary point of the rank-constrained optimization problem.
Inspired by this work, we consider a augmented Lagrangian
method to solve the general semi-definite rank minimiza-
tion problem by handling its equivalent MPEC reformula-
tion. Note that the formulation in (Li and Qi 2011) can be
viewed as a special case of ours, since it assumes that the
solution has unit diagonal entries, i.e. diag(X) = 1.

3 Proposed Optimization Algorithm
This section presents our proposed optimization algorithm.
Specifically, we first reformulate the optimization problem
in Eq (1) as an equivalent MPEC (Mathematical Program
with Equilibrium Constraints) in Section 3.1, and then solve
the equality constrained optimization problem by a proxi-
mal Alternating Direction Method (ADM) in Section 3.2. In
Subsection 3.3, we discuss the merits of the MPEC reformu-
lation and the proximal ADM algorithm.

1A† = lim
ε→0

(ATA+ εI)−1AT = lim
ε→0

AT (AAT + εI)−1



Algorithm 1 A Proximal Alternating Direction Method
for Solving the Non-Convex MPEC Problem (8)
(S.0) Initialize X0 = 0 ∈ Rn×n, V0 = I ∈ Rn×n, π0 =
0 ∈ R. Set k = 0 and µ > 0.
(S.1) Solve the following X-subproblem with D , µI:

Xk+1 = arg min
0�X�κI

L(X,Vk, πk) +
1

2
‖X−Xk‖2D (4)

(S.2) Solve the following V-subproblem with E , µI +
α‖Xk+1‖2F I− αvec(X

k+1)vec(Xk+1)T :

Vk+1 = arg min
0�V�I

L(Xk+1,V, πk) +
1

2
‖V −Vk‖2E (5)

(S.3) Update the Lagrange multiplier:

πk+1 = πk + α(〈Vk+1,Xk+1〉) (6)

(S.4) Set k := k + 1 and then go to Step (S.1).

3.1 Equivalent MPEC Reformulation
We reformulate the semi-definite rank minimization prob-
lem in Eq (1) as an equivalent MPEC from the primal-dual
viewpoint. We provide the variational characterization of the
rank function in the following lemma.
Lemma 1. For any PSD matrix X ∈ Rn×n, it holds that:

rank(X) = min
0�V�I

tr(I−V), s.t. 〈V,X〉 = 0, (7)

and the unique optimal solution of the minimization problem
in Eq (7) is given by V∗ = Udiag(1− sign(σ))UT , where
X = Udiag(σ)UT is the SVD of X.

Proof. Refer to the supplementary material.

The result of Lemma 1 implies that the rank regularized
problem in Eq(1) is equivalent to

min
0�X�κI
0�V�I

g (A(X)− b) + λtr(I−V), s.t.〈V,X〉 = 0. (8)

in a sense that if X∗ is a global optimal solution of Eq (1),
then (X∗,Udiag(1− sign(σ))UT ) is globally optimal for
Eq (8). The converse is also true.

Eq (8) is a bi-convex problem since it is convex with
respect to each of the two variables X and V when the
other is fixed. The equality 〈V,X〉 = 0 is an equilibri-
um/complementarity constraint. This is because for all j ∈
[n] (i) both σj(V) and σj(X) are non-negative and (ii) the
equality only holds when either component is zero. Com-
pared with Eq (1), Eq (8) is a non-smooth non-convex min-
imization problem and its non-convexity is only caused by
the complementarity constraint. Although the MPEC prob-
lem in Eq (8) is obtained by increasing the dimension of the
original rank-regularized problem in Eq (1), this does not
lead to additional local optimal solutions. In the following
section, we will develop an algorithm to solve Eq (8) using
proximal ADM and show that such a “lifting” technique can
achieve a desirable solution of the original rank regularized
optimization problem.

3.2 Proximal ADM Optimization Framework
Here, we give a detailed description of the solution algo-
rithm to the optimization in Eq (8). This problem is rather
difficult to solve because it is neither convex nor smooth.
To curtail these issues, we propose a solution that is based
on proximal ADM (PADM), which updates the primal and
dual variables of the augmented Lagrangian function in E-
q (8) in an alternating way. The augmented Lagrangian
L : Rn×n × Rn×n × R→ R is defined as:

L(X,V, π) , g(A(X)− b) + λtr(I−V) + π〈V,X〉

+
α

2
(〈V,X〉)2, s.t. 0 � X � κI, 0 � V � I,

where π is the Lagrange multiplier associated with the con-
straint 〈V,X〉 = 0, and α > 0 is the penalty parameter. We
detail the PADM iteration steps for Eq (8) in Algorithm 1.
In simple terms, PADM updates are performed by optimiz-
ing for a set of primal variables at a time, while keeping all
other primal and dual variables fixed. The dual variables are
updated by gradient ascent on the resulting dual problem.

At first glance, Algorithm 1 might seem to be merely an
application of PADM on the MPEC reformulation in Eq(8).
However, it has some interesting properties that are worth
commenting on.
(a) Monotone property. For any feasible solution of vari-
ables X in Eq (4) and V in Eq (5), it can be used to show
that 〈Vk+1,Xk+1〉 ≥ 0. Using the fact that αk > 0 and due
to the update rule of πk, we conclude that πk is monotone
non-increasing. Moreover, if we initialize π0 = 0 in the first
iteration, π is always non-negative.
(b) Initialization Strategy. We initialize both N0 to I and
π0 to 0. This is for the sake of finding a reasonable good
local minimum in the first iteration as it reduces to a convex
trace norm minimization problem for the X-subproblem.
(c) V-Subproblem. Variable V in Eq (5) is updated by solv-
ing the following problem:

Vk+1 = arg min
0�V�I

− λtr(V) + π〈V,Xk+1〉

+α
2 (〈V,Xk+1〉)2 + 1

2‖V −Vk‖2E
(9)

Introducing the proximal term in the V-subproblem enables
finding a closed-form solution. After an elementary calcula-
tion, subproblem (9) can be simplified as

Vk+1 = arg min
0�V�I

L

2
‖V −W‖2F (10)

where W = Vk −G/L, with G = −λI + πkXk+1 + α ·
Xk+1 · 〈Xk+1,Vk〉 and L = µ+ α‖Xk+1‖2F . Assume that
W = Udiag(χ)UT . Clearly, Eq (10) has a closed-form
solution: Vk+1 = Udiag(min(1,max(0,χ)))UT .
(d) X-Subproblem. Variable X in Eq (4) is updated by solv-
ing the following structured convex optimization problem:

min
0�X�κI

g(A(X)− b) + α
2 ‖B(X)‖2F + µ

2 ‖X‖
2
F + 〈X,C〉,

where B(·) : Rn×n → R is another linear map defined
as B(X) , 〈V,X〉, C = πkVk. The X-subproblem has



no closed-form solution, but it can be solved by classi-
cal/linearized ADM (He and Yuan 2012; Lin, Liu, and Su
2011). Refer to the supplementary material for more details.

Proximal ADM has excellent convergence properties in
practice, but the optimization problem in Eq (8) is non-
convex, so additional conditions are needed to guarantee
convergence to a KKT point. In what follows and based
on the Kurdyka-Łojasiewicz inequality, we prove that un-
der broad assumptions, our proximal ADM algorithm al-
ways converges to a KKT point. Specifically, we have the
following convergence result.

Theorem 1. Convergence of Algorithm 1. Assume that πk
is bounded for all k. As k → +∞, Algorithm 1 converges to
a first order KKT point of Eq (8).

Proof. Refer to the supplementary material.

3.3 Discussions
In this paper, we consider a variational characterization of
the rank function in Lemma 1. However, other alternative
MPEC reformulation exists. Using the result in our previous
work (Yuan and Ghanem 2015), we have:
rank(X) = min

0≤v≤1
〈1,1− v〉, s.t. 〈v,σ(X)〉 = 0

where σ(X) denotes the eigenvalues of X. However, such
a reformulation is non-convex with respect to X for general
v. The proposed reformulation in Eq (8) is convex with re-
spect to X, which is very helpful for convergence. The key
strategy of the biconvex formulation is enforcing X and V
to share the same spectral decomposition.

There are two merits behind the MPEC reformulation.
(i) Eq (8) is a continuous optimization reformulation. This
facilitates analyzing its KKT condition and utilizing exist-
ing continuous optimization algorithms to solve the result-
ing convex sub-problems. (ii) MPEC is an effective way
to model certain classes of discrete optimization (Yuan and
Ghanem 2015; Bi, Liu, and Pan 2014; Luo, Pang, and Ralph
1996). We argue that, from a practical point of view, im-
proved solutions to Eq (1) can be obtained by reformulating
the problem in terms of complementarity constraints.

We propose a proximal ADM algorithm to solve the M-
PEC problem. There are three reasons that explain the good
performance of our proposed optimization algorithm. (i) It
targets a solution to the original problem in Eq (1). (i-
i) It finds a good initialization. It reduces to the classical
convex relaxation method in the first iteration. (iii) It has
a monotone/greedy property owing to the complimentarity
constraints brought on by the MPEC. The complimentary
system characterizes the optimality of the KKT solution. We
let u , {X,V}. Our solution directly handles the compli-
mentary system of Eq (1) which takes the following form
(on eigenvalues for the matrix case):

〈f(u), g(u)〉 = 0, f(u) ≥ 0, g(u) ≥ 0

The complimentary constraint is the source of all the special
properties of MPEC that distinguishes it from general non-
linear optimization. We penalize the complimentary error of
〈f(u), g(u)〉 (which is always non-negative) and ensure that
the error is decreasing in every iteration.

4 Experimental Results
In this section, we provide empirical validation for our pro-
posed method by conducting extensive sensor network local-
ization experiments and performing a thorough comparative
analysis with the state-of-the-art. We compare our method
(denoted as PADM) with five state-of-the-art and popular
algorithms: Feasibility Method (FM) (Biswas et al. 2006a),
Trace Approximation Method (TAM) (Biswas et al. 2006a),
Schatten `p Approximation Method (LPAM) 2(Ji et al. 2013;
Lu et al. 2015), Log-Det Heuristic Method (LDHM) (Fazel,
Hindi, and Boyd 2003), and Penalty Decomposition Algo-
rithm (PDA) (Zhang and Lu 2011). We provide our supple-
mentary material and MATLAB implementation online at:
http://yuanganzhao.weebly.com/.

4.1 Experimental Setup
Following the experimental setting in (Biswas et al. 2006b),
we uniformly generate c anchors (c = 5 in all our exper-
iments) and u sensors in the range [−0.5, 0.5] to generate
d-dimensional data points. To generate random and noisy
distance measure, we uniformly select o , (r × |Π|) subset
measurements χ̃ ∈ Ro from Π and inject them with noise
by χ̃← χ̃+s×ε, where ε ∈ Ro is noise of unit scale. Here
s and r can be viewed as the noise level and sampling ratio,
respectively. We consider two ways to measure the quality
of the recovered solution X 3:

rank(X) , ‖σ(X)‖0-ε,

dist(S) , (1/n ·
∑n
i=1 ‖S(i, :)− S̄(i, :)‖2)1/2

where ‖x‖0-ε is the soft `0 norm which counts the number
of elements whose magnitude is greater than a threshold ε =
0.01 · ‖x‖, ∀x ∈ Rn. S̄ is the true position of the sensors.

Table 2: Varying parameters used in the experiments

dimension (d) 2, 3, 7
noise type (q) 2, 1,∞
# sensors (u) 30, 50, 70, 90, 110, 130, 150, 170, 190
noise level (s) 0.01, 0.03, 0.05, 0.07, ..., 0.19
sampling ratio (r) 0.1, 0.2, 0.3, 0.4, ..., 1.0

In our experiments, we test the impact of five parameter-
s: d, q, u, s, and r. Although we are mostly interested in
d-dimensional (d = 2 or 3) localization problems, Problem
(3) is also strongly related to Euclidean distance matrix com-
pletion, a larger dimension (e.g. d = 7) is also interesting.
The range of all these five parameters is summarized in Ta-
ble 2. Unless otherwise specified, the default parameters in
bold are used. Due to space limitation, we only present our
experimental localization results in the presence of Gaus-
sian noise (p = 2). For more experimental results on laplace
noise (i.e. p = 1) and uniform noise (p = ∞), please refer
to supplementary material.

2Since the interior-point method (Ji et al. 2013) is not conve-
nient to solve the general composite rank minimization problem,
we consider an alternative ADM algorithm which is based on gen-
eralized singular value thresholding (Lu et al. 2015).

3Note that we need to retrieve S from X (See Eq (2)).
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Figure 1: Asymptotic behavior of optimizing Eq (3) for the minimum-rank sensor network localization problem in the presence
of Gaussian noise. We plot the values of rank (blue) and dist (red) against the number of iterations, as well as, the sensor
locations at different stages of the optimization (1, 2, 3, 4, 5).
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Figure 2: Performance comparison on 2d data in the presence of Gaussian noise.
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Figure 3: Performance comparison on 3d data in the presence of Gaussian noise.

4.2 Convergence Behavior and Examples
First of all, we verify the convergence property of our pro-
posed PADM algorithm by considering the d = 3 sensor
network localization problem. We record rank and dist val-
ues for PADM at every iteration k and plot these results in
Figure 1. We observe that both the rank and dist values de-
crease monotonically, and we attribute this to the monotone
property of the dual variable π in Algorithm 1. Moreover, the
rank and dist values stabilize after the 5th iteration, which
means that our algorithm has converged. The decrease of
the values is negligible after this iteration. This implies that
a looser stopping criterion can be used without sacrificing
much localization quality. Second, we show two localization
examples on d = 2 and d = 3 data to demonstrate the ef-
fectiveness of PADM. As can be seen in Figure 2 and Figure
3, LPAM improves upon the convex/non-convex methods,
while our PADM achieves the lowest rank and dist values
in the experiments.

4.3 Varying the Parameter u, s and r
We now evaluate the performance of all the methods with
varying number of sensor u, noise levels s and sampling ra-
tio r. We report the recovered results in Figure 4, Figure 5
and Figure 6, respectively. We make the following observa-
tions. (i) For the convex methods TAM and FM, TAM of-
ten achieves a lower rank solution and gives better perfor-
mance. (ii) LDHM generally outperforms the convex meth-
ods TAM and FM because it can often refine the solution of
the trace relaxation method when using appropriate initial-
ization. However, this method is still unstable in the varying
sampling ratio test cases. (iii) For all our experiments, PDA
fails to localize the sensors and generates much worse results
than the other methods. (iv) For all the methods, the dist val-
ue tends to increase (decrease) as the noise level (sampling
ratio) increases. Our proposed PADM generally and relative-
ly gives better performance than all the remaining methods,
i.e. it often achieves lower rank and dist values.
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Figure 4: Performance comparison with varying number of sensors u in the presence of Gaussian noise.
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Figure 5: Performance comparison with varying noise level s in the presence of Gaussian noise.
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Figure 6: Performance comparison with varying sampling ratio r in the presence of Gaussian noise.

5 Conclusions
In this paper, we propose an MPEC approach for solving
the semi-definite rank minimization problem. Although the
optimization problem is non-convex, we design an effec-
tive proximal ADM algorithm to solve the equivalent MPEC
problem. We also prove that our method is convergent to a
first-order KKT point. We apply our method to the problem
of sensor network localization, where extensive experimen-
tal results demonstrate that our method generally achieves
better solution quality than existing methods. This is due to
the fact that the original rank problem is not approximated.
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The supplementary material is organized as follows. Sec-
tion 1 presents the details of our proofs. Section 2 presents
the convergence analysis of the proposed MPEC-based
proximal ADM algorithm. Section 3 presents the classi-
cal ADM for solving the subproblem. Finally, Section 4
presents additional experimental results.

1 Proofs
Lemma 1. [Semidefinite Embedding Lemma (Fazel, Hindi,
and Boyd 2003)] Let R ∈ Rm×n be a given matrix. Then
rank(R) ≤ r if and only if there exist matrices S = ST ∈
Rm×m and T = TT ∈ Rn×n such that[

S R
RT T

]
� 0, rank(S) + rank(T) ≤ 2r. (1)

Remark. We remark that the semidefinite optimization prob-
lem discussed in this paper is very general. To illustrate this
point, we consider the following optimization problem:

min
R

g(R) + λ rank(R) (2)

By the Semidefinite Embedding Lemma, we have the fol-
lowing equivalent semi-definite optimization problem :

min
R

g(R) +
1

2
rank

([
S 0
0 T

])
, s.t.

[
S R
RT T

]
� 0.

Since
[

S R
RT T

]
is positive semidefinite, by the Schur comple-

ment condition 1, it holds that S � 0 and T � 0. Then the
variable matrix

[
S 0
0T T

]
is also positive semidefinite. Using

the MPEC reformulation, we have the following equivalent
optimization problem:

min
R,S,T,V

g(R) +
1

2
tr(V),

s.t. 〈I−V,

[
S 0
0 T

]
〉 = 0,

[
S R
RT T

]
� 0, I � V � 0.

Clearly, the equivalent optimization problem in Eq (2) can
be solved by our proposed PADM algorithm. �

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Schur complement condition implies that: X ,
(

A B
BT C

)
�

0⇔ A � 0,S = C−BTA†B � 0

Here, we prove the variational formulation of the NP-hard
rank function.
Lemma 2. For any given positive semidefinite matrix X ∈
Rn×n, it holds that

rank(X) = min
V

tr(I−V), s.t. 〈V,X〉 = 0, 0 � V � I (3)

and the unique optimal solution of the minimization problem
in Eq (3) is given by V∗ = Udiag(sign(σ))UT , where
X = Udiag(σ)UT is the eigenvalue decomposition of X,
sign is the standard signum function 2.

Proof. First of all, we let X and V be arbitrary feasible so-
lutions with their eigenvalue decomposition given by X =
Udiag(σ)UT and V = Sdiag(δ)ST , respectively. It al-
ways holds that:

〈X,V〉 = ‖Udiag(
√
σ)diag(

√
δ)ST ‖2F ≥ 0

The second equality is achieved only when V and X are
simultaneously unitarily diagonalizable, i.e. both V and X
share the same spectral decomposition. Therefore, the fea-
sible set for V in Eq (3) must be contained in the set
{V | V = Udiag(v)UT , 0 ≤ v ≤ 1, v ∈ Rr}. Us-
ing the fact that tr(V) = 〈v,1〉, tr(X) = 〈σ,1〉 and
〈V,X〉 = 〈Udiag(v)UT ,Udiag(σ)UT 〉 = 〈v,σ〉, Eq (3)
reduces to the vector case:

rank(X) = min
v
〈1,1− v〉, s.t. 〈v,σ〉 = 0, 0 ≤ v ≤ 1 (4)

Since v ≥ 0 and σ ≥ 0, Eq (4) is equivalent to Eq (5):

rank(X) = min
v
〈1,1− v〉, s.t. v � σ = 0, 0 ≤ v ≤ 1 (5)

where � denotes the Hadamard product (also known as
the entrywise product). Note that for all i ∈ [r] when
σi = 0, vi = 1 will be achieved by minimization, when
σi 6= 0, vi = will be enforced by the constraint. Since
the objective function in Eq (4) is linear, minimization is
always achieved at the boundaries of the feasible solution
space. Thus, v∗ = 1 − sign(σ). Finally, we have V∗ =

Udiag(1 − sign(σ))UT . We thus complete the proof of
this lemma.

2 sign(x) =

 −1, x < 0;
0, x = 0;
1, x > 0.



The following lemma shows how to compute the general-
ized Singular Value Thresholding (SVT) operator which is
involved in V-subproblem in our PADM Algorithm.
Lemma 3. Assume that W has the SVD decomposition that
W = Udiag(σ)UT . The optimal solution of the following
optimization problem

arg min
V

1

2
‖V −W‖2F + I∆(V) (6)

can be computed as Udiag(min(1,max(0,σ)))T. Here I∆
is an indicator function of the convex set ∆ , {V | 0 �
V � I} with I∆(V) ,

{
0, V ∈ ∆

∞, otherwise. .

Proof. The proof of this lemma is very natural. For com-
pleteness, we present our proof here. For notation conve-
nience, we use σ and z to denote the singular values of W
and V, respectively. We naturally derive the following in-
equalities:

1

2
‖V −W‖2F + I∆(V)

=
1

2
(‖z‖2 + ‖σ‖2 − 2〈V,W〉) + IΘ(z)

≤ 1

2
(‖z‖2 + ‖σ‖2 − 2〈z,σ〉) + IΘ(z)

=
1

2
‖z− σ‖2 + IΘ(z)

From the von Veumann’s trace inequality, the solution
set of (12) must be contained in the set {V | V =

Udiag(v∗)UT }, where v∗ is given by

v∗ = arg min
z

1

2
‖z− σ‖2 + IΘ(z) (7)

Since the optimization problem in Eq(7) is decomposable, a
simple computation yields that the solution can be comput-
ed in closed form as: v∗ = min(1,max(0,σ)). Therefore,
V∗ = Udiag(min(1,max(0,σ)))UT . We thus complete
the proof of this lemma.

2 Convergence Analysis
The global convergence of ADM for convex problems was
given by He and Yuan in (He and Yuan 2012) under an
elegant variational inequality framework. However, since
our MPEC optimization problem is non-convex, the con-
vergence analysis for ADM needs additional conditions. In
non-convex optimization, convergence to a stationary point
(local minimum) is the best convergence property that we
can hope for. Under boundedness condition, we show that
the sequence generated by the proximal ADM converges to
a KKT point.

For the ease of discussions, we define:

u , {X,V}, s , {X,V, π} (8)

and

Ω , {X | 0 � X � κI}, ∆ , {V | 0 � V � I} (9)

First of all, we present the first-order KKT conditions of
the MPEC reformulation optimization problem. Based on
the augmented Lagrangian function of the MPEC reformu-
lation, we naturally derive the following KKT conditions of
the optimization problem for {X∗,V∗, π∗}:

0 ∈ ∂IΩ(X∗) + AT∂g(A(X∗)− b) + πV∗

0 ∈ ∂I∆(V∗)− λI + πX∗

0 = 〈V∗,X∗〉

whose existence can be guaranteed by Robinson’s constraint
qualification (Rockafellar, Wets, and Wets 1998).

First of all, we prove the subgradient lower bound for the
iterates gap by the following lemma.

Lemma 4. Assume that πk is bounded for all k, then there
exists a constant $ > 0 such that the following inequality
holds:

‖∂L(sk+1)‖ ≤ $‖sk+1 − sk‖ (10)

Proof. By the optimal condition of the X-subproblem and
V-subproblem, we have:

0 ∈ D(Xk+1 −Xk) + AT∂g(A(Xk+1)− b) +

πkVk + α〈Vk,Xk+1〉Vk + ∂IΩ(Xk+1) (11)

0 ∈ E(Vk+1 −Vk)− λI + πkXk+1

+α〈Vk+1,Xk+1〉Xk+1 + ∂I∆(Vk+1) (12)

By the definition of L we have that

∂LX(sk+1)

= AT∂g(AXk+1 − b) + πk+1Vk+1 +

α〈Vk+1,Xk+1〉Vk+1 + ∂IΩ(Xk+1)

= −(πk + α〈Vk,Xk+1〉)Vk + (πk+1 + α〈Vk+1,Xk+1〉)Vk+1

−D(Xk+1 −Xk)

= −(πk + α〈Vk+1,Xk+1〉+ α〈Vk −Vk+1,Xk+1〉)Vk

+(πk+1 + α〈Vk+1,Xk+1〉)Vk+1 −D(Xk+1 −Xk)

= −(πk+1 + α〈Vk −Vk+1,Xk+1〉)Vk + (2πk+1 − πk)Vk+1

−D(Xk+1 −Xk)

= −(α〈Vk −Vk+1,Xk+1〉)Vk + (πk+1 − πk)Vk+1

+πk+1(Vk+1 −Vk)−D(Xk+1 −Xk)

The first step uses the definition of LX(sk+1), the second
step uses Eq (11), the third step uses Vk +Vk+1−Vk+1 =
Vk, the fourth step uses the multiplier update rule for π.

Assume that πk+1 is bounded by a constant ρ that πk+1 ≤
ρ. We have:

‖∂LX(sk+1)‖F
≤ ‖α〈Vk −Vk+1,Xk+1〉Vk‖+ ‖(πk+1 − πk)Vk+1‖

+‖πk+1(Vk+1 −Vk)‖+ ‖D(Xk+1 −Xk)‖
≤ 2nκα‖Vk −Vk+1‖F + 2‖πk+1 − πk‖

ρ‖Vk −Vk+1‖F + ‖D‖ · ‖Xk+1 −Xk‖F (13)



Similarly, we have

∂LV(sk+1) = ∂I∆(Vk+1)− λI + πk+1Xk+1

+α〈Vk+1,Xk+1〉Xk+1

= (πk+1 − πk)Xk+1 −E(Vk+1 −Vk)

∂Lπ(sk+1) = 〈I−Vk+1,Xk+1〉 =
1

α
(πk+1 − πk)

Then we derive the following inequalities:

‖∂LV(sk+1)‖F ≤ κ‖πk − πk+1‖+ ‖E‖ · ‖Vk+1 −Vk‖F (14)

‖∂Lπ(sk+1)‖ ≤ 1

α
‖πk+1 − πk‖ (15)

Combining Eqs (13-15), we conclude that there exists $ >
0 such that the following inequality holds

‖∂L(s)‖F ≤ $‖s− sk‖.
Thus, we complete the proof of this lemma.

The following lemma is useful in our convergence analysis.
Lemma 5. Assume that πk is bounded for all k, then we
have the following inequality:

∞∑
k=0

‖sk − sk+1‖2 < +∞ (16)

In particular the sequence ‖sk−sk+1‖ is asymptotic regular,
namely ‖sk − sk+1‖ → 0 as k →∞. Moreover any cluster
point of sk is a stationary point of L.

Proof. Due to the initialization and the update rule
of π, we conclude that πk is nonnegative and mono-
tone non-decreasing. Moreover, as k → ∞, we have:
〈Xk+1,Vk+1〉 = 0. This can be proved by contradiction.
Suppose that 〈Xk+1,Vk+1〉 6= 0, then πk = +∞ as
k →∞. This contradicts our assumption that πk is bounded.
Therefore, we conclude that as k → +∞ it holds that

〈Xk+1,Vk+1〉 = 0,

k∑
i=1

‖πi+1 − πi‖ < +∞

k∑
i=1

‖πi+1 − πi‖2 < +∞

(17)

On the other hand, we naturally derive the following in-
equalities:

L(Xk+1,Vk+1;πk+1)

= L(Xk+1,Vk+1;πk) + 〈πk+1 − πk, 〈Vk+1,Xk+1〉〉

= L(Xk+1,Vk+1;πk) +
1

α
‖πk+1 − πk‖2

≤ L(Xk,Vk+1;πk)− µ

2
‖Xk+1 −Xk‖2

+
1

α
‖πk+1 − πk‖2

≤ L(Xk,Vk;πk)− µ

2
‖Xk+1 −Xk‖2

−µ
2
‖Vk+1 −Vk‖2 +

1

α
‖πk+1 − πk‖2 (18)

The first step uses the definition of L; the second step
uses update rule of the Lagrangian multiplier π; the
third and fourth step use the µ-strongly convexity of L
with respect to X and v, respectively. We define C =

L(X0,V0;π0)−L(Xk+1,Vk+1;πk+1)+ 1
α

∑k
i=1 ‖πi+1−

πi‖2. Clearly, by the boundedness of Xk, Vk and πk, both
L(Xk+1,Vk+1;πk+1) and C are bounded. Summing Eq
(18) over i = 1, 2..., k, we have:

µ

2

k∑
i=1

‖ui+1 − ui‖2 ≤ C (19)

Therefore, combining Eq(17) and Eq (19), we have∑+∞
k=1 ‖sk+1−sk‖2 < +∞; in particular ‖sk+1−sk‖ → 0.

By Eq (10), we have that:

‖∂L(sk+1)‖ ≤ $‖sk+1 − sk‖ → 0 (20)

which implies that any cluster point of sk is a stationary
point of L. We complete the proof of this lemma.

Remarks: Lemma 5 states that any cluster point is the KKT
point. Strictly speaking, this result does not imply the con-
vergence of the algorithm. This is because the boundedness
of
∑∞
k=0 ‖sk − sk+1‖2 does not imply that the sequence sk

is convergent3. In what follows, we aim to prove stronger
result in Theorem 1.

Our analysis is mainly based on a recent non-convex anal-
ysis tool called Kurdyka-Łojasiewicz inequality (Attouch et
al. 2010; Bolte, Sabach, and Teboulle 2014). One key condi-
tion of our proof requires that the Lagrangian function L(s)
satisfies the so-call (KL) property in its effective domain. It
is so-called the semi-algebraic function satisfy the Kurdyka-
Łojasiewicz property. It is not hard to validate that the La-
grangian function L(s) is a semi-algebraic function 4. This
is not surprising since semi-algebraic function is ubiquitous
in applications. Interested readers can refer to (Xu and Yin
2013) for more details. We now present the following propo-
sition established in (Attouch et al. 2010).
Proposition 1. For a given semi-algebraic function L(s),
for all s ∈ domL, there exists θ ∈ [0, 1), η ∈ (0,+∞] a
neighborhood S of s and a concave and continuous function
ϕ(t) = c·t1−θ, t ∈ [0, η) such that for all s̄ ∈ S and satisfies
L(s̄) ∈ (L(s),L(s) + η), the following inequality holds:

dist(0, ∂L(s̄))ϕk(L(s)− L(s̄)) ≥ 1, ∀s

where dist(0, ∂L(s̄)) = min{||u∗|| : u∗ ∈ ∂L(s̄)}.
3One typical counter-example is sk =

∑k
i=1

1
i
. Clearly,∑∞

k=0 ‖s
k − sk+1‖2 =

∑∞
k=1(

1
k
)2 is bounded by π2

6
; however,

sk is divergent since sk = ln(k)+Ce, where Ce is the well-known
Euler’s constant.

4Note that semi-algebraic functions include (i) real polynomial
functions, (ii) finite sums and products of semi-algebraic function-
s, and (iii) indicator functions of semi-algebraic sets. Using these
definitions repeatedly, the graph of L(s) : {(s, t) | t = L(s)} can
be proved to be a semi-algebraic set. Therefore, L(s) is a semi-
algebraic function.



The following theorem establishes the convergence prop-
erties of the proposed algorithm under a boundedness con-
dition.
Theorem 1. Assume that πk is bounded for all k. Then we
have the following inequality:

+∞∑
k=0

‖sk − sk+1‖ <∞ (21)

Moreover, as k → ∞, Algorithm 1 converges to the first
order KKT point of the MPEC reformulation optimization
problem.

Proof. For simplicity, we define Rk = ϕ(L(sk)−L(s∗))−
ϕ(L(sk+1) − L(s∗)). We naturally derive the following in-
equalities:

µ

2
‖uk+1 − uk‖2 − 1

α
‖πk+1 − πk‖2

≤ L(sk)− L(sk+1)

= (L(sk)− L(s∗))− (L(sk+1)− L(s∗))

≤ Rk

ϕk(L(sk)− L(s∗))

≤ Rkdist(0, ∂L(sk))

≤ Rk$(‖Xk −Xk−1‖+ ‖Vk −Vk−1‖+ ‖πk − πk−1‖)
≤ Rk$(

√
2‖uk − uk−1‖+ ‖πk − πk−1‖)

= Rk$

√
16

µ
(

√
µ

8
‖uk − uk−1‖+

√
µ

16
‖πk − πk−1‖)

≤ 4(Rk$)2

µ
+ (

√
µ

8
‖uk − uk−1‖+

√
µ

16
‖πk − πk−1‖)2

The first step uses Eq (18); the third step uses the concav-
ity of ϕ such that ϕ(a) − ϕ(b) ≥ ϕk(a)(a − b) for all
a, b ∈ R; the fourth step uses the KL property such that
dist(0, ∂L(sk))ϕk(L(sk)−L(s∗)) ≥ 1 as in Proposition 1;
the fifth step uses Eq (10); the sixth step uses the inequality
that ‖x; y‖ ≤ ‖x‖ + ‖y‖ ≤

√
2‖x; y‖, where ‘;’ in [·] de-

notes the row-wise partitioning indicator as in Matlab; the
last step uses that fact that 2ab ≤ a2 + b2 for all a, b ∈ R.
As k →∞, we have:

µ

2
‖uk+1 − uk‖2 ≤ 4(Rkκ)2

µ
+

(√
µ

8
‖uk − uk−1‖

)2

Take the squared root of both side and use the inequality that√
a+ b ≤

√
a+
√
b for all a, b ∈ R+, we have

√
µ

8
‖uk+1 − uk‖

≤ Rkκ
√
µ

+

√
µ

32
‖uk − uk−1‖

≤ Rkκ
√
µ

+

√
µ

8
(‖uk − uk−1‖ − ‖uk+1 − uk‖)

Summing the inequality above over i = 1, 2..., k, we have:√
µ

8

k∑
i=1

‖ui+1 − ui‖ ≤ Z +
(
‖u1 − u0‖+ ‖uk+1 − uk‖

)
where Z = κ√

µ

∑k
i=1(ϕ(L(s0) − L(s∗)) − ϕ(L(sk+1) −

L(s∗))) is bounded real number. Therefore, we conclude
that as k →∞, we obtain:

k∑
i=1

‖ui+1 − ui‖ < +∞ (22)

Moreover, by Eq (10) in Lemma 4 we have ∂L(sk+1) = 0.
In other words, we have the following results:

0 ∈ ∂I∆(Xk+1) + AT∂g(A(Xk+1)− b) + πk+1Vk+1

0 ∈ ∂I∆(Vk+1) + λI + πk+1Xk+1

0 = 〈Vk+1,Xk+1〉

which imply that {Xk+1,Vk+1, πk+1} is a first-order KKT
point.

Algorithm 2 Classical Alternating Direction Method for
Solving the Convex X-Subproblem in Eq (25).
(S.0) Initialize X0,Y0 = 0 ∈ Rn×n, y0 = 0 ∈ Rm. z0 =
0 ∈ Rm, Z0 = 0 ∈ Rn×n. Set t = 0.
(S.1) Solve the following (y,X)-subproblem:

Xt+1 = arg min
X

J (X,yt,Yt;Zt, zt) (23)

(S.2) Solve the following Y-subproblem:

(yt+1,Yt+1) = arg min
y,0�Y�κI

J (Xt+1,y,Y;Zt, zt) (24)

(S.3) Update the Lagrange multiplier via the following for-
mula:

Zt+1 = Zt + β(Xt+1 −Yt+1)

zt+1 = zt + γ(A(Xk+1)− b− yk+1)

(S.4) Set t := t+ 1 and then go to Step (S.1).

3 Solving the Convex Subproblem
The efficiency of Algorithm proximal ADM in Algorithm
1 relies whether the convex subproblem can be efficiently
solved. In this section, we aim to solve the following semi-
definite optimization subproblem involved in the proposed
PADM algorithm:

min
0�X�κI

g (A(X)− b) +
α

2
‖B(X)‖2F +

µ

2
‖X‖2F + 〈X,C〉, (25)

Our solution is naturally based on the classical ADM (He
and Yuan 2012; Lin, Liu, and Su 2011). For completeness,



we include our algorithm details here. First, we introduce t-
wo auxiliary vectors y ∈ Rm and Y ∈ Rn×n to reformulate
Eq (25) as:

min
y,X,Y

g (y) +
α

2
‖B(X)‖2F +

µ

2
‖X‖2F + 〈X,C〉,

s.t. A(X)− b = y, X = Y, 0 � Y � κI. (26)
Let Jβ,γ : Rm×Rn×n×Rn×n×Rm×Rn×n → R be the
augmented Lagrangian function in Eq(26)

J (y,X,Y; z,Z) = g (y) +
α

2
‖B(X)‖2F +

µ

2
‖X‖2F

+〈X,C〉+ 〈z,A(X)− b− y〉+
γ

2
‖A(X)− b− y‖2F

+〈Z,X−Y〉+
β

2
‖X−Y‖2F , s.t. 0 � Y � κI

z and Z are the Lagrange multipliers associated to the con-
straints A(Y) − b − y = 0 and X −Y = 0, respectively,
and γ, β > 0 are the penalty parameters. The detailed itera-
tion steps of the classical ADM for Eq (26) are described in
Algorithm 2.
Next, we focus our attention on the solutions of subproblems
(23) and (24) arising in Algorithm 2.
(i) X-subproblem. The first-order optimality condition for
the variable X is:
αB∗B(Xt+1) + γA∗A(Xt+1) + (µ+ β)Xt+1 = E

where E = βY + γA∗(b + y) − C − A∗z − Z. Solving
this linear system gives:

Xt+1 = (αB∗B + γA∗A+ (µ+ β)I)
−1

E (27)
When the dimension of the solution is high, solving this lin-
ear system may dominant the computation time. However,
one can use iterative conjugate gradient to alleviate this com-
putational burden. We remark that it is also possible to utilize
linearized ADM to address this issue (He and Yuan 2012;
Lin, Liu, and Su 2011).
(ii) (y,Y)-subproblem. Variable y in Eq (24) is updated by
solving the following problem:

yt+1 = arg min
y∈Rm

g (y) +
γ

2
‖q− y‖2,

with q = A(X)−b+z/γ. It reduces to the Moreau proximal
operator proxg(·) that can be evaluated efficiently by our
assumption in the introduction section.
Variable Y in Eq (24) is updated by solving the following
problem:

Yt+1 = arg min
0�Y�κI

β

2
‖Y − S‖2F

with S = Xt+1 + Zt/β. Assume that S has the spectral
decomposition that S = Vdiag(s)VT . A simple computa-
tion yields that the solution Yt+1 can be computed in closed
form as: Yt+1 = Vdiag(max(0,min(κ1, s)))VT .
The exposition above shows that the computation required
in each iteration of Algorithm 2 is insignificant.

Classical ADM has excellent convergence both in theory
and in practice for convex problems. The convergence of Al-
gorithm 2 can be obtained since the Féjer monotonicity of it-
erative sequences {yt,Xt,Yt, zt,Zt} holds due to convex-
ity. For the proof of convergence of Algorithm 2, interested
readers can refer to (He and Yuan 2012) for more details.

4 Additional Experimental Results
In this section, we present some additional experimental re-
sults to demonstrate the superiority of our proposed proxi-
mal ADM algorithm. Due to page limitations, we were not
able to add these results in the submission. We extend our
method for sensor network localization problem in the pres-
ence of laplace noise and uniform noise. We show our result-
s of laplace noise in Figure 1-6 and uniform noise in Figure
7-12, these experimental results strengthen our conclusions
drawn in our submission.
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Figure 1: Asymptotic behavior on minimum-rank sensor network localization problem in the presence of laplace noise. We
plot the values of rank (blue) and dist (red) against the number of iterations, as well as how the sensors have been located at
different stages of the process (1, 2, 3, 4, 5).
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Figure 2: Performance comparison on 2d data in the presence of laplace noise.
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Figure 3: Performance comparison on 3d data in the presence of laplace noise.
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(d) dist and rank comparisons on 7d data
Figure 4: Performance comparison with varying the number of sensor u in the presence of laplace noise.
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Figure 5: Performance comparison with varying the noise level s in the presence of laplace noise.
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Figure 6: Performance comparison with varying the sampling ratio r in the presence of laplace noise.
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Figure 7: Asymptotic behavior on minimum-rank sensor network localization problem in the presence of uniform noise. We
plot the values of rank (blue) and dist (red) against the number of iterations, as well as how the sensors have been located at
different stages of the process (1, 2, 3, 4, 5).
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Figure 8: Performance comparison on 2d data in the presence of uniform noise.
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Figure 9: Performance comparison on 3d data in the presence of uniform noise.
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Figure 10: Performance comparison with varying the number of sensor u in the presence of uniform noise.

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

10
−1

noise level

d
is

t

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

5

10

15

20

25

noise level

ra
n

k

(a) dist and rank comparisons on 2d data

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

10
−0.9

10
−0.7

10
−0.5

10
−0.3

noise level

d
is

t

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

5

10

15

20

25

noise level

ra
n

k

(b) dist and rank comparisons on 3d data

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

10
−0.6

10
−0.4

10
−0.2

10
0

noise level

d
is

t

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

8

10

12

14

16

18

20

22

noise level

ra
n

k

(c) dist and rank comparisons on 7d data
Figure 11: Performance comparison with varying the noise level s in the presence of uniform noise.
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Figure 12: Performance comparison with varying the sampling ratio r in the presence of uniform noise.


