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ABSTRACT
Differential privacy enables organizations to collect accurate aggre-
gates over sensitive data with strong, rigorous guaranteeson indi-
viduals’ privacy. Previous work has found that under differential
privacy, computing multiple correlated aggregates as a batch, using
an appropriatestrategy, may yield higher accuracy than comput-
ing each of them independently. However, finding the best strategy
that maximizes result accuracy is non-trivial, as it involves solv-
ing a complex constrained optimization program that appears to be
non-linear and non-convex. Hence, in the past much effort has been
devoted in solving this non-convex optimization program. Existing
approaches include various sophisticated heuristics and expensive
numerical solutions. None of them, however, guarantees to find the
optimal solution of this optimization problem.

This paper points out that under (ǫ, δ)-differential privacy, the
optimal solution of the above constrained optimization problem in
search of a suitable strategy can be found, rather surprisingly, by
solving a simple and elegant convex optimization program. Then,
we propose an efficient algorithm based on Newton’s method, which
we prove to always converge to the optimal solution with linear
global convergence rate and quadratic local convergence rate. Em-
pirical evaluations demonstrate the accuracy and efficiency of the
proposed solution.

1. INTRODUCTION
Differential privacy [5, 3] is a strong and rigorous privacypro-

tection model that is known for its generality, robustness and effec-
tiveness. It is used, for example, in the ubiquitous Google Chrome
browser [7]. The main idea is to publish randomized aggregate in-
formation over sensitive data, with the guarantee that the adversary
cannot infer with high confidence the presence or absence of any in-
dividual in the dataset from the released aggregates. An important
goal in the design of differentially private methods is to maximize
the accuracy of the published noisy aggregates with respectto their
exact values.

Besides optimizing for specific types of aggregates, an impor-
tant generic methodology for improving the overall accuracy of the
released aggregates under differential privacy isbatch processing,
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first proposed in [13]. Specifically, batch processing exploits the
correlations between multiple queries, so that answering the batch
as a whole can lead to higher overall accuracy than answeringeach
query individually. For example, if one aggregate query Q1 (e.g.,
the total population of New York State and New Jersey) can be ex-
pressed as the sum of two other queries (the population of New
York and New Jersey, respectively), i.e., Q1 = Q2 + Q3, then we
can simply answer Q1 by adding up the noisy answers of Q2 and
Q3. Intuitively, answering two queries instead of three reduces the
amount of random perturbations required to satisfy differential pri-
vacy, leading to higher overall accuracy for the batch as a whole
[13, 30]. In this paper, we focus on answering linear aggregate
queries under differential privacy. Given a batch of linearaggregate
queries (called theworkload), we aim to improve their overall ac-
curacy by answering a different set of queries (called thestrategy)
under differential privacy, and combining their results toobtain the
answers to the original workload aggregates.

As shown in [13, 14, 30, 31, 11], different strategy queries lead
to different overall accuracy for the original workload. Hence, an
important problem in batch processing under differential privacy is
to find a suitable strategy that leads to the highest accuracy. Such
a strategy can be rather complex, rendering manual construction
and brute-force search infeasible [30, 31]. On the other hand, the
problem of strategy searching can be formulated into a constrained
optimization program, and it suffices to find the optimal solution of
this program. However, as we show later in Section 2, the program
appears to be non-linear and non-convex; hence, solving it is rather
challenging. As we review in Section 2.2, existing approaches re-
sort to either heuristics or complex, expensive and unstable numer-
ical methods. To our knowledge, no existing solutions guarantee to
find the optimal solution.

This paper points out that under the (ǫ, δ)-differential privacy
definition (also called approximate differential privacy,explained
in Section 2), the constrained optimization program for finding the
best strategy queries can be re-formulated into a simple andelegant
convex optimization program. Note that although the formulation
itself is simple, its derivation is rather complicated and non-trivial.
Based on this new formulation, we propose the first polynomial
solution COA thatguarantees to find the optimal solutionto the
original constrained optimization problem in search of a suitable
strategy for processing a batch of arbitrary linear aggregate queries
under approximate differential privacy. COA is based on Newton’s
method and it utilizes various non-trivial properties of the problem.
We show that COA achieves globally linear and locally quadratic
convergence rate. Extensive experiments confirm the effectiveness
and efficiency of the proposed method.

The rest of the paper is organized as follows. Section 2 provides
necessary background on differential privacy and overviews related
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work. Section 3 presents our convex programming formulation for
batch linear aggregate processing under approximate differential
privacy. Section 4 describes the proposed solution COA. Section 5
contains a thorough set of experiments. Section 6 concludesthe pa-
per with directions for future work. In this paper, boldfaced lower-
case letters denote vectors and uppercase letters denote real-valued
matrices. We summarize the frequent notations in Table 1.

Table 1: Summary of frequent notations

Symbol Meaning
W W ∈ R

m×n, Workload matrix
m Number of queries (i.e., rows) inW
n Unit counts (i.e., columns) inW
V V ∈ R

n×n, Covariance matrix ofW
X X ∈ R

n×n, Solution matrix
A A ∈ R

p×n, Strategy matrix
A† A† ∈ R

n×p, pseudo-inverse of matrixA

vec(X) vec(X) ∈ R
n2×1, Vectorized listing ofX

mat(x) mat(x) ∈ R
n×n, Convertx ∈ R

n2×1 into a matrix
F (X) F (X) ∈ R, Objective value ofX
G(X) G(X) ∈ R

n×n, Gradient matrix ofX

H(X) H(X) ∈ R
n2×n2

, Hessian matrix ofX
HX(D) HX(D) ∈ R

n×n, Equivalent tomat(H(X)vec(D))
1/0 All-one column vector/All-zero column vector
I Identity matrix

X � 0 Matrix X is positive semidefinite
X ≻ 0 Matrix X is positive definite
λ(X) Eigenvalue ofX (increasing order)
diag(x) Diagonal matrix withx as the main diagonal entries
diag(X) Column vector formed from the main diagonal ofX

‖X‖ Operator norm: the largest eigenvalue ofX

χ(X) Smallest eigenvalue ofX
tr(X) Sum of the elements on the main diagonalX

〈X,Y〉 Euclidean inner product, i.e.,〈X,Y〉 =
∑

ij XijYij

X⊗Y Kronecker product ofX andY
X⊙Y Hadamard (a.k.a. entry-wise) product ofX andY
‖X‖∗ Nuclear norm: sum of the singular values of matrixX

‖X‖F Frobenius norm:(
∑

ij X
2
ij)

1/2

‖X‖N
Generalized vector norm:

‖X‖N = (vec(X)TNvec(X))1/2

C1, C2 lower bound and upper bound ofλ(X)
C3, C4 lower bound and upper bound ofλ(H(X))
C5, C6 lower bound and upper bound ofλ(G(X))

2. BACKGROUND

2.1 Preliminaries
A common definition of differential privacy is (ǫ, δ)-differential

privacy [5], as follows:

DEFINITION 1. Two databasesD andD′ are neighboring iff
they differ by at most one tuple. A randomized algorithmM satis-
fies (ǫ, δ)-differential privacy iff for any two neighboring databases
D and D′ and any measurable outputS in the range ofM, we
have

Pr[M(D) ∈ S] ≤ eǫ · Pr[M(D′) ∈ S] + δ.

Whenδ = 0, the above definition reduces to another popular
definition: ǫ-differential privacy (also called “exact differential pri-
vacy”). This work focuses on the case whereδ > 0, which is some-
times called approximate differential privacy. Usually,δ is set to a
value smaller than1

|D|
, where|D| is the number of records in the

datasetD. Both exact and approximate definitions of differential
privacy provide strong and rigorous privacy protection to the users.
Given the output of a differentially private mechanism, theadver-
sary cannot infer with high confidence (controlled by parametersǫ
andδ) whether the original database isD or any of its neighbors
D′, which differ fromD by one record, meaning that each user can
plausibly deny the presence of her tuple. An approximately differ-
entially private mechanism can be understood as satisfyingexact
differential privacy with a certain probability controlled by param-
eterδ. Hence, it is a more relaxed definition which is particularly
useful when the exact definition is overly strict for an application,
leading to poor result utility.

One basic mechanism for enforcing approximate differential pri-
vacy is the Gaussian mechanism [4], which injects Gaussian noise
to the query results calibrated to theℓ2 sensitivity of the queries.
Note that the Gaussian mechanism cannot be applied to exact dif-
ferential privacy. Since the proposed method is based on theGaus-
sian mechanism, it is limited to query processing under approxi-
mate differential privacy as well. Specifically, for any twoneigh-
bor databasesD andD′, theℓ2 sensitivityΘ(Q) of a query setQ is
defined asΘ(Q) = maxD,D′ ‖Q(D), Q(D′)‖2. Given a database
D and a query setQ, the Gaussian mechanism outputs a random
result that follows the Gaussian distribution with meanQ(D) and
magnitudeσ = Θ(Q)/h(ǫ, δ), whereh(ǫ, δ) = ǫ/

√

2 ln(2/δ).
This paper focuses on answering a batch ofm linear aggregate

queries,Q = {q1, q2, . . . , qm}, each of which is a linear combina-
tion of the unit aggregates of the input databaseD. For simplicity,
in the following we assume that each unit aggregate is a simple
count, which has anℓ2 sensitivity of 1. Other types of aggregates
can be handled by adjusting the sensitivity accordingly. The query
setQ can be represented by aworkload matrixW ∈ R

m×n withm
rows andn columns. Each entryWij in W is the weight in query
qi on thej-th unit countxj . Since we do not use any other infor-
mation of the input databaseD besides the unit counts, in the fol-
lowing we abuse the notation by usingD to represent the vector of
unit counts. Therefore, we defineD , x ∈ R

n, Q , W ∈ R
m×n

(“,” means define). The query batchQ can be answered directly
by:

Q(D) , Wx =

(

∑

j

W1jxj , . . . ,
∑

j

Wmjxj

)T

∈ R
m×1

Given a workload matrixW, the worse-case expected squared
error of a mechanismM is defined as [13, 15, 20]:

err(M;W) , max
x∈Rn

E[‖M(x)−Wx‖22]

where the expectation is taken over the randomness ofM. Without
information of the underlying dataset, the lowest error achievable
by any differentially private mechanism for the query matrix W

and database is:

opt(W) = min
M

err(M;W) (1)

where the infimum is taken over all differentially private mecha-
nisms. If a mechanismM minimizes the objective value in Eq (1),
it is the optimal linear counting query processing mechanism, in
the sense that without any prior information of the sensitive data, it
achieves the lowest expected error.



2.2 Existing Solutions
Matrix Mechanism. The first solution for answering batch lin-

ear aggregate queries under differential privacy is the matrix mech-
anism [13]. The main idea is that instead of answering the workload
queriesW directly, the mechanism first answers a different set of
r queries under differential privacy, and then combine theirresults
to answerW. Let matrixA represent the strategy queries, where
each row represent a query and each column represent a unit count.
Then, according to the Gaussian mechanism,A can be answered
usingAx+ b̃ under(ǫ, δ)-differentially privacy, wherẽb denotes
anm dimensional Gaussian variable with scale||A||2,∞

√

2 ln(2/δ)/ǫ,
and‖A‖p,∞ is the maximumℓp norm among all column vectors
of A. Accordingly, the matrix mechanism answersW by:

M(x) = W(x+A
†
b̃) (2)

whereA† is the Moore-Penrose pseudo-inverse ofA.
Based on Eq (2), Li et al. [13] formalize the strategy searching

problem for batch linear counting query processing in Eq(1)into
the following nonlinear optimization problem:

min
A\{0}

J(A) , ‖A‖2p,∞tr(WA
†
A

†T
W

T ). (3)

In the above optimization program,p can be either 1 or 2, and
the method in [13] applies to both exact and approximate differen-
tial privacy. This optimization program, however is ratherdifficult
to solve. The pseudoinverse ofA† of A involved in Program (3)
is not a continuous function, as it jumps around whenA is ill-
conditioned. Therefore,A† does not have a derivative, and we
cannot solve the problem with simple gradient descent. As pointed
out in [31], the solutions in [13] are either prohibitively expensive
(which needs to iteratively solve a pair of related semidefinite pro-
grams that incursO(m3n3) computational costs), or ineffective
(which rarely obtains strategies that outperform naive methods).

Low-Rank Mechanism. Yuan et al. [31] propose the Low-Rank
Mechanism (LRM), which formulates the batch query problem as
the following low-rank matrix factorization problem:

min
B,L

tr(BT
B) s.t.W = BL, ‖L‖p,∞ ≤ 1 (4)

whereB ∈ R
m×r,L ∈ R

r×n. It can be shown that Program (4)
and Program (3) are equivalent to each other; hence, LRM can be
viewed as a way to solve the Matrix Mechanism optimization pro-
gram (to our knowledge, LRM is also the first practical solution for
this program). The LRM formulation avoids the pseudo-inverse of
the strategy matrixA; however, it is still a non-linear, non-convex
constrained optimization program. Hence, it is also difficult to
solve. The solution in LRM is a sophisticated numeric method
based first-order augmented Lagrangian multipliers (ALM).This
solution, however, cannot guarantee to find the globally optimal
strategy matrixA, due to the non-convex nature of the problem
formulation.

Further, the LRM solution may not converge at all. Specifi-
cally, it iteratively updatesB using the formula:B ⇐ (βWLT +
πLT )(βLLT + I)−1, whereβ is the penalty parameter. WhenL
is low-rank, according to the rank inequality for matrix multipli-
cation, it leads to:rank(B) ≤ rank(L). Therefore, the equality
constraintW = BL may never hold since we can never express a
full-rank matrixW with the product of two low-rank ones. When
this happens, LRM never converges. For this reason, the initial
value ofL needs to be chosen carefully so that it is not low-rank.
However, this problem cannot be completed avoided since during
the iterations of LRM, the rank ofL may drop. Finally, even in

cases where LRM does converge, its convergence rate can be slow,
leading to high computational costs as we show in the experiments.
In particular, the LRM solution is not necessarily a monotone de-
scent algorithm, meaning that the accuracy of its solutionscan fluc-
tuate during the iterations.

Adaptive Mechanism. In order to alleviate the computational
overhead of the matrix mechanism, adaptive mechanism (AM) [14]
considers the following optimization program:

min
λ∈Rn

n
∑

i=1

d2
i

λ2
i

, s.t. (Q⊙Q)(λ⊙ λ) ≤ 1 (5)

whereQ ∈ R
m×n is from the singular value decomposition of

the workload matrixW = QDP with D ∈ R
n×n,P ∈ R

n×n,
andd = diag(D) ∈ R

n, i.e., the diagonal values ofD. AM then
computes the strategy matrixA by A = Qdiag(λ) ∈ R

m×n,
where diag(λ) is a diagonal matrix withλ as its diagonal values.

The main drawback of AM is that it searches over a reduced sub-
space ofA, since it is limited to a weighted nonnegative combina-
tion of the fixed eigen-queriesQ. Hence, the candidate strategy
matrixA solved from the optimization problem in (5) is not guar-
anteed to be the optimal strategy. In fact it is often suboptimal, as
shown in the experiments.

Exponential Smoothing Mechanism. Based on a reformula-
tion of matrix mechanism, the Exponential Smoothing Mechanism
(ESM) [30] considers solving the following optimization program:

min
X∈Rn×n

max(diag(X)) · tr(WX
−1

W
T ) s.t. X ≻ 0 (6)

wheremax is a function that retrieves the largest element in a vec-
tor. This function is hard to compute since it is non-smooth.The
authors use the soft max function smax(v) = µ log

∑n
i (exp(

vi

µ
))

to smooth this term and employ the non-monotone spectral pro-
jected gradient descent for optimizing the non-convex but smooth
objective function on a positive definiteness constraint set.

One major problem with this method is that Program (6) in-
volves matrix inverse operator, which may cause numerical insta-
bility when the final solution (i.e., the strategy matrix) isof low
rank. Further, since the problem is not convex, the ESM solution
does not guarantee to converge to the global optimum, either.

The proposed solution, presented next, avoids all the drawbacks
of previous solutions: it is fast, stable, numerically robust, and most
importantly, it guarantees to find the optimal solution.

3. A CONVEX PROBLEM FORMULATION
This section presents the a convex optimization formulation for

finding the best strategy for a given workload of linear aggregate
queries. The main idea is that instead of solving for the strat-
egy matrixA that minimizes result error directly, we first solve
the optimal value forX = AAT , and then obtainA accordingly.
Note that there can be multiple strategy matricesA from a given
X = AAT , in which case we simply output an arbitrary one, since
they all lead to the same overall accuracy for the original workload
W. As we show soon, the objective function with respect toX

is convex; hence, the proposed solution is guaranteed to findthe
global optimum. The re-formulation of the optimization program
involves a non-trivial semi-definite programming lifting technique
to remove the quadratic term, presented below.

First of all, based on the non-convex model in Program (3), we
have the following lemma1.

1All proofs can be found in theAppendix.



L EMMA 1. Given an arbitrary strategy matrixA, we can al-
ways construct another strategyA′ satisfying (i)‖A′‖p,∞ = 1
and (ii) J(A) = J(A′), whereJ(A) is defined in in Program (3).

By Lemma1, the following optimization program is equivalent to
Program (3).

min
A

〈A†
A

†T ,WT
W〉, s.t. ‖A‖p,∞ = 1 (7)

This paper focuses on approximate differential privacy where p =
2. Moreover, we assume thatV = WTW is full rank. If this as-
sumption does not hold, we simply transformV into a full rank ma-
trix by adding an identity matrix scaled byθ, whereθ approaches
zero. Formally, we have:

V = W
T
W + θI ≻ 0 (8)

LetX = ATA ≻ 0. Using the fact that(‖A‖2,∞)2 = ‖diag(X)‖∞
andA†A†T = X−1, we have the following matrix inverse opti-
mization program (note thatX andV are both full-rank):

min
X

F (X) = 〈X−1,V〉, s.t. diag(X) ≤ 1, X ≻ 0. (9)

Interestingly, using the fact that||X/n|| ≤ tr(X/n) ≤ 1, one can
approximate the matrix inverse via Neumann Series2 and rewrite
the objective function in terms of matrix polynomials3. Although
other convex semi-definite programming reformulations/relaxations
exist (discussed in theAppendix of this paper), we focus on Pro-
gram (9) and provide convex analysis below.

Convexity of Program (9). Observe that the objective function
of Program (9) is not always convex unless some conditions are
imposed onV andX. For instance, in the the one-dimensional
case, it reduces to the inversely proportional functionf(x) = k

x
,

with k > 0. Clearly,f(x) is convex on the strictly positive space
and concave on the strictly negative space.

The following lemma states the convexity of Program (9) under
appropriate conditions.

L EMMA 2. Assume thatX ≻ 0. The functionF (X) = 〈X−1,V〉
is convex (resp., strictly convex) ifV � 0 (resp.,V ≻ 0).

SinceV is the covariance matrix ofW, V is always positive
semidefinite. Therefore, according to the above lemma, the objec-
tive function of Program (9) is convex. Furthermore, sinceV is
strictly positive definite, the objective functionF (X) is actually
strictly convex. Therefore, there exists a unique optimal solution
for Program (9).

Dual program of Program (9). The following lemma describes
the dual program of Program (9).

L EMMA 3. The dual program of Program (9) is the following:

max
X,y

− 〈y,1〉, s.t. Xdiag(y)X−V � 0, X ≻ 0, y ≥ 0.

wherey ∈ R
n is associated with the inequality constraint diag(X) ≤

1.

Lower and upper bounds for Program (9). Next we establish
a lower bound and an upper bound on the objective function of
Program (9) for any feasible solution.

L EMMA 4. For any feasible solutionX in Program (9), its ob-
jective value is sandwiched as

max(2‖W‖∗ − n, ‖W‖2∗/n) + θ ≤ F (X) ≤ ρ2(‖W‖2F + θn)

2X−1 =
∑∞

k=0(I−X)k, ∀ ‖X‖ ≤ 1
3F (X) = 〈(X/n)−1,V/n〉 = 〈

∑∞
k=0(I−X/n)k,V/n〉

whereρ = maxi ‖S(:, i)‖2, i ∈ [n], andS comes from the SVD
decomposition thatW = UΣS.

The parameterθ ≥ 0 serves as regularization of the convex prob-
lem. Whenθ > 0, we always haveV ≻ 0. As can be seen in our
subsequent analysis, the assumption thatV is strictly positive def-
inite is necessary in our algorithm design.

Problem formulation with equality constraints. We next re-
formulate Program (9) in the following lemma.

L EMMA 5. AssumeV ≻ 0. The optimization problem in Pro-
gram (9) is equivalent to the following optimization program:

min
X

F (X) = 〈X−1,V〉, s.t. diag(X) = 1, X ≻ 0. (10)

Program (10) is much more attractive than Program (9) since
the equality constraint is easier to handle than the inequality con-
straint. As can be seen in our algorithm design below, this equal-
ity constraint can be explicitly enforced with suitable initialization.
Hence, in the rest of the paper, we focus on solving Program (10).

First-order and second-order analysis. It is not hard to ver-
ify that the first-order and second-order derivatives of theobjective
functionF (X) can be expressed as (see page 700 in [2]):

G(X) = −X
−1

VX
−1,

H(X) = −G(X)⊗X
−1 −X

−1 ⊗G(X)
(11)

Since our method (described soon) is a greedy descent algorithm,
we restrict our discussions on the level setX which is defined as:

X , {X|F (X) ≤ F (X0), and diag(X) = 1, andX ≻ 0}

We now analyze bounds for the eigenvalues of the solution in
Program (10), as well as bounds for the eigenvalues of the Hessian
matrix and the gradient matrix of the objective function in Program
(10). The following lemma shows that the eigenvalues of the solu-
tion in Program (10) are bounded.

L EMMA 6. For anyX ∈ X , there exist some strictly positive
constantsC1 and C2 such thatC1I � X � C2I whereC1 =

(F (X0)
λ1(V)

− 1 + 1
n
)−1 andC2 = n.

The next lemma shows the the eigenvalues of the Hessian matrix
and the gradient matrix of the objective function in Program(10)
are also bounded.

L EMMA 7. For anyX ∈ X , there exist some strictly positive
constantsC3, C4, C5 andC6 such thatC3I � H(X) � C4I and
C5I � G(X) � C6I, whereC3 = λ1(V)

C3
2
(X)

, C4 = λn(V)

C3
1
(X)

, C5 =

λ1(V)

C2
2
(X)

, C6 = λn(V)

C2
1
(X)

.

A self-concordant function [18] is a functionf : R → R for
which |f ′′′(x)| ≤ 2f ′′(x)3/2 in the affective domain. It is use-
ful in the analysis of Newton’s method. A self-concordant barrier
function is used to develop interior point methods for convex opti-
mization.

Self-Concordance Property. The following lemma establishes
the self-concordance property of Program (10).

L EMMA 8. The objective functioñF (X) = C2

4
F (X) = C2

4
·

〈X−1,V〉 with X ∈ X is a standard self-concordant function,
whereC is a strictly positive constant with

C ,
6C3

2 tr(V)−1/2

23/2C3
1

.



Algorithm 1 Algorithm COA for Solving Program (10)

1: Input: θ > 0 andX0 such thatX0 ≻ 0, diag(X0) = 1
2: Output:Xk

3: Initializek = 0
4: while not convergedo
5: Solve the following subproblem by Algorithm 2:

D
k ⇐ argmin

∆
f(∆;Xk), s.t. diag(Xk +∆) = 1 (12)

6: Perform step-size search to getαk such that:
7: (1)Xk+1 = Xk + αkDk is positive definite and
8: (2) there is sufficient decrease in the objective.
9: if Xk is an optimal solution of (1)then

10: terminate and outputXk

11: end if
12: Incrementk by 1
13: end while

The self-concordance plays a crucial role in our algorithm design
and convergence analysis. First, self-concordance ensures that the
current solution is always in the interior of the constraintsetX ≻ 0
[18] , which makes it possible for us to design a new Cholesky
decomposition-based algorithm that can avoid eigenvalue decom-
position4. Second, self-concordance controls the rate at which the
second derivative of a function changes, and it provides a check-
able sufficient condition to ensure that our method converges to the
global solution with (local) quadratic convergence rate.

4. CONVEX OPTIMIZATION ALGORITHM
In this section, we provide a Newton-like algorithm COA to

solve Program (10). We first show how to find the search direc-
tion and the step size in Sections 4.1 and 4.2, respectively.Then
we study the convergence property of COA in Section 4.3. Finally,
we present a homotopy algorithm to further accelerate the conver-
gence. For notational convenience, we use the shorthand notation
F k = F (Xk), Gk = G(Xk), Hk = H(Xk), andD = D(Xk)
to denote the objective value, first-order gradient, hessian matrix
and the search direction at the pointXk, respectively.

Following the approach of [27, 10, 32], we build a quadratic
approximation around any solutionXk for the objective function
F (X) by considering its second-order Taylor expansion:

f(∆;Xk) = F k + 〈∆,Gk〉+
1

2
vec(∆)THkvec(∆). (13)

Therefore, the Newton directionDk for the smooth objective func-
tonF (X) can then be written as the solution of the following equal-
ity constrained quadratic program:

D
k = argmin

∆
f(∆;Xk), s.t. diag(Xk +∆) = 1, (14)

After the directionDk is computed, we employ an Arimijo-rule
based step size selection to ensure positive definiteness and suffi-
cient descent of the next iterate. We summarize our algorithm COA
in Algorithm 1. Note that the initial pointX0 has to be a feasible
solution, thusX0 ≻ 0 and diag(X0) = 1. Moreover, the positive
definiteness of all the following iteratesXk will be guaranteed by
the step size selection procedure (refer to step 7 in Algorithm 1).

4Although Cholesky decomposition and eigenvalue decomposition
share the same computational complexity (O(n3)) for factorizing
a positive definite matrix of sizen, in practice Cholesky decom-
position is often significantly faster than eigenvalue decomposition

Algorithm 2 A Modified Conjugate Gradient for Finding D as
in Program (15)

1: Input:Z = (Xk)−1, and current gradientG = G(Xk), Spec-
ify the maximum iterationT ∈ N

2: Output: Newton directionD ∈ R
n×n

3: D = 0, R = −G+ ZDG+GDZ

4: SetDij = 0, Rij = 0, ∀i = j, i, j ∈ [n]
5: P = R, rold = 〈R,R〉
6: for l = 0 to T do
7: B = −G+ ZDG+GDZ, α = rold

〈P,B〉

8: D = D+ αP, R = R− αB
9: SetDij = 0, Rij = 0, ∀i = j, i, j ∈ [n]

10: rnew = 〈R,R〉, P = R+ rnew

rold
P, rold = rnew

11: end for
12: returnD

4.1 Computing the Search Direction
This subsection is devoted to finding the search direction inEq

(14). With the choice ofX0 ≻ 0 and diag(X0) = 1, Eq(14)
reduces to the following optimization program:

min
∆

〈∆,Gk〉+
1

2
vec(∆)THkvec(∆), s.t. diag(∆) = 0 (15)

At first glance, Program (15) is challenging. First, this is acon-
strained optimization program withn× n variables andn equality
constraints. Second, the optimization problem involves computing
and storing ann2 × n2 Hessian matrixHk, which is a daunting
task in algorithm design.

We carefully analyze Problem (15) and propose the following
solutions. For the first issue, Eq (15) is actually a unconstrained
quadratic program withn × (n − 1) variable. In order to handle
the diagonal variables of∆, one can explicitly enforce the diag-
onal entries of current solution and its gradient to0. Therefore,
the constraint diag(∆) = 0 can always be guaranteed. This im-
plies that linear conjugate gradient method can be used to solve
Problem (15). For the second issue, we can make good use of the
Kronecker product structure of the Hessian matrix. We note that
(A⊗B) vec(C) = vec(BCA),∀A,B,C ∈ R

n×n. Given a

vectorvec(D) ∈ R
n2×1, using the fact that the Hessian matrix can

be computed asH = −G⊗X−1 −X−1 ⊗G, the Hessian-vector
product can be computed efficiently as:Hvec(D) = vec(−GDX−1

−X−1DG), which only involves matrix-matrix computation. Our
modified linear conjugate gradient method for finding the search
direction is summarized in Algorithm 2. Note that the algorithm
involves a parameterT controlling the maximum number of iter-
ations. The specific value ofT does not affect the correctness of
COA, only its efficiency. Through experiments we found that a
value ofT = 5 usually leads to good overall efficiency of COA.

4.2 Computing the Step Size
After the Newton directionD is found, we need to compute a

step sizeα ∈ (0, 1] that ensures positive definiteness of the next
iterateX + αD and leads to a sufficient decrease of the objective
function. We use Armijo’s rule and try step sizeα ∈ {β0, β1, ...}
with a constant decrease rate0 < β < 1 until we find the smallest
t ∈ N with α = βt such thatX + αD is (i) positive definite, and
(ii) satisfies the following sufficient decrease condition [27]:

F (Xk + αk
D

k) ≤ F (Xk) + αkσ〈Gk,Dk〉, (16)

(e.g. by about 50 times for a square matrix of sizen = 5000).



where0 < σ < 0.5. We chooseβ = 0.1 andσ = 0.25 in our
experiments.

We verify positive definiteness of the solution while comput-
ing its Cholesky factorization (takes1

3
n3 flops). We remark that

the Cholesky factorization dominates the computational cost in the
step-size computations. To reduce the computation cost, wecan
reuse the Cholesky factor in the previous iteration when evaluating
the objective function (that requires the computation ofX−1). The
decrease condition in Eq (16) has been considered in [27] to en-
sure that the objective value not only decreases but also decreases
by a certain amountαkσ〈Gk,Dk〉, where〈Gk,Dk〉 measures the
optimality of the current solution.

The following lemma provides some theoretical insights of the
line search program. It states that a strictly positive stepsize can
always be achieved in Algorithm 1. This property is crucial in our
global convergence analysis of the algorithm.

L EMMA 9. There exists a strictly positive constantα < min(1,
C1

C7
, C8) such that the positive definiteness and sufficient descent

conditions (in step 7-8 of Algorithm 1) are satisfied. HereC7 ,
2λn(V)

C2
1
C3

andC8 ,
2(1−σ)C3

C4
are some constants which are inde-

pendent of the current solutionXk.

The following lemma shows that a full Newton step size will be
selected eventually. This is useful for the proof of local quadratic
convergence.

L EMMA 10. If Xk is close enough to global optimal solution

such that‖Dk‖ ≤ min( 3.24
C2C4

, (2σ+1)2

C6C2 ), the line search condition

will be satisfied with step sizeαk = 1.

4.3 Theoretical Analysis
First, we provide convergence properties of Algorithm 1. We

prove that Algorithm 1 always converges to the global optimum,
and then analyze its convergence rate. Our convergence analysis is
mainly based on the proximal point gradient method [27, 10] for
composite function optimization in the literature. Specifically, we
have the following results (proofs appear in theAppendix):

THEOREM 1. Global Convergence of Algorithm 1. Let{Xk}
be sequences generated by Algorithm 1. ThenF (Xk) is nonin-
creasing and converges to the global optimal solution.

THEOREM 2. Global Linear Convergence Rate of Algorithm
1. Let {Xk} be sequences generated by Algorithm 1, Then{Xk}
converges linearly to the global optimal solution.

THEOREM 3. Local Quadratic Convergence Rate of Algorithm
1. Let{Xk} be sequences generated by Algorithm 1. WhenXk is
sufficiently close to the global optimal solution, then{Xk} con-
verges quadratically to the global optimal solution.

It is worth mentioning that Algorithm 1 is thefirst polynomial al-
gorithm for linear query processing under approximate differential
privacy with a provable global optimum guarantee.

Next we analyze the time complexity of our algorithm. Assume
that COA converges withinNcoa outer iterations (Algorithm 1) and
Tcoa inner iterations (Algorithm 2). Due to theO(n3) complexity
for Cholesky factorization (wheren is the number of unit counts),
the total complexity of COA isO(Ncoa · Tcoa · n

3). Note that the
running time of COA is independent of the number of queriesm.
In contrast, the current state-of-the-art LRM has time complexity
O(Nlrm ·Tlrm ·min(m,n)2 · (m+n)) (whereNlrm andTlrm are the

number of outer and inner iterations of LRM, respectively),which
involves bothn andm. Note that(Ncoa · Tcoa) in the bigO nota-
tion is often much smaller than(Nlrm · Tlrm) in practice, due to the
quadratic convergence rate of COA. According to our experiments,
typically COA converges withNcoa ≤ 10 andTcoa ≤ 5.

4.4 A Homotopy Algorithm
In Algorithm 1, we assume thatV is positive definite. If this is

not true, one can consider adding a deceasing regularization param-
eter to the diagonal entries ofV. We present a homotopy algorithm
for solving Program (9) withθ approaching 0 in Algorithm 3.

The homotopy algorithm used in [25, 6] have shown the advan-
tages of continuation method in speeding up solving large-scale
optimization problems. In continuation method, a sequenceof opti-
mization problems with deceasing regularization parameter is solved
until a sufficiently small value is arrived. The solution of each op-
timization is used as the warm start for the next iteration.

In Eq (8), a smallerθ is always preferred because it results in
more accurate approximation of the original optimization in Pro-
gram (9). However, it also implies a slower convergence rate, ac-
cording to our convergence analysis. Hence the computational cost
of our algorithm is high when smallθ is selected. In Algorithm
3, a series of problems with decreasing regularization parameterθ
are solved by using Algorithm 1, and the solution of each run of
Algorithm 1 is used as the initial solutionX0 of the next iteration.
In this paper, Algorithm 3 starts from a largeθ0 = 1, and it stops
when the preferredθ ≤ 10−10 arrives.

Algorithm 3 A Homotopy Algorithm for Solving Eq (9) with θ
approaching 0.

1: Input: workload matrixW
2: Output:X
3: Specify the maximum iterationT = 10
4: InitializeX0 = I, θ0 = 1
5: for i = 0 to T do
6: Apply Algorithm 1 withθi andXi to obtainXi+1

7: θi+1 = θi × 0.1
8: end for

5. EXPERIMENTS
This section experimentally evaluates the effectiveness of the

proposed convex optimization algorithm COA for linear aggregate
processing under approximate differential privacy. We compare
COA with six existing methods: Gaussian Mechanism (GM) [16],
Wavelet Mechanism (WM) [29], Hierarchical Mechanism (HM)
[8], Exponential Smoothing Mechanism (ESM) [30, 13], Adap-
tive Mechanism (AM) [14, 13] and Low-Rank Mechanism (LRM)
[30, 31]. Qardaji et al. [23] proposed an improved version ofHM
by carefully selecting the branching factor. Similar to HM,this
method focuses on range processing, and there is no guarantee on
result quality for general linear aggregates. A detailed experimen-
tal comparison with [23] is left as future work. Moreover, wealso
compare with a recent hybrid data- and workload-aware method
[12] which is designed only for range queries and exact differ-
ential privacy. Since a previous study [31] has shown that LRM
significantly outperforms MWEM, we do not compare with Expo-
nential Mechanism with Multiplicative Weights update (MWEM).
Although the batch query processing problem under approximate
differential privacy in Program (9) can be reformulated as astan-
dard semi-definite programming problem which can be solved by
interior point solvers, we do not compare with it either since such
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(d) WRelated
Figure 1: Convergence behavior of the proposed convex optimization algorithm (Algorithm 1).

method requires prohibitively high CPU time and memory con-
sumption even for one single (Newton) iteration.

For AM, we employ the Python implementation obtained from
the authors’ website: http://cs.umass.edu/~chaoli. We use the de-
fault stopping criterion provided by the authors. For ESM and
LRM, we use the Mablab code provided by the authors, which is
publicly available at: http://yuanganzhao.weebly.com/.For COA,
we implement the algorithm in Matlab (refer to theAppendix of
this paper) and only report the results of Algorithm 1 with the pa-
rameterθ = 10−3. We performed all experiments on a desktop PC
with an Intel quad-core 2.50 GHz CPU and 4GBytes RAM. In each
experiment, every algorithm is executed 20 times and the average
performance is reported.

Following the experimental settings in [31], we use four real-
world data sets (Search Log, Net Trace, Social NetworkandUCI
Adult) and fours different types of workloads (WDiscrete, WRange,
WMarginal andWRelated). In WDiscrete, each entry is a random
variable follows the bernoulli distribution; inWRange, each query
sums the unit counts in a range whose start and end points are ran-
domly generated following the uniform distribution.WMarginal
contains queries uniformly sampled from the set of all two-way
marginals. ForWRelated, we generate workload matrix by low-
rank matrix multiplication [31]. Moreover, we measure average
squared error and computation time of all the methods. Here the
average squared error is the average squaredℓ2 distance between
the exact query answers and the noisy answers. In the following,
Section 5.1 examines the convergence of Algorithm 1. Sections 5.2
and 5.3 demonstrate the performance of all method with varying
domain sizen ∈ {128, 256, 512, 1024, 2014, 4096, 8192} and
number of queriesm ∈ { 128, 256, 512,1024, 2048, 4096, 8192},
respectively. Section 5.5 shows the running time of the proposed
method. Unless otherwise specified, the default parametersin bold
are used. The privacy parameters are set toǫ = 0.1, δ = 0.0001
in our experiments for all methods, except for DAWA, which has
ǫ = 0.1, δ = 0 since it answers queries under exact differential
privacy.

5.1 Convergence Behavior of COA
Firstly, we verify the convergence property of COA using allthe

datasets on all the workloads. We record the objective value(i.e.
the expected error), the optimality measure (i.e.‖Gk‖F ) and the
test error on four datasets at every iterationk and plot these results
in Figure 1.

We make three important observations from these results. (i)
The objective value and optimality measure decrease monotoni-
cally. This is because our method is a greedy descent algorithm.
(ii) The test errors do not necessarily decrease monotonically but
tend to decrease iteratively. This is because we add random gaus-
sian noise to the results and the average squared error is expected to
decrease. (iii) The objective values stabilize after the10th iteration,

which means that our algorithm has converged, and the decrease of
the error is negligible after the10th iteration. This implies that one
may use a looser stopping criterion without sacrificing accuracy.

5.2 Impact of Varying Number of Unit Counts
We now evaluate the accuracy performance of all mechanisms

with varying domain sizen from 64 to 4096, after fixing the num-
ber of queriesm to 1024. We report the results of all mechanisms
on the 4 different workloads in Figures 2, 3, 4 and 5, respectively.
We have the following observations. (i) COA obtains comparable
results with LRM, the current state of the art. Part of the reason
may be that, the random initialization strategy makes LRM avoid
undesirable local minima. In addition, COA and LRM achieve the
best performance in all settings. Their improvement over the naive
GM is over two orders of magnitude, especially when the domain
size is large. (ii) WM and HM obtain similar accuracy onWRange
and they are comparable to COA and LRM. This is because they
are designed for range queries optimization. (iii) AM and ESM
have similar accuracy and they are usually strictly worse than COA
and LRM. Moreover, the accuracy of AM and ESM is rather unsta-
ble on workloadWMarginal. For ESM, this instability is caused by
numerical errors in the matrix inverse operation, which canbe high
when the final solution matrix is low-rank. Finally, AM searches
in a reduced subspace for the optimal strategy matrix, leading to
suboptimal solutions with unstable quality.

5.3 Impact of Varying Number of Queries
In this subsection, we test the impact of varying the query set

cardinalitym from 32 to 8192 withn fixed to 512. The accu-
racy results of all mechanisms on the 4 different workloads are
reported in Figures 6, 7, 8 and 9. We have the following obser-
vations. (i) COA and LRM have similar performance and they con-
sistently outperform all the other methods in all test cases. (ii) On
WDiscreteandWRangeworkloads, AM and ESM show compara-
ble performance, which is much worse performance than COA and
LRM. (iii) On WDiscrete, WRangeandWRelatedworkload, WM
and HM improve upon the naive Gaussian mechanism; however,
on WMarginal, WM and HM incur higher errors than GM. AM
and ESM again exhibit similar performance, which is often better
than that of WM, HM, and GM.

5.4 Impact of Varying Rank of Workload
Past studies [30, 31] show that it is possible to reduce the ex-

pected error when the workload matrix has low rank. In this set of
experiments, we manually control the rank of workloadW to ver-
ify this claim. Recall that the parameters determines the size of the
matrixC ∈ R

m×s and the size of the matrixA ∈ R
s×n during the

generation of theWRelatedworkload. WhenC andA contain only
independent rows/columns,s is exactly the rank of the workload
matrixW = CA. In Figure 10, we varys from 0.1×min(m,n)

http://cs.umass.edu/~chaoli
http://yuanganzhao.weebly.com/
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Figure 2: Effect of varying domain sizen with m = 1024 on workloadWDiscrete.
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Figure 3: Effect of varying domain sizen with m = 1024 on workloadWMarginal.
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Figure 4: Effect of varying domain sizen with m = 1024 on workloadWRange.
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Figure 5: Effect of varying domain sizen with m = 1024 on workloadWRelated.

to 1 × min(m,n). We observe that both LRM and COA outper-
form all other methods by at least one order of magnitude. With
increasings, the performance gap gradually closes. Meanwhile,
COA’s performance is again comparable to LRM.

5.5 Running Time Evaluations
We now demonstrate the efficiency of LRM, ESM and COA for

the 4 different types of workloads. Other methods, such as WM
and HM, requires negligible time since they are essentiallyheuris-
tics without complex optimization computations. From our experi-
ments we obtain the following results. (i) In Figure 11, we vary m
from 32 to 8192 and fixn to 1024. COA requires the same running
time regardless of the number of queriesm, whereas the efficiency
of LRM deteriorates with increasingm. (ii) In Figure 12, we varyn
from 32 to 8192 and fixm to 1024. We observe that COA is more

efficient than LRM whenn is relatively small (i.e.,n < 5000).
This is mainly because COA converges with much fewer iterations
than LRM. Specifically, we found through manual inspection that
COA converges within aboutNcoa = 10 outer iterations (refer to
Figure 1) andTcoa = 5 inner iterations (refer to our Matlab code
in theAppendix). In contract, LRM often takes aboutNlrm = 200
outer iterations and aboutTlrm = 50 inner iterations to converge.
Whenn is very large (e.g., whenn = 8192) andm is relatively
small (1024), COA may run slower than LRM due to the former’s
cubic runtime complexity with respect to the domain sizen. (iii)
In Figure 13, we varyn from 32 to 8192 and fixm to a lager value
2048. We observe that COA is much more efficient than LRM for
all values ofn. This is because the runtime of COA is independent
of m while LRM scale quadratically withmin(m,n), and COA
has quadratic local convergence rate. These results are consistent
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Figure 6: Effect of varying number of queriesm with n = 512 on workloadWDiscrete.
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Figure 7: Effect of varying number of queriesm with n = 512 on workloadWMarginal.
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Figure 8: Effect of varying number of queriesm with n = 512 on workloadWRange.
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Figure 9: Effect of varying number of queriesm with n = 512 on workloadWRelated.

with the convergence rate analysis and complexity analysisin Sec-
tion 4.3.

5.6 COA vs DAWA
DAWA [12] targets very different applications compared to the

proposed solution COA. In particular, DAWA focuses on rangepro-
cessing under exact (i.e.,ǫ-) differential privacy, whereas COA ad-
dresses arbitrary linear counting queries under approximate (i.e.,
(ǫ, δ)-) differential privacy. Adapting DAWA to approximate dif-
ferential privacy is non-trivial, because at the core of DAWA lies
a dynamic programming algorithm that is specially designedfor
ℓ1 cost and the Laplace mechanism (refer to Section 3.2 in [12]).
Further, DAWA replies on certain assumptions of the underlying
data, e.g., adjacent counts are similar in value, whereas COA is
data-independent. Hence, their relative performance depends on

the choice of parameterδ, as well as the dataset.
We compare COA with different values ofδ ranging from 0.01

to 0.00001 against DAWA on workloadWRange, since DAWA fo-
cuses on range queries. We also consider 4 additional synthetic
datasets which do not have local smoothness structure, i.e.Ran-
dom Alternating, Random Laplace, Random Gaussian, Random
Uniform. Specifically, the sensitive dataRandom Alternatingonly
contains two values{0, 10} which appear alternatingly in the data
sequence. ForRandom Laplace, Random Gaussian, Random Uni-
form, the sensitive data consists of a random vectorx ∈ R

n with
mean zero and variance 10 which is drawn from the Laplacian,
Gaussian and Uniform distribution, respectively.

Figure 14 shows the results with varying domain sizen, and Fig-
ure 15 shows the results with varying domain sizem. We have the
following observations. (i) On real-world datasetsSearch Log, Net
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Figure 10: Effect of varyings and fixedm = 1024, n = 1024 on different datasets.
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Figure 11: Running time comparisons with varyingm and fixedn = 1024 for different workloads.

128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

6000

Domain Size n

Ti
m

e
 (

se
c

o
n

d
s)

 

 

ESM
LRM
COA

(a) WDiscrete

128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

6000

7000

Domain Size n

Ti
m

e
 (

se
c

o
n

d
s)

 

 

ESM
LRM
COA

(b) WMarginal

128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

6000

7000

Domain Size n

Ti
m

e
 (

se
c

o
n

d
s)

 

 

ESM
LRM
COA

(c) WRange

128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

6000

Domain Size n

Ti
m

e
 (

se
c

o
n

d
s)

 

 

ESM
LRM
COA

(d) WRelated
Figure 12: Running time comparisons with varyingn and fixedm = 1024 for different workloads.
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Figure 13: Running time comparisons with varyingn and fixedm = 2048 for different workloads.

Trace, Social Networkand all synthetic datasets (Random Alternat-
ing, Random Laplace, Random Gaussian, Random Uniform), the
performance of DAWA is rather poor, since these datasets do not
satisfy the assumption that adjacent aggregates have similar values.
(ii) With a fixed number of queriesm = 1024, COA significantly
outperforms DAWA whenn is large. (iii) COA generally achieves
better performance than DAWA whenδ ≥ 0.0001. (iv) DAWA
outperforms COA only whenδ is very small, and the dataset hap-
pens to satisfy its assumptions. In such situations, one potential
way to improve COA is to incorporate data-dependent information
through a post-processing technique (e.g., [9, 11]), whichis outside
of the scope of this paper and left as future work.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a convex re-formulation for optimiz-

ing batch linear aggregate queries under approximate differential
privacy. We provide a systematic analysis of the resulting con-
vex optimization problem. In order to solve the convex problem,
we propose a Newton-like method, which is guaranteed to achieve
globally linear convergence rate and locally quadratic convergence
rate. Extensive experiment on real world data sets demonstrate that
our method is efficient and effective.

There are several research directions worthwhile to pursuit in
the future. (i) First of all, it is interesting to extend the proposed
method to develop hybrid data- and workload-aware differentially
private algorithms [12, 11]. (ii) This paper mainly focuseson opti-
mal squared error minimization. Due to the rotational invariance of
theℓ2 norm, the proposed solution can achieve global optimum. We
plan to investigate convex relaxations/reformulations tohandle the
squared/absolute sum error under differential privacy. (iii) While
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Figure 14: Effect of varying domain size n withm = 1024 on workload WRange.
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Figure 15: Effect of varying number of queriesm with n=1024 on workload WRange.

we consider convex semi-definite optimization, one may consider
other convex relaxation methods (e.g. further SDP relaxations [28],
Second-Order Cone Programming (SOCP) [26]) and other efficient
linear algebra (such as partial eigenvalue decomposition,random-
ized scheme or parallelization) to reduce the computational cost for
large-scale batch linear aggregate query optimization.

Appendix
1. SEMI-DEFINITE PROGRAMMING RE-

FORMULATIONS

In this section, we discuss some convex Semi-Definite Program-
ming (SDP) reformulations for Eq (2) in our submission. Based
on these reformulations, we can directly and effectively solve the
batch queries answering problem using off-the-shelf interior-point
SDP solvers.

The following lemma is useful in deriving the SDP formulations
for approximate and exact differential privacy.

L EMMA 11. [2] Schur Complement Condition. Let X be a
real symmetric matrix given byX =

(

A B

BT C

)

andS be the Schur



complement ofA in X, that is:S = C−BTA†B. Then we have:

X � 0 ⇔ A � 0,S � 0

1.1 Approximate Differential Privacy
This subsection presents the SDP formulation for approximate

differential privacy, i.e. p = 2. Letting ATA = X, we have
A†A†T = X† and(‖A‖2,∞)2 = max(diag(X)). Introducing a
new variableY ∈ R

m×m such thatWX†WT = Y, Eq (2) can
be cast into the following convex optimization problem.

min
X,Y

tr(Y), s.t. diag(X) ≤ 1, X � 0, WX
†
W

T = Y (17)

SinceWX†WT � 0 wheneverX � 0, we relax theWX†WT

= Y to WX†WT � Y. By Lemma11, we have the following
optimization problem which is equivalent to Eq (17):

min
X,Y

tr(Y), s.t. diag(X) ≤ 1, Y � 0,
(

X W

WT Y

)

� 0 (18)

After the solutionX in Eq(18) has been found by solving standard
convex SDP, we can preform Cholesky decomposition or eigen-
value decomposition onX such thatX = ATA and output the
matrixA as the final configuration. We remark that the output so-
lution A is the exact solution of approximate differential privacy
optimization problem itself.

1.2 Exact Differential Privacy
This subsection presents the SDP formulation for exact differen-

tial privacy, i.e.p = 1. LettingATA = X, then we have:

min
A,X

tr(WX
†
W

T ), s.t. ‖A‖1,∞ ≤ 1, X = A
T
A

By Lemma11, we have its equivalent reformulation:

min
A,X,Y

tr(Y), s.t. ‖A‖1,∞ ≤ 1,

Y � 0,
(

X W

WT Y

)

� 0, X = A
T
A

This is also equivalent to the following problem:

min
A,X,Y

tr(Y), s.t. ‖A‖1,∞ ≤ 1, Y � 0,

(

X W

WT Y

)

� 0, X � A
T
A, rank(X) = rank(AT

A)

Using Lemma11 again and dropping the rank constraint, we have
the following convex relaxation problem:

min
A,X,Y

tr (Y) , s.t. ‖A‖1,∞ ≤ 1, Y � 0,

(

X W

WT Y

)

� 0,
(

X A

AT I

)

� 0. (19)

After the problem in Eq(19) has been solved by standard convex
SDP, we can output the matrixA as the final configuration. Inter-
estingly, we found that unlike the case for approximate differential
privacy, the output matrixA is not the exact solution of the exact
differential privacy optimization problem since we drop the rank
constraint in Eq (19).

2. TECHNICAL PROOFS
The following lemma is useful in our proof.

L EMMA 12. For any two matricesA � 0 and B � 0, the
following inequality holds:

〈A,B〉 ≥ χ(A)tr(B)

whereχ(A) denotes the smallest eigenvalue ofA.

PROOF. We denoteZ = A − χ(A)I. Since bothZ andB are
PSD matrices, we letZ = LLT ,B = UUT . Then we have the
following inequalities:〈A,B〉 = 〈Z + χ(A)I,B〉 = 〈Z,B〉 +
〈χ(A)I,B〉 = ‖LU‖2F + 〈χ(A)I,B〉 ≥ 0 + χ(A)〈I,B〉 =
χ(A)tr(B).

The following lemma is useful in our proof in Lemma2.

L EMMA 13. For any two matricesX ≻ 0 andY ≻ 0 and any
scalarλ ∈ (0, 1), we have the following inequality:

(1− λ)X−1 + λY−1 ≻ ((1− λ)X+ λY)−1 (20)

In other words, the matrix inverse function is a strictly convex ma-
trix function, on the cone of positive definite matrices.

PROOF. We defineP = X−1/2YX−1/2. SinceP is positive
definite, we assume it has a eigenvalue decomposition thatP =
Udiag(v)UT with U ∈ R

n×n,UUT = I, UTU = I andv ∈
R

n is strictly positive. Firstly, it is easy to validate that for any
λ ∈ (0, 1), the following equalities hold:

((1− λ)I+ λP)−1

= ((1− λ)X−1/2
XX

−1/2 + λX−1/2
YX

−1/2)−1

= (X−1/2((1− λ)X+ λY)X−1/2)−1

= X
1/2((1− λ)X+ λY)−1

X
1/2 (21)

where the first step usesI = X−1/2XX−1/2; the second step uses
(X−1/2)−1 = X1/2. Secondly, for anyλ ∈ (0, 1), we have the
following equalities:

((1− λ)I+ λP)−1 = ((1− λ)UU
T + λUdiag(v)UT )−1

= (U((1− λ)I+ λdiag(v))UT )−1

= U((1− λ)I+ λdiag(v))−1
U

T (22)

where the first step usesUUT = I; the last step uses(UT )−1

= U. Finally, we left-multiply and right-multiply both sides of the
equation in Eq (20) byX1/2, using the result in Eq (21), we have
(1−λ)I+λP−1 ≻ ((1−λ)I+λP)−1. By Eq(22), this inequality
boils down to the scalar case(1−λ)+λv−1

i > ((1−λ)+λvi)
−1,

which is true because the functionf(t) = 1
t

is strictly convex for
t > 0. We thus reach the conclusion of the lemma.

L EMMA 1. Given an arbitrary strategy matrixA in Eq (2), we
can always construct another strategyA′ satisfying (i)‖A′‖p,∞ =
1 and (ii) J(A) = J(A′).

PROOF. We letA′ = 1
‖A‖p,∞

A, clearly,‖A′‖p,∞ = 1. Mean-

while, according to the definition ofJ(·), we have:

J(A′) = ‖A′‖2p,∞tr
(

WA
′†
A

′†T
W

T
)

= ‖A‖2p,∞tr
(

W
(

‖A‖p,∞A
′)† (‖A‖p,∞A

′)†T
W

T
)

= ‖A‖2p,∞tr
(

WA
†
A

†T
W

T
)

= J(A).

The second step uses the property of the pseudoinverse such that
(αA)† = 1

α
A† for any nonzero scalarα. This leads to the conclu-

sion of the lemma.

L EMMA 2. Assume thatX ≻ 0. The functionF (X) = 〈X−1,V〉
is convex (strictly convex, respectively) ifV � 0 (V ≻ 0, respec-
tively).



PROOF. WhenV � 0, using the the fact thatP ≻ 0, Q � 0 ⇒
〈P,Q〉 ≥ 0, ∀P,Q and combining the result of Lemma13, we
have:

〈V, (1− λ)X−1 + λY−1〉 ≥ 〈V, ((1− λ)X+ λY)−1〉

For the similar reason we can prove for the case whenV ≻ 0. We
thus complete the proof of this lemma.

L EMMA 3. The dual problem of Eq (7) takes the following form:

max
X,y

− 〈y,1〉, s.t. Xdiag(y)X−V � 0, X ≻ 0, y ≥ 0.

wherey ∈ R
n is associated with the inequality constraint diag(X) ≤

1.

PROOF. We assume that there exists a small-valued parameter
τ → 0 such thatX � τI for Eq (7). Introducing Lagrange multi-
pliersy ≥ 0 andS � 0 for the inequality constraint diag(X) ≤ 1

and the positive definite constraintX � τI respectively, we derive
the following Lagrangian function:

L(X,y,S) = 〈X−1,V〉+ 〈y, diag(X)− 1〉 − 〈X− τI,S〉 (23)

Setting the gradient ofL(·) with respect toX to zero, we obtain:

∂L

∂X
= −X

−1
VX

−1 + diag(y)− S = 0 (24)

Putting Eq (24) to Eq(23) to eliminateS, we get:

max
X,y

− 〈y,1〉+ τ tr
(

diag(y)−X
−1

VX
−1) ,

s.t. diag(y)−X
−1

VX
−1 � 0, X ≻ 0, y ≥ 0

Asτ is approaching to 0, we obtain the dual problem as Eq (23).

L EMMA 4. The objective value of the solutions in Eq (7) is
sandwiched as

max(2‖W‖∗ − n, ‖W‖2∗/n) + θ ≤ F (X) ≤ ρ2(‖W‖2F + θn) (25)

whereρ = maxi ‖S(:, i)‖2, i ∈ [n], furthermore,S comes from
the SVD decomposition thatW = UΣS.

PROOF. For notation convience, we denoteΩ = {X| X ≻
0, diag(X) ≤ 1}. (i) First, we prove the upper bound. To prove
the lemma, we perform SVD decomposition ofW, obtainingW =
UΣS. Then, we build a decompositionA = 1

ρ
S andX = ATA.

This is a valid solution because diag(X) ≤ 1. Then the objective
is upper bounded by

min
X∈Ω

〈X−1,V〉 ≤ 〈(
1

ρ2
S
T
S)−1,V〉

= ρ2(W)〈(ST
S)−1,WT

W + θI〉

≤ ρ2(W)(‖W‖2F + θn)

(i) We now prove the lower bound. We naturally have the following
inequalities:

min
X∈Ω

〈X−1,V〉

= min
X∈Ω

〈X−1,WT
W〉+ tr(X) + 〈X−1, θI〉 − tr(X)

≥ min
X∈Ω

〈X−1,WT
W〉+ tr(X) + min

X∈Ω
〈X−1, θI〉 − tr(X)

≥ min
X≻0

〈X−1,WT
W〉+ tr(X) + min

X∈Ω
〈X−1, θI〉 − tr(X)

= 2‖W‖∗ + min
X∈Ω

θtr(X−1)− tr(X)

≥ 2‖W‖∗ + θ − n (26)

The second step uses the fact thatminX∈Ω g(X) + h(X) ≥
minX∈Ω g(X) + minX∈Ω h(X) for anyg(·) andh(·); the third
step uses the fact that the larger of the constraint set, the smaller
objective value can be achieved; the fourth step uses the variational
formulation of nuclear norm [22]:

‖W‖∗ = min
X≻0

1

2
tr(X) +

1

2
〈WT

W, X−1〉.

Another expression of the lower bound can be attained by the fol-
lowing inequalities:

min
X∈Ω

〈X−1,V〉

≥ min
X∈Ω

1

n
tr(X) · 〈X−1,WT

W + θI〉

≥ min
X∈Ω

1

n
tr(X) · 〈X−1,WT

W〉+ min
X∈Ω

1

n
tr(X) · 〈X−1, θI〉

≥ min
A

1

n
‖A‖2F · 〈WA

†,WA
†〉+ min

X∈Ω

1

n
tr(X) · 〈X−1, θI〉

= min
W=BA

1

n
‖A‖2F · 〈B,B〉+ min

X∈Ω

θ

n
tr(X)tr(X−1)

=
1

n
‖W‖2∗ + min

X∈Ω

θ

n
tr(X)tr(X−1)

≥
1

n
‖W‖2∗ + θ

n

λn(X)

≥
1

n
‖W‖2∗ + θ (27)

where the first step uses the fact that1
n

tr(X) ≤ 1 for anyX ∈ Ω;
the third step uses the equality thatX = ATA; the fourth step uses
the equality thatW = BA; the fifth step uses another equivalent
variational formulation of nuclear norm which is given by (see,
e.g., [24]) that:

‖W‖∗ = min
B,L

‖L‖F · ||B||F , s.t. W = BL.

Combining Eq(26) and Eq(27), we quickly obtain the lower bound
of the objective value.

L EMMA 5. AssumeV ≻ 0. The optimization problem in Eq
(7) is equivalent to the following optimization problem:

min
X

F (X) = 〈X−1,V〉, s.t. diag(X) = 1, X ≻ 0 (28)

PROOF. By the feasibilityXdiag(y)X � V in the dual prob-
lem of Eq (7) andV ≻ 0, we haveXdiag(y)X ≻ 0. Therefore,
diag(y) is full rank, we havey > 0, since otherwiserank(Xdiag(y)·
X) ≤ min(rank(X),min(rank(diag(y)), rank(X))) < n, im-
plying thatXdiag(y)X is not strictly positive definite. Moreover,
we note that the dual variabley is associated with the constraint
diag(X) ≤ 1. By the complementary slackness of the KKT condi-
tion thaty ⊙ (diag(X)− 1) = 0, we conclude that it holds that
diag(X) = 1.

L EMMA 6. For anyX ∈ X , there exist some strictly positive
constantsC1 and C2 such thatC1I � X � C2I whereC1 =

(F (X0)
λ1(V)

− 1 + 1
n
)−1 andC2 = n.

PROOF. (i) First, we prove the upper bound.λn(X) ≤ tr(X) =
n. (ii) Now we consider the lower bound. For anyX ∈ X , we de-



rive the following:

F (X0) ≥ F (X) = 〈X−1,V〉

≥ max
(

λ1(V)tr(X−1),λ1(X
−1)tr(V)

)

= max

(

n
∑

i=1

λ1(V)

λi(X)
,
tr(V)

λn(X)
,

)

(29)

where the second step uses Lemma12, the third step uses the fact
that tr(X−1) =

∑n
i=1

1
λi

andλ1(X
−1) = 1

λn(X)
. Combining

Eq (29) and the fact that 1
λi(X)

≥ 1
λn(X)

≥ 1
n
, ∀i ∈ [n], we have:

F (X0) ≥ λ1(V)
λ1(X)

+ (n−1)λ1(V)
λn(X)

≥ λ1(V)
λ1(X)

+ n−1
n

λ1(V). Thus,

λ1(X) is lower bounded by(F (X0)
λ1(V)

− n−1
n

)−1. We complete the
proof of this lemma.

Note that the lower bound is strictly positive sinceF (X0)
λ1(V)

≥
tr(V)

λ1(V)λn(X)
≥ nλ1(V)

λ1(V)λn(X)
= n

λn(X)
> n−1

n
, where the first

inequality here is due to the second inequality of Eq (29). Inpar-
ticular, if we chooseX0 = I, we have:λ1(X) ≥ ( tr(V)

λ1(V)
− 1 +

1
n
)−1.

L EMMA 7. For anyX ∈ X , there exist some strictly positive
constantsC3, C4, C5 andC6 such thatC3I � H(X) � C4I and
C5I � G(X) � C6I, whereC3 = λ1(V)

C3
2
(X)

, C4 = λn(V)

C3
1
(X)

, C5 =

λ1(V)

C2
2
(X)

, C6 = λn(V)

C2
1
(X)

.

PROOF. The hessian ofF (X) can be computed asH(X) =
X−1VX−1 ⊗ X−1 + X−1 ⊗ X−1VX−1. Using the fact that
eig(A⊗B) = eig(A)⊗ eig(B), λ1(AB) ≥ λ1(A)λ1(B) and
λn(AB) ≤ λn(A)λn(B), we have:λ1(X

−1VX−1)λ1(X
−1)I �

H(X) � λn(X
−1VX−1)λn(X

−1)I ⇒ λ1(V)λ3
1(X

−1)I �

H(X) � λ3
n(X

−1)λn(V)I ⇒ λ1(V)

λ3
n(X)

I � H(X) � λn(V)

λ3
1
(X)

I.

Using the same methodology for bounding the eigenvalues ofG(X)
and combining the bounds for the eigenvalues ofX in Lemma6, we
complete the proof of this lemma.

L EMMA 8. The objective functioñF (X) = C2

4
F (X) = C2

4
·

〈X−1,V〉 with X ∈ X is a standard self-concordant function,
whereC is a strictly positive constant with

C ,
6C3

2 tr(V)−1/2

23/2C3
1

.

PROOF. For simplicity, we defineh(t) , 〈(X + tD)−1,V〉

andY , X + tD ∈ X . Then we have the first-order, second-
order and third-order gradient ofh(t) (see page 706 in [2]):dh

dt
=

〈−Y−1DY−1,V〉, d2h
dt2

= 〈2Y−1DY−1DY−1,V〉, d3h
dt3

=

〈−6Y−1DY−1DY−1DY−1,V〉. We naturally derive the fol-
lowing inequalities:

| d
3h

dt3
|

( d
2h

dt2
|)3/2

=
|〈6DY−1D,Y−1VY−1DY−1〉|

〈2DY−1D,Y−1VY−1〉3/2

≤
6λn(Y

−1)‖D‖2F
23/2λ1(Y

−1)‖D‖3F
·
|〈Y−1Y−1DY−1,V〉|

〈Y−1Y−1,V〉3/2

≤
6λn(Y

−1)‖D‖2F
23/2λ1(Y

−1)‖D‖3F
·
λ3

n(Y
−1)λn(D)tr(V)

λ3
1(Y

−1)tr(V)3/2

≤
6C3

2 tr(V)−1/2

23/2C3
1

= C

where the first step uses the fact that〈ABC,D〉 = 〈B,ATDCT 〉,
∀A,B,C,D ∈ R

n×n; the second step usesλ1(Y
−1)‖D‖2F I �

DY−1D � λn(Y
−1)‖D‖2F I and Y−1VY−1 � 0; the third

step uses the Cauchy inequality and Lemma12; the last step uses
the bounds of the eigenvalues ofY ∈ X . Finally, we have the
upper bound of| d

3h
dt3

|/( d
2h

dt2
|)3/2 which is independent ofX and

D.
Thus, for anyX ∈ X , the objective functioñF (X) = C2

4
〈X−1,V〉

is self-concordant (see Section 2.3.1 in [18]).

3. CONVERGENCE ANALYSIS
In this section, we first prove that Algorithm 1 always converges

to the global optimum, and then analyze its convergence rate. We
focus on the following composite optimization model [27, 10] which
is equivalent to Eq (8):

min
X≻0

F (X) + g(X), with g(X) , IΘ (X) (30)

whereΘ , {X|diag(X) = 1} and IΘ is an indicator function

of the convex setΘ with IΘ(V) =
{

0, V ∈ Θ

∞, otherwise.. Furthermore, we

define the generalized proximal operator as follows:

proxN
g (X) , argmin

Y

1

2
‖Y −X‖2N + g(Y). (31)

For the notation simplicity, we define

F̃ (X) ,
C2

4
F (X) , G̃(X) ,

C2

4
G(X) andH̃(X) ,

C2

4
H(X).

We note thatF̃ (X) is a standard self-concordant function. More-

over, we use the shorthand notationF̃ k = F̃ (Xk), G̃
k
= G̃(Xk)

andH̃
k
= H̃(Xk).

The following two lemmas are useful in our proof of conver-
gence.

L EMMA 14. Let F̃ (X) be a standard self-concordant function
andX,Y ∈ X , r , ‖X−Y‖H̃(X) < 1. Then

‖G̃(Y)− G̃(X)− H̃(X)(Y −X)‖H̃(X) ≤
r2

1− r
(32)

PROOF. See Lemma 1 in [17].

L EMMA 15. Let F̃ (X) be a standard self-concordant function
andX,Y ∈ X , ϕ(t) , −t− ln(1− t). Then

F̃ (Y)− F̃ (X)− 〈G̃(X),Y −X〉 ≤ ϕ(‖Y −X‖H̃(X)). (33)

PROOF. See Theorems 4.1.8 in [19].

The following lemma provides some theoretical insights of the
line search program. It states that a strictly positive stepsize can
always be achieved in Algorithm 1. We remark that this property is
very crucial in our global convergence analysis of the algorithm.

L EMMA 9. There exists a strictly positive constantα < min(1,
C1

C7
, C8) such that the positive definiteness and sufficient descent

conditions (in step 7-8 of Algorithm 1) are satisfied. HereC7 ,
2λn(V)

C2
1
C3

andC8 ,
2(1−σ)C3

C4
are some constants which are inde-

pendent of the current solutionX.



PROOF. Firstly, noticingD is the minimizer of Eq (14), for any
α ∈ (0, 1], ∀D, diag(D) = 0, we have:

〈G,D〉+
1

2
vec(D)THvec(D)

≤ α〈G,D〉+
1

2
vec(αD)THvec(αD)

⇒ (1− α)〈G,D〉+
1

2
(1− α2)vec(D)THvec(D) ≤ 0

⇒ 〈G,D〉+
1

2
(1 + α)vec(D)THvec(D) ≤ 0 (34)

Takingα → 1, we have:

〈G,D〉 ≤ −vec(D)THvec(D), ∀D, diag(D) = 0. (35)

(i) Positive definiteness condition. By the descent condition, we
have

0 ≥ 〈D,G〉+
1

2
vec(D)THkvec(D)

= −〈D,X−1
VX

−1〉+
1

2
vec(D)THkvec(D)

≥ −
λn(D)λn(V)

λ2
1(X)

+
1

2
‖D‖2Fλ1(H

k)

≥ −
λn(V)

C2
1

λn(D) +
C3

2
λ

2
n(D)

Solving this quadratic inequality givesλn(D) ≤ C7. If X ∈ X ,
then, for anyα ∈ (0, ᾱ) with ᾱ = min{1, C1

C7
}, we have:0 ≺

(1− C7ᾱ
C1

)C1I � X− ᾱλn(D)I � X+ αD.
(ii) Sufficient decrease condition. Then for anyα ∈ (0, 1], we have
that

F (X+ αD)− F (X)

≤ α〈D,G〉+
α2C4

2
‖D‖2F

≤ α〈D,G〉+
α2C4

2C3
vec(D)THvec(D)

≤ α(〈D,G〉 −
αC4

2C3
〈D,G〉)

= α〈D,G〉(1−
αC4

2C3
)

≤ α〈D,G〉 · σ (36)

The first step uses the Lipschitz continuity of the gradient of F (X)
that: F (Y)−F (X)−〈G,Y−X〉 ≤ C4

2
‖X−Y‖2F , ∀X,Y ∈ X ;

the second step uses the lower bound of the Hessian matrix that
C3‖D‖2F ≤ vec(D)THvec(D); the third step uses Eq (35) that
vec(D)THvec(D) ≤ −〈D,G〉; the last step uses the choice that
α ≤ C8.

Combining the positive definiteness condition, sufficient decrease
condition and the fact thatα ∈ (0, 1], we complete the proof of this
lemma.

The following lemma shows that a full Newton step size will bese-
lected eventually. This is very useful for the proof of localquadratic
convergence.

L EMMA 10. If Xk is close enough to global optimal solution

such that‖Dk‖ ≤ min( 3.24
C2C4

, (2σ+1)2

C6C2 ), the line search condition

will be satisfied with step sizeαk = 1.

PROOF. First of all, by the concordance of̃F (X), we have the
following inequalities:

F̃ (Xk+1)

≤ F̃ (Xk)− αk〈G̃
k
,Dk〉+ ϕ(αk‖Dk‖H̃k)

≤ F̃ (Xk)− αk〈G̃
k
,Dk〉+

1

2
(αk)2‖Dk‖2

H̃
k + (αk)3‖Dk‖3

H̃
k (37)

The second step uses the update rule thatXk+1 = Xk + αkDk;
the third step uses the fact that−z − log(1 − z) ≤ 1

2
z2 + z3 for

0 ≤ z ≤ 0.81 (see Section 9.6 in [1]). Clearly,z , αk‖Dk‖
H̃

k ≤
0.81 holds whenever

‖Dk‖ ≤
0.81 × 4

C2C4
. (38)

With the choice ofαk = 1 in Eq (37), we have:

F (Xk+1)

≤ F (Xk)− 〈Gk,Dk〉+
4

C2
(
C2

8
‖Dk‖2Hk +

C3

8
‖Dk‖3Hk )

= F (Xk)− 〈Gk,Dk〉+
1

2
‖Dk‖2Hk +

C

2
‖Dk‖3Hk

≤ F (Xk)− 〈Gk,Dk〉+
1

2
〈Gk,Dk〉+

C

2
(〈Gk,Dk〉3/2

= F (Xk) + σ〈Gk,Dk〉

(

C

2σ
〈Gk,Dk〉1/2 −

1

2σ

)

≤ F (Xk) + σ〈Gk,Dk〉

(

C

2σ
‖G‖1/2‖Dk‖1/2 −

1

2σ

)

≤ F (Xk) + σ〈Dk,Gk〉

where the first step uses the definition ofF̃ k, G̃
k

andH̃
k
; the third

step uses Eq (35); the fifth step uses the Cauchy-Schwarz inequal-
ity; the last step uses the inequality that

‖D‖ ≤
(2σ + 1)2

‖G‖C2
=

(2σ + 1)2

C6C2
(39)

Combining Eq (38) and Eq (39), we complete the proof of this
lemma.

THEOREM 1. Global Convergence of Algorithm 1. Let{Xk}
be sequences generated by Algorithm 1. ThenF (Xk) is non-increasing
and converges to the global optimal solution.

PROOF. From Eq(36) and Eq (35), we have:

F (Xk+1)− F (Xk) = F (Xk + αDk)− F (Xk)

≤ α〈Dk,Gk〉 · σ (40)

≤ −ασvec(Dk)Hkvec(Dk)

≤ −ασC3‖D
k‖2F (41)

whereα is a strictly positive parameter which is specified in Lemma
(10). We letβ = ασC3, which is a strictly positive parameter.
Summing Eq (41) overi = 0, ..., k − 1, we have:

F (Xk)− F (X0) ≤ −β
∑k

i=1 ‖D
i‖2F

⇒ F (X∗)− F (X0) ≤ −β
∑k

i=1 ‖D
i‖2F

⇒ (F (X0)− F (X∗))/(kβ) ≥ min
i=1,...,k

‖Di‖2F (42)



where in the first step we use the fact thatF (X∗) ≤ F (Xk),∀k.
Ask → ∞, we have{Dk} → 0.

In what follows, we prove the local quadratic convergence rate of
Algorithm 1.

THEOREM 2. Global Linear Convergence Rate of Algorithm
1. Let {Xk} be sequences generated by Algorithm 1. Then{Xk}
converges linearly to the global optimal solution.

PROOF. By the Fermat’s rule [27] in constrained optimization,
we have:

D
k ∈ argmin

∆
〈Gk +H(Dk),∆〉, s.t. diag(X+∆) = 1

whereH(Dk) , HXk (Dk). Thus,

〈Gk +H(Dk),Dk〉 ≤ 〈Gk +H(Dk),X∗ −X
k〉

Therefore, we have the following inequalities:

〈Gk +H(Dk),Xk+1 −X
∗〉

= (α− 1) 〈Gk +H(Dk),Dk〉

+〈Gk +H(Dk),Xk +D
k −X

∗〉

≤ (α− 1) 〈Gk +H(Dk),Dk〉 (43)

On the other hand, sinceF (·) is strongly convex, we have the fol-
lowing error bound inequality for some constantτ [21, 27]:

‖X−X
∗‖F ≤ τ‖D(X)‖F (44)

Then we naturally derive the following inequalities:

F (Xk+1)− F (X∗)

= 〈G(X̄)−G(Xk)−H(Dk),Xk+1 −X
∗〉

+〈Gk +H(Dk),Xk+1 −X
∗〉

≤ (C4‖X̄−X
k‖+ ‖H(Dk)‖) · ‖Xk+1 −X

∗‖F

+〈Gk +H(Dk),Xk+1 −X
∗〉

≤ (C4‖X̄−X
k‖+ ‖H(Dk)‖) · ‖Xk+1 −X

∗‖F

+(α− 1) 〈Gk +H(Dk),Dk〉

= (C4‖X̄−X
k‖+ ‖H(Dk)‖) · (‖αDk +X

k −X
∗‖F )

+ (α− 1) 〈Gk +H(Dk),Dk〉

≤ (C4‖X̄−X
k‖+ ‖H(Dk)‖) · ((α+ τ )‖Dk‖F )

+ (α− 1) 〈Gk +H(Dk),Dk〉

≤ C9 · ‖D
k‖2F + (α− 1)〈Gk,Dk〉

≤ (α− 1− 1/C3)〈G
k,Dk〉 (45)

The first step uses the Mean Value Theorem withX̄ a point lying
on the segment joiningXk+1 with X∗; the second step uses the
Cauchy-Schwarz Inequality and the gradient Lipschitz continuity of
F (·); the third step uses Eq(43); the fourth step uses the update rule
thatXk + αDk = Xk+1; the fifth step uses the result in Eq (44);
the sixth step uses the boundedness of‖X̄ − Xk‖ and‖H(Dk)‖,
the last step uses the inequality that〈D,G〉 ≤ −C3‖D

k‖2F . Com-
bining Eq(40) and Eq (45), we conclude that there exists a constant
C10 > 0 such that the following inequality holds:

F (Xk+1)− F (X∗)

≤ C10(F (Xk)− F (Xk+1))

= C10(F (Xk)− F (X∗))− C10(F (Xk+1)− F (X∗))

Therefore, we have:

F (Xk+1)− F (X∗)

F (Xk)− F (X∗)
≤

C10

C10 + 1

Therefore,{F (Xk)} converges toF (X∗) at least Q-linearly. Fi-
nally, by Eq (41), we have:

‖Xk+1 −X
k‖2F ≤

1

ασC3
(F (Xk)− F (Xk+1)) (46)

Since{F k+1 − F ∗}nk=1 converges to 0 at least R-linearly, this
implies thatXk+1 converges at least R-linearly. We thus complete
the proof of this lemma.

THEOREM 3. Local Quadratic Convergence Rate of Algorithm
1. Let {Xk} be sequences generated by Algorithm 1. WhenXk is
sufficiently close to the global optimal solution, then{Xk} con-
verges quadratically to the global optimal solution.

PROOF. We representDk by the following equalities:

D
k = argmin

∆
〈∆,Gk〉+

1

2
vec(∆)THkvec(∆) + g(Xk +∆)

= argmin
∆

‖∆− (Hk)−1
G

k‖2Hk + g(Xk +∆)

= proxHk

g (Xk − (Hk)−1
G

k)−X
k (47)

We have the following equalities:

‖Xk+1 −X
∗‖

H̃
k

= ‖Xk + αk
D

k −X
∗‖

H̃
k

= ‖(1− αk)Xk + αkproxHk

g (Xk − (Hk)−1
G

k)−X
∗‖

H̃
k

= ‖(1− αk)(Xk −X
∗) + αkproxHk

g (Xk − (Hk)−1
G

k)

−αkproxHk

g (X∗ − (Hk)−1
G

∗)‖
H̃

k (48)

With the choice ofαk = 1 in Eq(48), we have the following in-
equalities:

‖Xk+1 −X
∗‖

H̃
k

= ‖proxH̃
k

g (Xk − (Hk)−1
G

k)− proxH̃
∗

g (X∗ − (H∗)−1G∗)‖
H̃

k

≤ ‖Xk −X
∗ + (H̃

k
)−1(G∗ −G

k)‖
H̃

k

= ‖(H̃
k
)−1

H̃
k
(

X
k −X

∗ + (H̃
k
)−1(G∗ −G

k)
)

‖
H̃

k

≤ ‖(H̃
k
)−1‖

H̃
k · ‖H̃

k
(

X
k −X

∗ + (H̃
k
)−1(G∗ −G

k)
)

‖
H̃

k

≤
4

C2C3
‖H̃

k
(Xk −X

∗)−G
k +G

∗‖
H̃

k

≤
4‖Xk −X∗‖2

H̃
k

C2C3

(

1− ‖Xk −X∗‖
H̃

k

)

where the second step uses the fact that the generalized proximal
mappings are firmly non-expansive in the generalized vectornorm;
the fourth step uses the Cauchy-Schwarz Inequality; the fifth step

uses the fact that‖(H̃
k
)−1‖

H̃
k = ‖(H̃

k
)−1‖ ≤ 4

C2C3
; the sixth

step uses Eq(32).
In particular, when‖Xk −X∗‖

H̃
k ≤ 1, we have:

‖Xk+1 −X
∗‖

H̃
k ≤

4

C2C3
‖Xk −X

∗‖2
H̃

k

In other words, Algorithm 1 converges to the global optimal solu-
tionX∗ with asymptotic quadratic convergence rate.



4. MATLAB CODE OF ALGORITHM 1
function [A,fcurr,histroy] = ConvexDP(W)
% This programme solves the following problem:
% min ||A||_{2, inf}̂ 2 trace(W ′*W *pinv(A)*pinv(A)′)
% where||A||_{2, inf} is defined as:
% the maximum l2 norm of column vectors ofA
% W: m x n, A: p x n

% This is equvilent to the following SDP problem:
% min_X<inv(X), W ′*W>, s.t. diag(X) <= 1, X ≻ 0
% where A = chol(X).

n = size(W,2); diagidx = [1:(n+1):(n*n)];
maxiter = 30; maxiterls = 50; maxitercg = 5;
theta = 1e-3; accuracy = 1e-5; beta = 0.5; sigma = 1e-4;

X = eye(n); I = eye(n);
V = W’*W; V = V + theta*mean(diag(V))*I;
A = chol(X); iX = A\(A’ \I); G = - iX*V*iX;
fcurr = sum(sum(V.*iX)); histroy = [];

for iter= 1:maxiter,

% Find search direction
if(iter==1)
D = - G; D(diagidx)=0; i=-1;

else
Hx = @(S) -iX*S*G - G*S*iX;
D = zeros(n,n); R = -G - Hx(D); R(diagidx) = 0;
P = R; rsold = sum(sum(R.*R));
for i=1:maxitercg,

Hp=Hx(P); alpha=rsold/sum(sum(P.*Hp));
D=D+alpha*P; D(diagidx) = 0
R=R-alpha*Hp; R(diagidx) = 0;
rsnew=sum(sum(R.*R)); if rsnew<1e-10,break;end
P=R+rsnew/rsold*P; rsold=rsnew;

end
end

% Find stepsize
delta = sum(sum(D.*G)); Xold = X;
flast = fcurr; histroy = [histroy;fcurr];
for j = 1:maxiterls,

alpha = power(beta,j-1); X = Xold + alpha*D;
[A,flag]=chol(X);
if(flag==0),
iX = A\(A’ \I); G = - iX*V*iX; fcurr = sum(sum(V.*iX));

if(fcurr <= flast+alpha*sigma*delta),break;end
end

end
fprintf(’iter:%d, fobj:%.2f, opt:%.2e, cg:%d, ls:%d\n’, ..

iter,fcurr,norm(D,’fro’),i,j);

% Stop the algorithm when criteria are met
if(i==maxiterls), X = Xold; fcurr = flast; break; end
if(abs((flast - fcurr)/flast)<= accuracy),break; end

end

A=chol(X);
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