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Abstract

Binary optimization is a central problem in mathematical op-
timization and its applications are abundant. To solve this
problem, we propose a new class of continuous optimization
techniques, which is based on Mathematical Programming
with Equilibrium Constraints (MPECs). We first reformulate
the binary program as an equivalent augmented biconvex op-
timization problem with a bilinear equality constraint, then
we propose an exact penalty method to solve it. The result-
ing algorithm seeks a desirable solution to the original prob-
lem via solving a sequence of linear programming convex re-
laxation subproblems. In addition, we prove that the penalty
function, induced by adding the complementarity constraint
to the objective, is exact, i.e., it has the same local and glob-
al minima with those of the original binary program when
the penalty parameter is over some threshold. The conver-
gence of the algorithm can be guaranteed, since it essentially
reduces to block coordinate descent in the literature. Final-
ly, we demonstrate the effectiveness of our method on the
problem of dense subgraph discovery. Extensive experiments
show that our method outperforms existing techniques, such
as iterative hard thresholding and linear programming relax-
ation.

1 Introduction
In this paper, we mainly focus on the following binary opti-
mization problem:

min
x

f(x), s.t. x ∈ {−1,+1}n, x ∈ Ω. (1)

where the objective function f : Rn → R is convex but
not necessarily smooth on some convex set Ω, and the non-
convexity of (1) is only caused by the binary constraints. In
addition, we assume {−1, 1}n ∩ Ω 6= ∅.

The optimization in (1) describes many applications of
interest in both computer vision and machine learning, in-
cluding graph bisection (Goemans and Williamson, 1995;
Keuchel et al., 2003), Markov random fields (Boykov, Vek-
sler, and Zabih, 2001), the permutation problem (Jiang, Liu,
and Wen, 2016; Fogel et al., 2015), graph matching (Cour,
Srinivasan, and Shi, 2007; Toshev, Shi, and Daniilidis, 2007;
Zaslavskiy, Bach, and Vert, 2009), image (co-)segmentation
(Shi and Malik, 2000; Joulin, Bach, and Ponce, 2010), image
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registration (Wang et al., 2016), and social network analy-
sis (e.g. subgraph discovery (Yuan and Zhang, 2013; Ames,
2015), biclustering (Ames, 2014), planted clique and bi-
clique discovery (Ames and Vavasis, 2011), and community
discovery (He et al., 2016; Chan and Yeung, 2011)), etc.

The binary optimization problem is difficult to solve, s-
ince it is NP-hard. One type of method to solve this problem
is continuous in nature. The simple way is to relax the bina-
ry constraint with Linear Programming (LP) relaxation con-
straints −1 ≤ x ≤ 1 and round the entries of the resulting
continuous solution to the nearest integer at the end. Howev-
er, not only may this solution not be optimal, it may not even
be feasible and violate some constraint. Another type of op-
timization focuses on the cutting-plane and branch-and-cut
method. The cutting plane method solves the LP relaxation
and then adds linear constraints that drive the solution to-
wards integers. The branch-and-cut method partially devel-
ops a binary tree and iteratively cuts out the nodes having
a lower bound that is worse than the current upper bound,
while the lower bound can be found using convex relaxation,
Lagrangian duality, or Lipschitz continuity. However, this
class of method ends up solving all 2n convex subproblems
in the worst case. Our algorithm aligns with the first research
direction. It relies on solving a convex LP relaxation sub-
problem iteratively, but it provably terminates in polynomial
iterations.

In non-convex optimization, good initialization is very
important to the quality of the solution. Motivated by this,
several papers design smart initialization strategies and es-
tablish optimality qualification of the solutions for non-
convex problems. For example, the work of (Zhang, 2010)
considers a multi-stage convex optimization algorithm to re-
fine the global solution by the initial convex method; the
work of (Candès, Li, and Soltanolkotabi, 2015) starts with a
careful initialization obtained by a spectral method and im-
proves this estimate by gradient descent; the work of (Jain,
Netrapalli, and Sanghavi, 2013) uses the top-k singular vec-
tors of the matrix as initialization and provides theoretical
guarantees for biconvex alternating minimization algorith-
m. The proposed method also uses a similar initialization
strategy since it reduces to convex LP relaxation in the first
iteration.

The contributions of this paper are three-fold. (a) We re-
formulate the binary program as an equivalent augmented



Table 1: Existing continuous methods for binary optimization.

Method and Reference Description
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n spectral relaxation (Cour and Shi, 2007) {−1,+1}n ≈ {x | ‖x‖22 = n}

linear programming relaxation (Komodakis and Tziritas, 2007) {−1,+1}n ≈ {x | − 1 ≤ x ≤ 1}

SDP relaxation (Wang et al., 2016)
{0,+1}n ≈ {x |X � xxT , diag(X) = x}
{−1,+1}n ≈ {x |X � xxT , diag(X) = 1}

doubly positive relaxation (Huang, Chen, and Guibas, 2014) {0,+1}n ≈ {x |X � xxT , diag(X) = x, x ≥ 0, X ≥ 0}
completely positive relaxation (Burer, 2009) {0,+1}n ≈ {x |X � xxT , diag(X) = x, x ≥ 0, X is CP}
SOCP relaxation (Kumar, Kolmogorov, and Torr, 2009) {−1,+1}n ≈ {x | 〈X−xxT ,LLT 〉 ≥ 0, diag(X) = 1}, ∀ L

E
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al

en
tO

pt
im

iz
at

io
n iterative hard thresholding (Yuan and Zhang, 2013) minx ‖x− x′‖22, s.t. x ∈ {−1,+1}n

piecewise separable reformulation (Zhang et al., 2007) {−1,+1}n ⇔ {x | (1+ x)� (1− x) = 0}
`0 norm non-separable reformulation (Yuan and Ghanem, 2016b) {−1,+1}n ⇔ {x | ‖x+ 1‖0 + ‖x− 1‖0 ≤ n}
`2 box non-separable reformulation (Murray and Ng, 2010) {−1,+1}n ⇔ {x | − 1 ≤ x ≤ 1, ‖x‖22 = n}
`p box non-separable reformulation (Wu and Ghanem, 2016) {−1,+1}n ⇔ {x | − 1 ≤ x ≤ 1, ‖x‖pp = n, 0 < p <∞}
`2 box non-separable MPEC [This paper] {−1,+1}n ⇔ {x | −1 ≤ x ≤ 1, ‖v‖22 ≤ n, 〈x,v〉 = n, ∀v}

optimization problem with a bilinear equality constraint via
a variational characterization of the binary constraint. Then,
we propose an exact penalty method to solve it. The result-
ing algorithm seeks a desirable solution to the original bi-
nary program. (b) We prove that the penalty function, in-
duced by adding the complementarity constraint to the ob-
jective is exact, i.e. the set of their globally optimal solu-
tions coincide with that of (1) when the penalty parame-
ter is over some threshold. Thus, the convergence of the
algorithm can be guaranteed, since it reduces to block co-
ordinate descent in the literature (Tseng, 2001; Bolte, S-
abach, and Teboulle, 2014). To our knowledge, this is the
first attempt to solve general non-smooth binary optimiza-
tion with guaranteed convergence. (c) We provide numeri-
cal comparisons with state-of-the-art techniques, such as it-
erative hard thresholding (Yuan and Zhang, 2013) and lin-
ear programming relaxation (Komodakis and Tziritas, 2007;
Kumar, Kolmogorov, and Torr, 2009) on dense subgraph dis-
covery. Extensive experiments demonstrate the effectiveness
of our proposed method.

Notations. We use lowercase and uppercase boldfaced
letters to denote real vectors and matrices respectively. The
Euclidean inner product between x and y is denoted by
〈x,y〉 or xTy. X � 0 means that matrix X is positive semi-
definite. Finally, sign is a signum function with sign(0) =
±1.

2 Related Work
This paper proposes a new continuous method for binary
optimization. We briefly review existing related work in this
research direction in the literature (see Table 1).

There are generally two types of methods in the lit-
erature. One is the relaxed approximation method. Spec-
tral relaxation (Cour and Shi, 2007; Olsson, Eriksson, and
Kahl, 2007; Shi and Malik, 2000) replaces the binary con-
straint with a spherical one and solves the problem using
eigen decomposition. Despite its computational merits, it
is difficult to generalize to handle linear or nonlinear con-

straints. Linear programming relaxation (Komodakis and
Tziritas, 2007; Kumar, Kolmogorov, and Torr, 2009) trans-
forms the NP-hard optimization problem into a convex box-
constrained optimization problem, which can be solved by
well-established optimization methods and software. Semi-
Definite Programming (SDP) relaxation (Huang, Chen, and
Guibas, 2014) uses a lifting technique X = xxT and relax-
es to a convex conic X � xxT 1 to handle the binary con-
straint. Combining this with a unit-ball randomized round-
ing algorithm, the work of (Goemans and Williamson, 1995)
proves that at least a factor of 87.8% to the global optimal
solution can be achieved for the graph bisection problem. S-
ince the original paper of (Goemans and Williamson, 1995),
SDP has been applied to develop numerous approximation
algorithms for NP-hard problems. As more constraints lead
to tighter bounds for the objective, doubly positive relax-
ation considers constraining both the eigenvalues and the el-
ements of the SDP solution to be nonnegative, leading to
better solutions than canonical SDP methods. In addition,
Completely Positive (CP) relaxation (Burer, 2010, 2009)
further constrains the entries of the factorization of the solu-
tion X = LLT to be nonnegative L ≥ 0. It can be solved
by tackling its associated dual co-positive program, which is
related to the study of indefinite optimization and sum-of-
squares optimization in the literature. Second-Order Cone
Programming (SOCP) relaxes the SDP conic into the non-
negative orthant (Kumar, Kolmogorov, and Torr, 2009) us-
ing the fact that 〈X − xxT ,LLT 〉 ≥ 0, ∀ L, resulting in
tighter bound than the LP method, but looser than that of
the SDP method. Therefore it can be viewed as a balance
between efficiency and efficacy.

Another type of methods for binary optimization relates
to equivalent optimization. The iterative hard thresholding
method directly handles the non-convex constraint via pro-
jection and it has been widely used due to its simplicity and

1Using Schur complement lemma, one can rewrite X � xxT

as
(

X x
xT 1

)
� 0.



efficiency (Yuan and Zhang, 2013). However, this method
is often observed to obtain sub-optimal accuracy and it is
not directly applicable, when the objective is non-smooth.
A piecewise separable reformulation has been considered in
(Zhang et al., 2007), which can exploit existing smooth op-
timization techniques. Binary optimization can be reformu-
lated as an `0 norm semi-continuous optimization problem.
Thus, existing `0 norm sparsity constrained optimization
techniques such as quadratic penalty decomposition method
(Lu and Zhang, 2013) and multi-stage convex optimization
method (Zhang, 2010; Yuan and Ghanem, 2016b) can be ap-
plied. A continuous `2 box non-separable reformulation 2

has been used in the literature (Raghavachari, 1969; Kalan-
tari and Rosen, 1982). A second-order interior point method
(Murray and Ng, 2010; De Santis and Rinaldi, 2012) has
been developed to solve the continuous reformulation opti-
mization problem. A continuous `p box non-separable refor-
mulation has recently been used in (Wu and Ghanem, 2016),
where an interesting geometric illustration of `p-box inter-
section has been shown 3. In addition, they infuse this e-
quivalence into the optimization framework of Alternating
Direction Method of Multipliers (ADMM). However, their
guarantee of convergence is weak. In this paper, to tackle the
problem of binary optimization, we propose a new frame-
work that is based on Mathematical Programming with E-
quilibrium Constraints (MPECs). Our resulting algorithm is
theoretically convergent and empirically effective.

Mathematical programs with equilibrium constraints are
optimization problems, where the constraints include com-
plementarities or variational inequalities. They are difficult
to deal with because their feasible region may not necessar-
ily be convex or even connected. Motivated by recent devel-
opment of MPECs for non-convex optimization (Yuan and
Ghanem, 2015, 2016a,b), we consider continuous `2 box
non-separable MPEC for binary optimization 4.

3 An Exact Penalty Method
This section presents an exact penalty method for binary
optimization, which is based on a new MPEC formulation.
First, we present our reformulation of the binary constraint.

Lemma 1. `2 box non-separable MPEC. We define Θ ,
{(x,v) | xTv = n, ‖v‖22 ≤ n,−1 ≤ x ≤ 1}. Assume
that (x,v) ∈ Θ, then x ∈ {−1,+1}n, v ∈ {−1,+1}n and
x = v.

Proof. (i) Firstly, we prove that x ∈ {−1,+1}n. Using
the definition of Θ and the Cauchy-Schwarz Inequality, we
have: n = xTv ≤ ‖x‖2‖v‖2 ≤ ‖x‖2

√
n =

√
nxTx ≤√

n‖x‖1‖x‖∞ ≤
√
n‖x‖1. Thus, we obtain ‖x‖1 ≥ n. We

define z = |x|. Combining ‖x‖∞ ≤ 1, we have the follow-
ing constraint sets for z:

∑
i zi ≥ n, 0 ≤ z ≤ 1. Therefore,

2They replace x ∈ {0, 1}n with 0 ≤ x ≤ 1, xT (1− x) = 0.
We extend this strategy to replace {−1,+1}n with −1 ≤ x ≤
1, (1+x)T (1−x) = 0 which reduces to ‖x‖∞ ≤ 1, ‖x‖22 = n.

3We adapt their formulation to our {−1,+1} formulation.
4For {0,+1} binary variable, we have: {0,+1}n ⇔ {x | 0 ≤

x ≤ 1, ‖2v − 1‖22 ≤ n, 〈2x− 1, 2v − 1〉 = n, ∀v}

we have z = 1 and it holds that x ∈ {−1,+1}n. (ii) Sec-
ondly, we prove that v ∈ {−1,+1}n. We have:

n = xTv ≤ ‖x‖∞‖v‖1 ≤ ‖v‖1 = |v|T1 ≤ ‖v‖2‖1‖2 (2)

Thus, we obtain ‖v‖2 ≥
√
n. Combining ‖v‖22 ≤ n, we

have ‖v‖2 =
√
n and ‖v‖2‖1‖2 = n. By the Squeeze The-

orem, all the equalities in (2) hold automatically. Using the
equality condition for Cauchy-Schwarz Inequality, we have
|v| = 1 and it holds that v ∈ {−1,+1}n. (iii) Finally, s-
ince x ∈ {−1,+1}n, v ∈ {−1,+1}n, and 〈x,v〉 = n, we
obtain x = v.

Using Lemma 1, we can rewrite (1) in an equivalent form
as follows.

min
−1≤x≤1, ‖v‖22≤n

f(x), s.t. xTv = n, x ∈ Ω (3)

We remark that xTv = n is referred to as the complemen-
tarity (or equilibrium) constraint in the literature (Luo, Pang,
and Ralph, 1996; Ralph and Wright, 2004) and it always
holds that xTv ≤ ‖x‖∞‖v‖1 ≤

√
n‖v‖2 ≤ n for any fea-

sible x and v.

Algorithm 1 MPEC-EPM: An Exact Penalty Method for
Solving MPEC Problem (3)
(S.0) Set t = 0, x0 = v0 = 0, ρ > 0, σ > 1.
(S.1) Solve the following x-subproblem [primal step]:

xt+1 = arg min
x

J (x,vt), s.t. − 1 ≤ x ≤ 1, x ∈ Ω (4)

(S.2) Solve the following v-subproblem [dual step]:

vt+1 = arg min
v

J (xt+1,v), s.t. ‖v‖22 ≤ n (5)

(S.3) Update the penalty in every T iterations:

ρ⇐ min(2L, ρ× σ) (6)

(S.4) Set t := t+ 1 and then go to Step (S.1)

We now present our exact penalty method for solving the
optimization problem in (3). It is worthwhile to point out that
there are many studies on exact penalty for MPECs (refer to
(Luo, Pang, and Ralph, 1996; Hu and Ralph, 2004; Ralph
and Wright, 2004; Yuan and Ghanem, 2016b) for examples),
but they do not afford the exactness of our penalty problem.
In an exact penalty method, we penalize the complementary
error directly by a penalty function. The resulting objective
J : Rn × Rm → R is defined in (7), where ρ is the penalty
parameter that is iteratively increased to enforce the bilinear
constraint.

Jρ(x,v) = f(x) + ρ(n− xTv)

s.t. − 1 ≤ x ≤ 1, ‖v‖22 ≤ n, x ∈ Ω
(7)

In each iteration, we minimize over x and v alternatingly (T-
seng, 2001; Bolte, Sabach, and Teboulle, 2014), while fixing
the parameter ρ. We summarize our exact penalty method in
Algorithm 1. The parameter T is the number of inner itera-
tions for solving the biconvex problem and the parameter L



is the Lipschitz constant of the objective function f(·). We
make the following observations about the algorithm.
(a) Initialization. We initialize v0 to 0. This is for the sake
of finding a reasonable local minimum in the first iteration,
as it reduces to convex LP relaxation (Komodakis and Tzir-
itas, 2007) for the binary optimization problem.
(b) Exact property. One remarkable feature of our method
is the boundedness of the penalty parameter ρ (see Theo-
rem 1). Therefore, we terminate the optimization when the
threshold is reached (see (6)). This distinguishes it from the
quadratic penalty method (Lu and Zhang, 2013), where the
penalty may become arbitrarily large for non-convex prob-
lems.
(c) v-Subproblem. Variable v in (5) is updated by solving
the following convex problem:

vt+1 = arg min 〈v,−xt+1〉 s.t. ‖v‖22 ≤ n (8)

When xt+1 = 0, any feasible solution is also an optimal
solution. When xt+1 6= 0, the optimal solution will be
achieved at the constraint boundary with ‖v‖22 = n and
(8) is equivalent to solving: min‖v‖22=n

1
2‖v‖

2
2−〈v,xt+1〉.

Thus, we have the following optimal solution for v:

vt+1 =

{ √
n · xt+1/‖xt+1‖2, xt+1 6= 0;

any v with ‖v‖22 ≤ n, otherwise. (9)

(d) x-Subproblem. Variable x in (4) is updated by solving a
box constrained convex problem, which has no closed-form
solution in general. However, it can be solved using Nes-
terov’s proximal gradient method (Nesterov, 2003) or clas-
sical/linearized ADM (He and Yuan, 2012).

Theoretical Analysis. In the following, we present some
theoretical analysis of our exact penalty method. The fol-
lowing lemma is very crucial and useful in our proofs.

Lemma 2. Let x ∈ Rn be an arbitrary vector with −1 ≤

x ≤ 1. We define sign(x) =

{
1, x > 0;
±1, x = 0;
−1, x < 0.

and assume

sign(x) 6= x. The following inequalities hold:

h(x) ,
n−
√
n‖x‖2

‖sign(x)− x‖2
> n−

√
n2 − n > 1/2 (10)

Proof. (i) We prove the first inequality in (10). We de-
fine N (x) as the number of ±1 binary variables in x, i.e.,
N (x) , #(|x| = 1). Clearly, the objective function h(x)
decreases as N (x) increases. Note that N (x) 6= n, since
otherwise it violates the assumption that sign(x) 6= x. We
consider the objective value h(x) when N (x) = n − 1.
In this situation, there exists only one coordinate such that
sign(xi) 6= xi with xi = ±δ, 0 < δ < 1 and the remain-
ing coordinates take binary variable in {−1,+1}. Note that
δ 6= 0 and δ 6= 1, since otherwise it also violates the assump-
tion that sign(x) 6= x. Therefore, we derive the following

inequalities:

n−
√
n‖x‖2

‖sign(x)− x‖2
>

n−
√
n
√

(n− 1) + δ2√
(1− δ)2

≥ n−
√
n(
√
n− 1 + δ)

(1− δ)

=
n−
√
n
√
n− 1

(1− δ)
+

√
nδ

(1− δ)

>
n−
√
n
√
n− 1

1
+ 0

where we use the inequality
√
a+ b ≤

√
a+
√
b, ∀a, b > 0

and the fact that 0 < δ < 1. Since the lower bound above can
be applied to an arbitrary vector, we finish the proof of the
first inequality. (ii) We prove the second inequality in (10).
We have the following results: 1/4 > 0 ⇒ n2−n+1/4 >

n2 − n ⇒ (n − 1/2) >
√
n2 − n ⇒ n −

√
n2 − n >

1/2.

The following lemma is useful in establishing the exact-
ness property of the penalty function in Algorithm 1.
Lemma 3. Consider the following optimization problem:

(x∗ρ,v
∗
ρ) = arg min

−1≤x≤1,‖v‖22≤n, x∈Ω
Jρ(x,v). (11)

Assume that f(·) is a L-Lipschitz continuous convex func-
tion on −1 ≤ x ≤ 1. When ρ > 2L, 〈x∗ρ,v∗ρ〉 = n will be
achieved for any local optimal solution of (11).

Proof. First of all, we focus on the v-subproblem in (11):
v∗ρ = arg minv−xTv, s.t. ‖v‖22 ≤ n. Assume that x∗ρ 6=
0, we have v∗ρ =

√
n · x∗ρ/‖x∗ρ‖2 by (9). Then the biconvex

optimization problem reduces to the following:

x∗ρ = arg min
x∈[−1,+1]n∩Ω

p(x) , f(x) + ρ(n−
√
n‖x‖2) (12)

For any x∗ρ ∈ Ω, we derive the following inequalities:

0.5ρ‖sign(x∗ρ)− x∗ρ‖2
≤ ρ(n−

√
n‖x∗ρ‖2)

= [ρ(n−
√
n‖x∗ρ‖2) + f(x∗ρ)]− f(x∗ρ)

≤ [ρ(n−
√
n‖sign(x∗

ρ)‖2) + f(sign(x∗
ρ))]− f(x∗ρ)

= f(sign(x∗
ρ))− f(x∗ρ)

= L‖sign(x∗ρ)− x∗ρ‖2 (13)

where the first step uses Lemma 2 that ‖sign(x) − x‖2 ≤
2(n −

√
n‖x‖2) for any x in ‖x‖∞ ≤ 1. The third step

uses the optimality of x∗ρ in (12), where p(x∗ρ) ≤ p(y) for
any y ∈ [−1,+1]n ∩ Ω. The fourth step uses the fact that
sign(xρ) ∈ {−1,+1}n and

√
n‖sign(xρ)‖2 = n, while the

last step exploits the Lipschitz continuity of f(·).
From (13), we have ‖x∗ρ − sign(x∗ρ)‖2 · (ρ − 2L) ≤ 0.

Since ρ − 2L > 0, we conclude that it always holds that
‖x∗ρ − sign(x∗ρ)‖2 = 0. Thus, x∗ρ ∈ {−1,+1}n. Finally, we
have x∗ρ =

√
n · x∗ρ/‖x∗ρ‖2 = v∗ρ and 〈x∗ρ,v∗ρ〉 = n.



The following theorem shows that when the penalty pa-
rameter ρ is larger than some threshold, the biconvex objec-
tive function in (7) is equivalent to the original constrained
MPEC problem in (3). This essentially implies the theoret-
ical convergence of the algorithm, since it reduces to well-
known block coordinate descent in the literature 5.
Theorem 1. Exactness of the Penalty Function. Assume
that f(·) is a L-Lipschitz continuous convex function on
−1 ≤ x ≤ 1. When ρ > 2L, the biconvex optimization
minx, v Jρ(x,v), s.t. −1 ≤ x ≤ 1, ‖v‖22 ≤ n, x ∈ Ω in
(7) has the same local and global minima with the original
problem in (3).

Proof. We let x∗ be any global minimizer of (3) and
(x∗ρ,v

∗
ρ) be any global minimizer of (7) for some ρ > 2L. (i)

We now prove that x∗ is also a global minimizer of (7). For
any feasible x and v, we derive the following inequalities:

J (x,v, ρ)

≥ min
‖x‖∞≤1, ‖v‖22≤n, x∈Ω

f(x) + ρ(n− xTv)

= min
‖x‖∞≤1, ‖v‖22≤n, x∈Ω

f(x), s.t. xTv = n

= f(x∗) + ρ(n− x∗Tv∗)

= J (x∗,v∗, ρ)

where the first equality holds due to the fact that the con-
straint xTv = n is satisfied at the local optimal solution
when ρ > 2L (see Lemma 3). Therefore, we conclude that
any optimal solution of (3) is also an optimal solution of (7).
(ii) We now prove that x∗ρ is also a global minimizer of (3).
For any feasible x and v, we naturally have the following
inequalities:

f(x∗ρ)− f(x)

= f(x∗ρ) + ρ(n− x∗Tρ v∗ρ)− f(x)− ρ(n− xTv)

= Jρ(x∗ρ,v∗ρ)− Jρ(x,v)

≤ 0

where the first equality uses Lemma 3. Therefore, we con-
clude that any optimal solution of (7) is also an optimal solu-
tion of (3). (iii) In summary, we conclude that when ρ > 2L,
the biconvex optimization in (7) has the same local and glob-
al minima with the original problem in (3).

The following theorem characterizes the convergence rate
and asymptotic monotone property of Algorithm 1.
Theorem 2. Convergence Rate and Asymptotic Monotone
Property of Algorithm 1. Assume that f(·) is a L-Lipschitz
continuous convex function on −1 ≤ x ≤ 1. Algorith-
m 1 will converge to the first-order KKT point in at most

5Specifically, using Tseng’s convergence results of block coor-
dinate descent for non-differentiable minimization (Tseng, 2001),
one can guarantee that every clustering point of Algorithm 1 is also
a stationary point. In addition, stronger convergence results (Bolte,
Sabach, and Teboulle, 2014; Yuan and Ghanem, 2016b) can be ob-
tained by combining a proximal strategy and Kurdyka-Łojasiewicz
inequality assumption on J (·).

d(ln(L
√

2n)− ln(ερ0))/ lnσe outer iterations 6 with the ac-
curacy at least n− xTv ≤ ε. Moreover, after 〈x,v〉 = n is
obtained, the sequence of {f(xt)} generated by Algorithm
1 is monotonically non-increasing.

Proof. We denote s and t as the outer iteration and inner
iteration counters in Algorithm 1, respectively. (i) We now
prove the convergence rate of Algorithm 1. Assume that Al-
gorithm 1 takes s outer iterations to converge. We denote
f ′(x) as the sub-gradient of f(·) in x. According to the x-
subproblem in (12), if x∗ solves (12), then we have the fol-
lowing mixed variational inequality condition (He and Yuan,
2012; Jiang et al., 2016):

∀x ∈ [−1,+1]n ∩ Ω, 〈x− x∗, f ′(x∗)〉+
ρ(n−

√
n‖x‖2)− ρ(n−

√
n‖x∗‖2) ≥ 0.

Letting x be any feasible solution that x ∈ {−1,+1}n ∩ Ω,
we have the following inequality:

n−
√
n‖x∗‖2 ≤ n−

√
n‖x‖2 + 1

ρ 〈x− x∗, f ′(x∗)〉

≤ 1
ρ‖x− x∗‖2‖f ′(x∗)‖2 ≤ L

√
2n/ρ

(14)

where the second inequality is due to the Cauchy-Schwarz
Inequality, the third inequality is due to the fact that ‖x −
y‖2 ≤

√
2n, ∀ − 1 ≤ x ,y ≤ 1 and the Lipschitz

continuity of f(·) that ‖f ′(x∗)‖2 ≤ L. (14) implies that
when ρs ≥ L

√
2n/ε, Algorithm 1 achieves accuracy at least

n −
√
n‖x‖2 ≤ ε. Noticing that ρs = σsρ0, we have that

ε accuracy will be achieved when σsρ0 ≥ L
√

2n
ε . Thus, we

obtain

σs ≥ L
√

2n

ερ0
⇒ s ≥ (ln(L

√
2n)− ln(ερ0))/ lnσ

(ii) We now prove the asymptotic monotone property of Al-
gorithm 1. We naturally derive the following inequalities:

f(xt+1)− f(xt)

≤ ρ(n− 〈xt,vt〉)− ρ(n− 〈xt+1,vt〉)
= ρ

(
〈xt+1,vt〉 − 〈xt,vt〉

)
≤ ρ

(
〈xt+1,vt+1〉 − 〈xt,vt〉

)
= 0

where the first inequality uses the fact that f(xt+1) + ρ(n−
〈xt+1,vt〉) ≤ f(xt) + ρ(n − 〈xt,vt〉) holds because xt+1

is the optimal solution of (4). The second inequality uses
the fact −〈xt+1,vt+1〉 ≤ −〈xt+1,vt〉 holds due to the op-
timality of vt+1 for (5). The last step uses 〈x,v〉 = n.
Note that the equality 〈x,v〉 = n together with the fea-
sible set −1 ≤ x ≤ 1, ‖v‖22 ≤ n also implies that
x ∈ {−1,+1}n.

We have a few remarks on the theorems above. We as-
sume that the objective function is L-Lipschits continuous.
However, such hypothesis is not strict. Because the solution
x is defined on the compact set, the Lipschits constant can
always be computed for any continuous objective (e.g. norm
function, min/max envelop function). In fact, it is equivalent

6Every time we increase ρ, we call it one outer iteration.
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Figure 1: Experimental results for dense subgraph discovery.

to say that the (sub-) gradient of the objective is bounded by
L 7. Although exact penalty method has been study in the
literature (Han and Mangasarian, 1979; Di Pillo and Grip-
po, 1989; Di Pillo, 1994), their results cannot directly apply
here. The theoretical bound 2L (on the penalty parameter ρ)
heavily depends on the specific structure of the optimization
problem. Moreover, we also establish the convergence rate
and asymptotic monotone property of our algorithm.

Based on the discussions above, we summarize the mer-
its of our MPEC-based exact penalty method as follows. (a)
It exhibits strong convergence guarantees, since it essential-
ly reduces to block coordinate descent in the literature. (b)
It seeks desirable solutions, since the LP convex relaxation
method in the first iteration provides a good initialization.
(c) It is efficient since it is amenable to the use of existing
convex methods to solve the sub-problem. (d) It has a mono-
tone/greedy property due to the complimentary constraints
brought on by the MPEC. We penalize the complimentary
error and ensure that it is decreasing in every iteration, lead-
ing to binary solutions.

4 Experimental Validation
This section demonstrates the advantages of our MPEC-
based exact penalty method (MPEC-EPM) on the dense
subgraph discovery problem. All codes are implemented in
Matlab on an Intel 3.20GHz CPU with 8 GB RAM 8.

7For example, for the quadratic function f(x) = 0.5xTAx +
xTb with A ∈ Rn×n and b ∈ Rn, the Lipschits constant is
bounded by L ≤ ‖Ax + b‖ ≤ ‖A‖‖x‖ + ‖b‖ ≤ ‖A‖

√
n +

‖b‖; for the `1 regression function f(x) = ‖Ax − b‖1 with
A ∈ Rm×n and b ∈ Rm, the Lipschits constant is bounded by
L ≤ ‖AT ∂|Ax− b|‖ ≤ ‖AT ‖

√
m.

8For the purpose of reproducibility, we provide our MATLAB
code at: yuanganzhao.weebly.com.

Table 2: The statistics of the web graph data sets used in our
dense subgraph discovery experiments.

Graph # Nodes # Arcs Avg. Degree
wordassociation 10617 72172 6.80

enron 69244 276143 3.99
uk-2007-05 100000 3050615 30.51

cnr-2000 325557 3216152 9.88
dblp-2010 326186 1615400 4.95

in-2004 1382908 16917053 12.23
amazon-2008 735323 5158388 7.02

dblp-2011 986324 6707236 6.80

Dense subgraphs discovery (Ravi, Rosenkrantz, and Tay-
i, 1994; Feige, Peleg, and Kortsarz, 2001; Yuan and Zhang,
2013) is a fundamental graph-theoretic problem, as it cap-
tures numerous graph mining applications, such as commu-
nity finding, regulatory motifs detection, and real-time story
identification. It aims at finding the maximum density sub-
graph on k vertices, which can be formulated as the follow-
ing binary program:

maxx∈{0,1}n xTWx, s.t. xT1 = k (15)

where W ∈ Rn×n is the adjacency matrix of the graph.
Although the objective function in (15) may not be convex,
one can append an additional term λxTx to the objective
with a sufficiently large λ such that λI −W � 0 (similar
to (Ghanem, Cao, and Wonka, 2015)). This is equivalent to
adding a constant to the objective since λxTx = λk in the
effective domain. Therefore, we have the following equiva-
lent problem:

minx∈{0,1}n f(x) , xT (λI−W)x, s.t. xT1 = k (16)

In the experiments, λ is set to the largest eigenvalue of W.

yuanganzhao.weebly.com
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Figure 2: Convergence curve for dense subgraph discovery on different datasets with k = 3000 (first row) and k = 4000
(second row).

Compared Methods. In our experiments, we compare
the following methods with different cardinality k ∈
{100,1000, 2000, 3000, 4000, 5000} on 8 datasets 9 (see Ta-
ble 2), which contain up to 1 million nodes and 7 million
arcs. (i) Feige’s greedy algorithm (GEIGE) (Feige, Peleg,
and Kortsarz, 2001) is included in our comparisons. This
method is known to achieve the best approximation ratio
for general k. (ii) Ravi’s greedy algorithm (RAVI) (Ravi,
Rosenkrantz, and Tayi, 1994) starts from a heaviest edge and
repeatedly adds a vertex to the current subgraph to maximize
the weight of the resulting new subgraph. It has asymptotic
performance guarantee of π/2, when the weights satisfy the
triangle inequality. (iii) LP relaxation solves a capped sim-
plex problem minx f(x), s.t. 0 ≤ x ≤ 1, xT1 = k by
proximal gradient descent method via xk+1 ⇐ proj(xk −
∇f(xk)/η) based on the current gradient∇f(xk). Here, the
projection operator proj(a) , arg min0≤x≤1, xT 1=k ‖x−
a‖22 can be evaluated analytically and exactly in n log(n)
time by a break point search method (Helgason, Kennington,
and Lall, 1980). We use the Matlab implementation provid-
ed in (Yuan and Ghanem, 2016b). η is the gradient Lipschitz
constant and it is set to the largest eigenvalue of λI−W. (iv)
Truncated Power Method (TPM) (Yuan and Zhang, 2013)
considers an iterative procedure that combines power itera-
tion and hard-thresholding truncation. It works by greedily
decreasing the objective, while maintaining the desired bina-
ry property for the intermediate solutions. We use the code 10

provided by the authors. As suggested in (Yuan and Zhang,
2013), the initial solution is set to the indicator vector of the
vertices with the top k weighted degrees of the graph in our
experiments. (v) L2-box ADMM (Wu and Ghanem, 2016)
applies ADMM directly to the `2 box non-separable refor-

9http://law.di.unimi.it/datasets.php
10https://sites.google.com/site/xtyuan1980/publications

mulation: minx xT (λI −W)x, s.t. 0 ≤ x ≤ 1, xT1 =
k, ‖2x− 1‖22 = n. It introduces auxiliary variables to sepa-
rate the two constraint sets and then performing block co-
ordinate descend on each variable. (vi) MPEC-EPM (Al-
gorithm 1) solves the NP-hard problem in (16) via succes-
sive convex LP relaxation. We stop Algorithm 1 when the
complimentary constraint is satisfied up to a threshold, i.e.,
n − xTv ≤ ε, where ε is set to 0.01. Moreover, we choose
ρ = 0.01, T = 10, σ =

√
10.

Solution Quality. We compare the quality of the solution
x∗ by measuring the density of the extracted k-subgraphs,
which can be computed as x∗TWx∗/k. Several observa-
tions can be drawn from Figure 1. (i) Both FEIGE and RAVI
generally fail to solve the dense subgraph discovery prob-
lem and they lead to solutions with low density. (ii) LP re-
laxation gives better performance than the state-off-the-art
technique TPM in some cases. (iii) L2-box ADMM outper-
forms LP relaxation for all cases, but it generates unsatisfy-
ing accuracy in ‘dblp-2010’, ‘in-2004’, ‘amazon-2008’ and
‘dblp-2011’. (iv) Our proposed method MPEC-EPM gener-
ally outperforms all compared methods.

Convergence Curve. We demonstrate the convergence
curve of the methods {LP, TPM, L2box-ADMM, MPEC-
EPM} for dense subgraph discovery on different data sets.
As can be seen in Figure 2, MPEC-EPM converges with-
in 100 iterations. Moreover, its objective values generally
decrease monotonically, and we attribute this to the greedy
property of the penalty method.

Computational Efficiency. We provide some runtime
comparisons for the four methods on different data sets. As
can be seen in Table 3, even for the data set such as ‘dblp-
2011’ that contains about one million nodes and 7 million
edges, all the methods can terminate within 15 minutes.
Moreover, the runtime efficiency of our method is several

http://law.di.unimi.it/datasets.php
https://sites.google.com/site/xtyuan1980/publications


times slower than LP and comparable with L2-box ADMM.
This is expected, since (i) MPEC-EPM needs to call the LP
procedure multiple times, and (ii) the methods {LP, L2-box
ADMM, MPEC-EPM} are alternating methods and have the
same computational complexity. Our method calls the con-
vex LP procedure many times until convergence. Although
we only present a simple projection method in our imple-
mentation, we argue that this convex LP procedure could be
further significantly accelerated, by integrating exiting more
advanced optimization techniques (such as coordinate gradi-
ent descent). However, this is outside the scope of this paper
and left as future work.

Table 3: CPU time (in seconds) comparisons.

Graph LP TPM L2box-ADM MPEC-EPM
wordassoc. 1 1 7 2

enron 2 1 40 29
uk-2007-05 6 1 75 65

cnr-2000 16 1 210 209
dblp-2010 15 1 234 282

in-2004 79 2 834 1023
amazon-2008 49 5 501 586

dblp-2011 59 8 554 621

5 Conclusions and Future Work
This paper presents a new continuous MPEC-based op-
timization method to solve general binary programs. Al-
though the problem is non-convex, we design an exact penal-
ty method to solve its equivalent MPEC reformulation. It
works by solving a sequence of convex relaxation sub-
problems, resulting in better and better approximations to
the original non-convex formulation. We also shed some the-
oretical light on the equivalent formulation and optimization
algorithm. Experimental results on binary problems demon-
strate that our method generally outperforms existing solu-
tions in terms of solution quality.

As for our future work, we plan to investigate the op-
timality qualification of our multi-stage convex relaxation
method for some specific objective functions, e.g., as is done
in (Goemans and Williamson, 1995; Zhang, 2010; Candès,
Li, and Soltanolkotabi, 2015; Jain, Netrapalli, and Sanghavi,
2013).
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