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Abstract

The sparse generalized eigenvalue problem arises in a

number of standard and modern statistical learning mod-

els, including sparse principal component analysis, sparse

Fisher discriminant analysis, and sparse canonical corre-

lation analysis. However, this problem is difficult to solve s-

ince it is NP-hard. In this paper, we consider a new effective

decomposition method to tackle this problem. Specifically,

we use random or/and swapping strategies to find a work-

ing set and perform global combinatorial search over the

small subset of variables. We consider a bisection search

method and a coordinate descent method for solving the

quadratic fractional programming subproblem. In addi-

tion, we provide some theoretical analysis for the proposed

method. Our experiments on synthetic data and real-world

data have shown that our method significantly and consis-

tently outperforms existing solutions in term of accuracy.

1. Introduction

In this paper, we mainly focus on the following sparse

generalized eigenvalue problem (‘,’ means define):

minx 6=0,x∈Ω f(x) ,
h(x)
g(x) , with Ω , {x | ‖x‖0 ≤ s},

h(x) , 1
2x

TAx, g(x) , 1
2x

TCx.
(1)

Here, x ∈ R
n, and ‖·‖0 is a function that counts the number

of nonzero elements in a vector. A ∈ R
n×n and C ∈ R

n×n

are some symmetry matrices. We assume that C is strictly

positive definite and s ∈ [1, n] is a positive integer.

The sparse generalized eigenvalue problem in (1) de-

scribes many applications of interest in both computer vi-

sion and machine learning, including object recognition

[26], visual tracking [21], object detection [27, 28, 31], pix-

el/part selection [25], and text summarization [44]. We no-

tice that the objective function and sparsity constraint in

(1) is scale-invariant (multiplying x with a positive constant

does not change the value of the objective function and the

satisfiability of the sparsity constraint). Thus, it is equiva-

lent to the following problem: minx xTAx, s.t. xTCx =
1, ‖x‖0 ≤ s. Moreover, without the sparsity constraint,

Problem (1) reduces to the minimum generalized eigenval-

ue problem and it has several equivalent formulations [4]:

minx 6=0 (xTAx)/(xTCx) = min{xTAx : xTCx =

1} = max{λ : A − λC � 0} = λmin(C
−1/2AC−1/2),

where λmin(X) is the smallest eigenvalue of a given matrix

X, and X � 0 denotes X is positive semidefinite.

Problem (1) is closely related to the classical matrix

computation in the literature [13, 11, 1]. Imposing an addi-

tional sparsity constraint on the solution reduces over-fitting

and improves the interpretability of the model for high-

dimensional data analysis. The work of [18] successively

choose a sparse principle direction that maximizes the vari-

ance by enforcing a sparsity constraint using a bounded ℓ1
norm. The work of [45] reformulates the principle com-

ponent analysis problem as a elastic-net regularized ridge

regression problem, which can be solved efficiently using

least angle regression. The work of [9] proposes a convex

relaxation for the sparse principle component analysis prob-

lem problem based on semidefinite programming.

One difficulty of solving Problem (1) comes from the

combinational nature of the cardinality constraint. A con-

ventional way to solve this problem is to simply replace

ℓ0 norm by its convex relaxation. Recently, non-convex

approximation methods such as Schatten ℓp norm, re-

weighted ℓ1 norm, Capped ℓ1 function have been proposed

for acquiring better accuracy [32]. However, all these ap-

proximation methods fails to directly control the sparsity of

the solution. In contrast, iterative hard thresholding main-

tain the sparsity of the solution by iteratively setting the s-

mall elements (in magnitude) to zero in a gradient descent

manner. Due to its simplicity, it has been widely used and

incorporated into the truncated power method [41] and trun-

cated Rayleigh flow method [35].

Another difficulty of solving Problem (1) is due to

the non-convexity of the objective function. One popular

method to overcome this difficulty is removing the quadrat-



ic term using semidefinite programming lifting technique

and reformulating (1) into the following low-rank sparse op-

timization problem: minX 6=0 tr(AX)/tr(CX), s.t. X �
0, rank(X) = 1, ‖X‖0 ≤ s2. We remark that the ob-

jective function is quasilinear (hence both quasiconvex and

quasiconcave), and one can constrain the denominator to

be a positive constant using the scale-invariant property of

the problem. Recently, convex semidefinite programming

method drops the rank constraint and considers ℓ1 relax-

ation for the sparsity constraint [9, 8, 20, 43]. It has been

shown to achieve strong guarantee under suitable assump-

tions. However, such a matrix lifting technique will incur

expensive computation overhead.

In summary, existing methods for solving Problem (1)

suffer from the following limitations. (i) Semidefinite pro-

gramming methods [9, 8, 20] are not scalable due to its

high computational complexity for the eigenvalue decom-

position. (ii) Convex/Non-convex approximation methods

[34, 36, 33] fail to directly control the low-rank and sparse

property of the solution. (iii) Hard thresholding methods

[41, 19] only obtain weak optimality guarantee and result

in poor accuracy in practice [3, 40].

Recently, the work of [5] considers a new optimality cri-

terion which is based on Coordinate-Wise Optimality (C-

WO) condition for sparse optimization. It is proven that C-

WO condition is stronger than the optimality criterion based

on hard thresholding. The work of [40] presents a new

block-k optimal condition for general discrete optimization.

It is shown to be stronger than CWO condition since it in-

cludes CWO condition as a special case with k = 1. In-

spired by these works, we propose a new decomposition

method for the sparse generalized eigenvalue problem, a-

long with using a greedy method based on CWO [5] for

finding the working set.

Contributions: This paper makes the following contri-

butions. (i) We propose a new decomposition algorithm for

solving the sparse generalized eigenvalue problem (see Sec-

tion 3). (ii) We discuss two strategies to find the working set

for our decomposition algorithm (see Section 4). (iii) We

propose two methods to solve the sparse quadratic fraction-

al programming subproblem (see Section 5). (iv) A conver-

gence analysis for the decomposition method is provided

(see Section 6). (v) Our experiments have shown that our

method outperforms existing solutions in term of accuracy.

(see Section 7).

Notation: All vectors are column vectors and super-

script T denotes transpose. Xi,j denotes the (ith, jth) ele-

ment of matrix X and xi denotes the i-th element of vector

x. ei is a unit vector with a 1 in the ith entry and 0 in al-

l other entries. diag(x) is a diagonal matrix formed with

x as its principal diagonal. For any partition of the index

vector [1, 2, ..., n] into [B,N ] with B ∈ N
k, N ∈ N

n−k,

we define UB ∈ R
n×k, UN ∈ R

n×(n−k) as: (UB)j,i =

{

1, B(i) = j;

0, else.
, (UN )j,l =

{

1, N(l) = j;

0, else.
. Therefore, we

have xB = UT
Bx and x = Ix = (UBU

T
B +UNUT

N )x =
UBxB +UNxN . Finally, Ck

n denotes the number of pos-

sible combinations choosing k items from n.

2. Generalized Eigenvalue Problems

A number of standard and modern statistical learning

models can be formulated as the sparse generalized eigen-

value problem, which we present some instances below.

• Principle Component Analysis (PCA). Consider a

data matrix Z ∈ R
m×d, where each row represents an in-

dependent sample. The covariance matrix Σ is computed

by Σ = 1
m−1

∑m
i=1(zi − µ)(zi − µ)T ∈ R

d×d, where

zi denotes ith column of Z and µ =
∑m

i=1 zi ∈ R
d. P-

CA can be cast into the following optimization problem:

minx 6=0 (−xTΣx)/(xTx).
• Fisher Discriminant Analysis (FDA). Given obser-

vations with two distinct classes with µ(i) and Σ(i) be-

ing the mean vector and covariance matrix of class i
(i = 1 or 2), respectively. FDA seeks a projection vec-

tor such that the between-class variance is large relative to

the within-class variance, leading to the following problem:

minx 6=0
−xT ((µ(1)−µ(2))(µ(1)−µ(2))

T )x

xT (Σ(1)+Σ(2))x
.

• Canonical Correlation Analysis (CCA). Given two

classes of data X ∈ R
m1×d and Y ∈ R

m2×d, the covari-

ance matrix between samples from X and Y can be con-

structed as Σ , (Σxx Σxy
Σyx Σyy) ∈ R

(m1+m2)×(m1+m2). C-

CA exploits the relation of the samples by solving the fol-

lowing problem: maxu 6=0, v 6=0 uTΣxyv, s.t. u
TΣxxu =

vTΣyyv = 1, where A , ( 0 Σxy
Σyx 0 ), C , (Σxx 0

0 Σyy) ∈
R

(m1+m2)×(m1+m2), and x , [uTvT ]T . One can rewrite

CCA as the following equivalent problem: minx
−xTAx
xTCx

.

Incorporated with the sparsity constraint, the applica-

tions listed above become special cases of the general opti-

mization models in (1).

3. The Proposed Decomposition Algorithm

This section presents our decomposition algorithm for

solving (1), which is based on the following notation of

block-k optimality [40] for general non-convex constrained

optimization.

Definition 1. (Block-k Optimal Solution and Block-k Opti-

mality Measure ) (i) We denoteB ∈ N
k as a vector contain-

ing k unique integers selected from {1, 2, ..., n}. We define

N , {1, 2, ..., n} \B, x = UBxB +UNxN and let

P(B,x) , argminxB
f (UBxB +UNxN ) ,

s.t. (UBxB +UNxN ) ∈ Ω.
(2)

A solution x̄ is the block-k optimal solution if and only if

x̄B = P(B, x̄) for all |B| = k. In other words, a solution



is the block-k optimal solution if and only if every block co-

ordinate of size k achieves the global optimal solution. (ii)

We define M(x) , 1
Ck

n

∑Ck
n

i=1 ‖P(B(i), x) − xB(i)
‖22 with

{B(i)}
Ck
n

i=1 being all the possible combinations of the index

vectors choosing k items from n with B(i) ∈ N
k for all i.

M(x) is an optimality measure for Problem 1 in the sense

that M(x̄) = 0 if and only if x̄ is the block-k optimal solu-

tion.

We describe the basic idea of the decomposition method.
In each iteration t, the indices {1, 2, ..., n} of decision vari-
able are separated to two sets Bt and N t, where Bt is the
working set and N t = {1, 2, ..., n} \ Bt. To simplify the
notation, we useB instead ofBt. Therefore, we can rewrite
h(·) and g(·) in Problem (1) as:

h(xB ,xN ) = 1
2
x
T
BABBxB + 1

2
x
T
NANNxN + 〈xB ,ABNxN 〉,

g(xB ,xN ) = 1
2
x
T
BCBBxB + 1

2
x
T
NCNNxN + 〈xB ,CBNxN 〉.

The vector xN is fixed so the objective value becomes a

subproblem with the variable xB . Our proposed algorithm

iteratively solves the small-sized optimization problem with

respect to the variable xB as in (3) until convergence. We

summarize our method in Algorithm 1.

Algorithm 1 A Decomposition Algorithm for Sparse

Generalized Eigenvalue Problem as in (1).

1: Specify the working set parameter k and the proximal

term parameter θ. Find an initial feasible solution x0

and set t = 0.

2: while not converge do

3: (S1) Use some strategy to find a working set B
whose size is k. Define N , {1, 2, ..., n} \B.

4: (S2) Solve the following subproblem with the vari-

able xB using combinatorial search:

xt+1
B ⇐ argminxB

h(xB ,xt
N )+ θ

2 ‖xB−xt
B‖2

2

g(xB ,xt
N )

s.t. ‖xB‖0 + ‖xt
N‖0 ≤ s

(3)

5: (S3) Increment t by 1.

6: end while

Remarks. (i) The concept of block-k optimality has been

introduced in [40]. This paper extends their method for min-

imizing convex functions to handle general non-convex ob-

jective functions. (ii) Algorithm 1 relies on solving a small-

sized quadratic fractional problem as in (3). However, us-

ing the specific structure of the objective function and the

sparsity constraint, we can develop an efficient and practi-

cal algorithm to solve it globally. (iii) We propose a new

proximal strategy when solving the subproblem as in (3).

Note that the proximal strategy is only applied to the nu-

merator instead of to the whole objective function. This is

to guarantee sufficient descent condition and global conver-

gence of Algorithm 1 (see Lemma 2 and Theorem 2). (iv)

When the dimension n is small 1 and the parameter setting

θ = 0, k = n is used, the subproblem in (3) is equivalent

to Problem (1).

4. Finding the Working Set

This section shows how to find the working set (refer

to Step S1 in Algorithm 1). This problem is challenging for

two aspects. (i) Unlike convex methods that one can find the

working set using the first-order optimal condition or KKT

primal-dual residual [17, 7], there is no general criteria to

find the working set for non-convex problems. (ii) There

are Ck
n possible combinations of choice for the working set

of size k. One cannot expect to use the cyclic strategy and

alternatingly minimize over all the possible combinations

(i.e., {B(i)}
Ck
n

i=1 ) due to its high computational complexity

when k is large. We propose the following two strategies to

find the working set:

• Random Strategy. We uniformly select one combina-

tion (which contains k coordinates) from {B(i)}
Ck
n

i=1 . In ex-

pectation, our algorithm is still guaranteed to find the block-

k stationary point.

• Swapping Strategy. We denote S(x) and Z(x) as the

index of non-zero elements and zero elements of x, respec-

tively. Based on the current solution xt, our method enu-

merates all the possible pairs (i, j) with i ∈ S(xt), j ∈
Z(xt) that lead to the greatest descent Di,j by changing

the two coordinates from zero/non-zero to non-zero/zero,

as follows:

Di,j = minβ f(xt + βei − xt
jej)− f(xt). (4)

We then pick the top pairs of coordinates that lead to the

greatest descent by measuring D ∈ R
|S(x)|×|Z(x)|. Specif-

ically, we sort the elements in D with DP1,S1
≤ DP2,S2

≤
DP3,S3 ≤, ...,DPn,Sn , where P ∈ N

n and S ∈ N
n are

the index vectors. Assuming that k is an even number, we

simply pick the top-(k/2) nonoverlapping elements of the

sequence P and S respectively as the working set.

We now discuss how to solve (4) to obtain Di,j . We start

from the following lemma.

Lemma 1. We consider the following one-dimensional op-

timization problem:

β∗ = argminβ ψ(β) ,
1
2 āβ

2+b̄β+c̄

1
2 r̄β

2+s̄β+t̄
, s.t. β ≥ L̄ (5)

Assume that ∀β ≥ L̄, τ , 1
2 r̄β

2 + s̄β + t̄ > 0 and the

optimal solution is bounded. We have: (i) Problem (5) ad-

mits a closed-form solution as: β∗ = argminβ f(β), β ∈
1For example, the popular pit props data set [16, 24] only contains 13

dimensions.



{Π(β1),Π(β2)}, where β1 = (−ϑ−
√
ϑ2 − 2πι)/π, β2 =

(−ϑ+
√
ϑ2 − 2πι)/π, π , ās̄ − b̄r̄, ϑ , āt̄ − c̄r̄, ι ,

t̄b̄ + c̄s̄, and Π(β) , max(L̄, β). (ii) Problem (5) contains

one unique optimal solution.

Proof. (i) Dropping the bound constraint and setting the

gradient of ψ(β) to zero, we have 0 = ψ′(β) = ((āβ +
b̄)( 12 r̄β

2 + s̄β+ t̄)− ( 12 āβ
2 + b̄β+ c̄)(r̄β+ s̄))/τ2. Notic-

ing τ > 0, we obtain the following first-order optimal con-

dition for ψ: 0 = (āβ+ b̄)( 12 r̄β
2+ s̄β+ t̄)− ( 12 āβ

2+ b̄β+
c̄)(r̄β + s̄). It can be simplified as: 0 = 1

2β
2π + βϑ + ι.

Solving this equation, we have two solutions β1 and β2.

We select the one between Π(β1) and Π(β2) that leads to

a lower objective value as the optimal solution. (ii) It can

be proven by contradiction. We omit the one-sided bound

constraint since it does not effect the uniqueness of the opti-

mal solution. Assume that there exist two optimal solutions

x and y to (1) that lead to the same objective value ϑ. Ac-

cording to the first-order and second-order optimal condi-

tion [10, 42], we have: (ā−ϑr̄)x = −b̄+ϑs̄, (ā−ϑr̄)y =
−b̄+ϑs̄, (ā−ϑr̄) > 0, which leads to the following contra-

diction: ϑs̄−b̄
ā−ϑr̄ = x 6= y = ϑs̄−b̄

ā−ϑr̄ . Therefore, (11) contains

one unique optimal solution. Please refer to Figure 1.

case 1 case 2 case 3

Figure 1: Geometric interpretation for the one-dimensional

quadratic fractional problem. Using the l’Hopital’s Rule,

we have limβ→+∞ ψ(β) = limβ→−∞ ψ(β) = ā
r̄ . Since

the optimal solution is bounded and the problem at most

contains two critical points, we only have the three cases

above. Clearly, there exists one unique optimal solution.

Letting v , xt − xt
jej , we obtain: minβ f(v + βei) =

minβ
1
2
(v+βei)

T
A(v+βei)

1
2
(v+αei)

T C(v+βei)
. By applying Lemma 1 with L̄ =

−∞, ā = Ai,i, b̄ = (Av)i, c̄ =
1
2v

TAv, r̄ = Ci,i, s̄ =
(Cv)i, t̄ =

1
2v

TCv, we obtain the global optimal solution

for (4).

5. Solving the Subproblem

The subproblem (3) in Algorithm 1 (refer to Step S2 in

Algorithm 1) reduces to the following quadratic fractional

programming problem:

z∗ = argmin‖z‖0≤q p(z) ,
1
2z

T Q̄z+p̄T z+w̄

1
2z

T R̄z+c̄T z+v̄
, (6)

where z ∈ R
k, Q̄ = ABB + θI, p̄ = ABNxN − θxt

B , w̄ =
1
2x

T
NANNxN + θ

2‖xt
B‖22, R̄ = CBB , c̄ = CBNxN , , v̄ =

1
2x

T
NCNNxN , q = s− ‖xN‖0.

Problem (6) is equally NP-hard due to the combinatori-

al constraint ‖z‖0 ≤ q. Inspired by the work of [40], we

develop an exhaustive tree/combinatorial search algorithm

to solve it. Specifically, we consider to solve the follow-

ing optimization problem: minz∈Rk p(z), s.t. zK = 0,

whereK has
∑q

i=0 C
i
k possible choices for the coordinates.

We systematically enumerate the full binary tree for K to

obtain all possible candidate solutions for z and then pick

the best one that leads to the lowest objective value as the

optimal solution. In other words, we need to solve the

following quadratic fractional programming problem with

m , k − |K| variables:

y∗ = argminy L(y) , u(y)
q(y) ,

1
2y

TQy+pTy+w
1
2y

TRy+cTy+v
, (7)

where y ∈ R
m. The optimal solution of (6) can be com-

puted as z∗K = 0, z∗
K̄

= y∗ with K̄ = {1, 2, ..., k} \ K.

Therefore, if we find the global optimal solution of (7), we

find the global optimal solution of (6) as well.

The non-convex problem in (7) is still challenging. For

solving it, we present two methods, namely a bisection

search method and a coordinate descent method, which are

of independent research interest.

5.1. A Bisection Search Method

This subsection presents a bisection search method for

finding the global optimal solution of Problem (7).

We now discuss the relationship between this fraction-

al programming problem and the following parametric pro-

gramming problem [10]:

J (α) = 0, with J (α) , miny u(y)− αq(y)

This is a feasibility problem with respect to α: J (α) =
u(y∗(α))− αq(y∗(α)) = 0, where y∗(α) ∈ R

m is defined

as y∗(α) , argminy u(y)− αq(y).
The following theorem sheds some theoretic lights for

the original non-convex problem in (7).

Theorem 1. We have the following results. (i) It hold-

s that: λmin (Z) ≤ miny L(y) < λmin (O), with O ,

R−1/2QR−1/2, γ , 2v−‖R−1/2c‖22 > 0, g , R−1/2p−
R−1/2QR−1c, δ , cTR−1QR−1c−2cTR−1p+2w, and

Z ,

(

O g/
√
γ

gT /
√
γ δ/γ

)

. (ii) Let O = Udiag(d)UT be the

eigenvalue decomposition of O. The function J (α) can be

rewritten as

J (α) = 1
2δ − 1

2αγ − 1
2

∑m
i

a2
i

di−α , with a = UTg (8)

and it is monotonically decreasing on the range λmin(Z) ≤
α < λmin(O). The optimal solution can be computed as

y∗ = R−1/2(u∗ −R−1/2c), with u∗ = −(O − α∗I)−1g

and α∗ being the unique root of the equation J (α) = 0 on

the range λmin(Z) ≤ α < λmin(O).



Proof. (i) Firstly, it is not hard to notice that Program (7) is
equivalent to the following problem:

miny L(y) = mind

1
2
(R−1/2d)TQ(R−1/2d)+pT (R−1/2d)+w

1
2
(R−1/2d)TR(R−1/2d)+cT (R−1/2d)+v

= mind

1
2
dTOd+dT (R−1/2p)+w

1
2
‖d‖22+dT (R−1/2c)+v

= mind

1
2
dTOd+dT (R−1/2p)+w

1
2
‖d+R−1/2c‖22+v− 1

2
‖R−1/2c‖22

= minu

1
2
uTOu+uT g+ 1

2
δ

1
2
‖u‖22+

1
2
γ

, (9)

where the first step uses the variable substitution that y =

R−1/2d; the third step uses the transformation that u = d+

R−1/2c. We notice that the denominator is always strictly
positive for all decision variables. Letting u = 0 in (9), we
obtain 1

2γ > 0. We naturally obtain the upper bound for
miny L(y):

miny L(y) = minu,η=
√
γ

1
2
uTOu+ 1√

γ
uT gη+ δ

2γ
η2

1
2
‖u‖22+

1
2
η2

≥ minu,η

1
2
uTOu+ 1√

γ
uT gη+ δ

2γ
η2

1
2
‖u‖22+

1
2
η2

= minu,η

1
2 [u

T | ηT ]TZ [uT | ηT ]
1
2
‖u‖22+

1
2
η2 = λmin(Z),

where the first inequality uses the fact that minx f(x) ≤
minx∈Ψ f(x) for all f(·) and Ψ.

We now derive the upper bound of miny L(y). Since the

objective function J (α) is always bounded, there must exist

αwith Q−αR ≻ 0, such that the value of y minimizing the

function (u(y)− αq(y)). Therefore, we have Q − αR ≻
0 ⇒ Q − αR1/2IR1/2 ≻ 0 ⇒ R−1/2QR−1/2 − αI ≻
0 ⇒ α < λmin(O).

(ii) Using the result of (9), we can rewrite J (α) as:

J (α) = minu
1
2u

TOu+ uTg + 1
2δ − α

(

1
2‖u‖22 + 1

2γ
)

= minu
1
2u

T (O− αI)u+ uTg + 1
2δ −

αγ
2 .

Solving the quadratic optimization with respect to u we

have u∗ = −(O − αI)g. Thus, we can repress J (α) as:

J (α) = − 1
2g

T (O − αI)−1g + 1
2δ −

αγ
2 . Since it hold-

s that gT (O − αI)−1g = gTUT diag(1 ÷ (d − α))Ug

with ÷ denoting the element-wise division between two

vectors, we obtain (8). Noticing that the first-order and

second-order gradient of J (α) with respect to α can be

computed as: J ′(α) = − 1
2

∑m
i ( ai

di−α )
2 − γ

2 , J ′′(α) =

−
∑m

i (a2i /(di − α)3) and γ > 0, we obtain J ′(α) < 0
and J ′′(α) ≤ 0. Thus, the function J (α) is concave and

monotonically decreasing on the range λmin(Z) ≤ α <
λmin(O), and there exists a unique root of the equation

J (α) = 0 on the range λmin(Z) ≤ α < λmin(O).

Based on Theorem 1, we now present a bisection method

for solving Problem (7). For notation convenience, we de-

fine α , λmin(Z) and α , λmax(O) − ǫ, where ǫ de-

notes the machine precision parameter which is sufficient-

ly small. Due to the monotonically decreasing property of

J (α), we can solve (8) by checking where the sign of the

left-hand side changes. Specifically, we consider the fol-

lowing three cases for J (α) on the range α ≤ α ≤ α:

(a) J (α) ≥ J (α) ≥ 0, (b) 0 ≥ J (α) ≥ J (α), and (c)

J (α) ≥ 0 ≥ J (α). For case (a) and (b), we can directly

return α and α as the optimal solution, respectively. We now

consider case (c). By the Rolle mean value theorem, there

always exists an α∗ ∈ [α, α] such that J (α∗) = 0. Thus,

we can define and initialize the lower bound lb = α and the

upper bound ub = α. We then perform the following loop

until the optimal solution α∗ = mid with J (mid) ≈ 0
is found: {mid = (lb + ub)/2, if(J (mid) > 0) lb =
mid; else ub = mid; }. Such a bisection scheme is guaran-

teed to find the optimal solution within O(log2((α−α)/ε))
iterations that ub ≤ lb+ ε [6].

Remarks. (i) To our knowledge, this is the first algorith-

m for unconstrained quadratic fractional programming with

global optimal guarantee. The work of [12] also discusses a

bisection search method for the ratio of trace problem, but it

can not solve our general quadratic fractional programming

problem. The classical Dinkelbach’s method [10, 39] can

solve our problem, but it only finds a stationary solution

for the non-convex problem. Our results are based on the

monotone property of the associated parametric program-

ming problem in a restricted domain. (ii) The unconstrained

fractional quadratic program can be solved to optimality by

linear semidefinite programming and it is related to the S-

lemma for the quadratically constrained quadratic program

[29]. In this paper, we show that it can be solved using a

bisection search method. This method has the merit that it

is simple and easy to implement. In addition, it is efficient

and it does not require iterative eigenvalue decomposition

as in the semidefinite programming lifting techniques. (iii)

The matrix O is a n × n principal sub-matrix of Z. Us-

ing Theorem 4.3.17 in [13], it always holds that λ1(Z) ≤
λ1(O) ≤ λ2(Z) ≤ ... ≤ λn−1(Z) ≤ λn−1(O) ≤ λn(Z),
where λ(X) denotes the eigenvalues of X in increasing or-

der. Thus, the bound for the α∗ is tight.

5.2. A Coordinate Descent Method

This subsection presents a simple coordinate descen-

t method [37, 14, 15, 38, 22] for solving Problem (7). Al-

though it can not guarantee to find the global optimal solu-

tion, it has many merits. (i) It is able to incorporate addition-

al bound constraints. (ii) It is numerically robust and does

not require additional eigenvalue solvers. (iii) It is guaran-

teed to converge to a coordinate-wise minimum point for

our specific problem (see Proposition 1 below).

To illustrate the merits of the coordinate descent method,

we consider incorporating the bound constraint x ≥ L̄ on



the solution for Problem (1) 2. Our decomposition algorith-

m for finding the working set and strategies for handling the

NP-hard ℓ0 norm directly follow and what one needs is to

replace (7) and solve the following problem:

miny∈Rm L(y) ,
1
2y

TQy+pTy+w
1
2y

TRy+cTy+v
, s.t. y ≥ L̂ (10)

for some constant L̂.

The coordinate descent method iteratively picks a coor-

dinate i ∈ {1, 2, ...,m} and solves the following one di-

mensional subproblem based on its current solution yj with

j = 0, 1, ...∞:

β∗ = argminβ L(yj + βei), s.t. y
j
i + β ≥ L̂ (11)

where j is the iteration counter for the coordinate descen-

t algorithm. Problem (11) reduces to the one-dimensional

subproblem as in Lemma 1 with suitable parameters. In

every iteration j, once the optimal solution β∗ in (11) is

found, the intermediate solution for (10) is updated via

y
j+1
i ⇐ y

j
i + β∗. There are several ways and orders to

decide which coordinates to update in the literature. (i)

Cyclic order strategy runs all coordinates in cyclic order,

i.e., 1 → 2 → ... → m → 1. (ii) Random sampling s-

trategy randomly selects one coordinate to update (sample

with replacement). (iii) Gauss-Southwell strategy picks co-

ordinate i such that i = argmax1≤t≤m |∇̄L(xj)|t, with

∇̄L(x) ∈ R
m being the projected gradient of L at x [23]:

∇̄L(x)i =

{

∇L(x)i, xi > L̂;

min(0,∇L(x)i), xi = L̂;
and ∇L(x) being the gra-

dient of ∇L at x. Note that ∇̄L(x̀) = 0 implies x̀ is a

first-order stationary point.

We now present our convergence result of the coordinate

descent method for solving (10), which is an extension of

Theorem 4.1 in [37]. Some proofs can be found in the Ap-

pendix.

Proposition 1. When the cyclic order strategy is used, co-

ordinate descent method is guaranteed to converge to a

coordinate-wise minimum of Problem (10) that ∀i, y∗
i =

argminα≥L̂ L(y∗
i + αei).

Remarks. (i) Convergence of the coordinate descen-

t method requires a unique solution in each minimization

step; otherwise, it may cycle indefinitely. A simple but

intriguing example is given in [30]. One good feature of

the non-convex problem in (10) is that its associated one-

dimensional subproblem in (11) only contains one unique

optimal solution (see part (ii) in Lemma 1). This is dif-

ferent from the work of [38] where their one-dimensional

subproblem may have multiple optimal solutions and cause

divergence. (ii) Coordinate descent method is guaran-

teed to produce a coordinate-wise stationary point which

is stronger than the full gradient projection method. Note

2This is useful in sparse non-negative PCA [2].

that any coordinate-wise stationary point x∗ that ∀i, x∗
i =

argminα≥L̂ L(x∗
i + αei) also satisfies the first-order opti-

mal condition with ∇̄L(x∗) = 0. However, the reverse is

not true. This implies that the coordinate descent method

can exploit possible higher order derivatives to escape sad-

dle points for the non-convex problem.

6. Convergence Analysis of Algorithm 1

This section presents the convergence analysis of Algo-

rithm 1. We assume that {f(xt)}∞t=0 is generated by Algo-

rithm 1 and the solution is bounded with 0 < ‖xt‖ <∞ for

all t throughout this section. We first present the following

lemma.

Lemma 2. (Sufficient Decrease Condition) It holds that:

f(xt+1)− f(xt) ≤ −θ‖xt+1−xt‖2
2

(xt+1)TCxt+1 .

Remarks. The proximal term in the numerator in (3) is

necessary for our non-convex problem since it guarantees

sufficient decrease condition which is important for conver-

gence.

Now we present our main convergence result.

Theorem 2. Convergence Properties of Algorithm 1. As-

sume that the subproblem in (3) is solved globally, and there

exists a constant σ such that xtCxt ≥ σ > 0 for all t. We

have the following results.

(i) When the random strategy is used to find the working

set, we have limt→∞ E[‖xt+1 − xt‖] = 0 and Algorithm 1

converges to the block-k stationary point in expectation.

(ii) When the swapping strategy is used to find the work-

ing set with k ≥ 2, we have limt→∞ ‖xt+1 − xt‖ = 0
and Algorithm 1 converges to the block-2 stationary point

deterministically.

Remarks. (i) Thanks to the fact that the denominator is pos-

itive and the objective function is quadratic fractional, our

algorithm is still guaranteed to convergence even in the p-

resence of non-convexity. (ii) We propose using a swapping

strategy to find the working set which enumerates all pos-

sible swaps for all pairs of coordinates to find the greatest

descent. One good feature of this strategy is that it achieves

optimality guarantee which is no worse than Beck and Vais-

bourd’s coordinate-wise optimality condition [5].

7. Experiments

This section demonstrates the efficacy of the proposed

decomposition algorithm by considering three importan-

t applications (i.e., sparse PCA, sparse FDA, and sparse C-

CA) on synthetic and real-world data sets.

• Data Sets. (i) We consider four real-world data sets:

‘a1a’, ‘w1a’, ‘w2a’, and ‘madelon’. We randomly select a
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Figure 1 Convergence behavior of different methods for sparse PCA (left column), sparse FDA (middle column), and sparse CCA (right column).

subset of examples from the original data sets 3. The size

of the data sets used in our experiments are 2000 × 119,

2000 × 300, 2000 × 300, 2000 × 112, respectively. (ii)

We also use a similar method as in [5] to generate synthet-

ic Gaussian random data sets. Specifically, we produce the

feature matrix X ∈ R
m×d and the label vector y ∈ R

m as

follows: X = randn(m, d), y = sign(randn(m, 1)), where

randn(m, d) is a function that returns a standard Gaussian

random matrix of size m × d and sign is a signum func-

tion. We fix m = 300 and consider different values for

d = {100, 500, 1500, 2000}. We denote the data sets as

‘randn-d’ and place the results in the Appendix.

Based on X and y, we generate the matrices A and C in

Problem (1) for different applications (see Section 2). Note

that the resulting size of the sparse generalized eigenvalue

problem for sparse PCA, sparse FDA, and sparse CCA are

d, d, and m, respectively. We vary the sparsity parame-

ter s ∈ {4, 8, 12, ..., 40} and report the objective values for

Problem (1).

• Compared Methods. We compare the following

methods. (i) Truncated Power Method (TPM) [41] 4 it-

eratively and greedily decreases the objective while main-

taining the desired sparsity for the solutions by hard thresh-

olding truncation. (ii) Coordinate-Wise Algorithm (CWA)

[3, 5] 5 iteratively performs an optimization step with re-

spect to two coordinates, where the coordinates that need to

be altered are chosen to be the ones that produce the max-

imal decrease among all possible alternatives. (iii) Trun-

cated Rayleigh Flow (TRF) [35] iteratively updates the so-

lution using the gradient of the generalized Rayleigh quo-

tient and performs a truncation operation to achieve spar-

sity. (iv) Quadratic Majorization Method (QMM) [32] 6

approximates the ℓ0-norm by a continuous surrogate func-

tion and iteratively majorizes the surrogate function by a

3https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
4code: sites.google.com/site/xtyuan1980/
5code: sites.google.com/site/amirbeck314/
6code: https://junxiaosong.github.io/

quadratic separable function, which at each iteration re-

duces to a regular generalized eigenvalue problem. Using

different smooth non-convex approximation functions, they

develop different versions of QMM (QMM-exp, QMM-log,

QMM-ℓp, QMM-ℓ0). Since their methods only solve a reg-

ularized problem and fail to control the sparsity of the so-

lution, we use a simple bisection search to find the best

regulation parameter and report the lowest objective val-

ue after hard thresholding. (v) The proposed decompo-

sition method (denoted as DEC) is included for compar-

isons. We use DEC-B(Ri-Sj) and DEC-C(Ri-Sj) to de-

note our method based on a Bisection search method and

a Coordinate descent method, respectively, along with se-

lecting i coordinate using the Random strategy and j coor-

dinates using the Swapping strategy. In each iteration, we

compute rt = (f(xt) − f(xt+1))/f(xt). We let Algorith-

m 1 run up to T iterations and stop it at iteration t < T if

mean([rt−min(t,M)+1, rt−min(t,M)+2, ..., rt]) ≤ ǫ. The de-

fault parameter (θ, ǫ, M, T ) = (10−5, 10−5, 50, 1000)
is used. All codes are implemented in MATLAB on an Intel

3.20GHz CPU with 8 GB RAM 7. Only DEC-C is develope-

d in C and wrapped into our MATLAB code, since it uses an

elementwise loop which is inefficient in native MATLAB.

We remark that both (a) and (b) are only designed for

sparse PCA with C = I. We do not compare against the DC

programming algorithms [34, 36] since they fail to control

the sparsity of the solution and result in worse accuracy than

QMM (see [32]).

• Convergence Behavior. We show the convergence

behavior for different methods in Figure 1. We do not in-

clude the results of QMM since it fails to control the spar-

sity of the solution. Due to space limitation, we only report

the results of DEC-B in this set of experiments. We have

the following observations. (i) The methods {TPM, CWA,

TRF} converge within one second and they are faster than

7For the purpose of reproducibility, we provide our code in the authors’

research webpage.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
sites.google.com/site/xtyuan1980/
sites.google.com/site/amirbeck314/
https://junxiaosong.github.io/
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Figure 2: Accuracy of different methods on different data sets for sparse PCA problem with varying the cardinalities.
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Figure 3: Accuracy of different methods on different data sets for sparse FDA problem with varying cardinalities.
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Figure 4: Accuracy of different methods on different data sets for sparse CCA problem with varying cardinalities.
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Figure 5 Comparison of the computing time for different methods on ‘w1a’ data set with varying cardinalities.

DEC. However, they get stuck into poor local minima and

result in much worse accuracy than DEC. (ii) The objective

values of DEC stabilize after less than 5 seconds, which

means it has converged, and the decrease of the objective

value is negligible afterwards. This implies that one may

use a looser stopping criterion without sacrificing accura-

cy. (iii) DEC-B(R6S0) and DEC-B(R8S8) converge slow-

ly, and it seems that DEC-B(R6S6) finds a good trade-off

between efficiency and effectiveness. (iv) DEC-B(R10S0)

achieves a lower objective value than DEC-B(R6S0). This

is reasonable since a larger k in the block-k optimality

condition implies a stronger stationary point. (v) {DEC-

B(R6S0), DEC-B(R10S0)} achieve larger objective values

than {DEC-B(R0S6), DEC-B(R0S10)}, which implies that

the swapping strategy plays an indispensable role in DEC.

• Experimental Results. We show the experimental re-

sults for sparse PCA, sparse FDA, and sparse CCA in Figure

2, 3 and 4, respectively. Several conclusions can be drawn.

(i) CWA generally outperforms {TPM, TRF, QMM}. (i-

i) CWA is not stable and generates much worse results on

‘w1a’ and ‘w2a’. (iii) The proposed method DEC still out-

performs CWA and achieves the lowest objective values.

(iv) Both DEC-B and DEC-C perform similarly. This is be-

cause coordinate descent methods find a desirable solution

for the quadratic fractional programming problem.

• Computational Efficiency. We demonstrate a com-

parison of the actual computing time for different method-

s on ‘w1a’ data set in Figure 5. Two conclusions can be

drawn. (i) DEC takes less than 15 seconds to converge in

all our instances. (ii) DEC is practical and it is much more

efficient than QMM.
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Appendix

A. Proof of Proposition 1

Proposition 1. When the cyclic order strategy is used, co-

ordinate descent method is guaranteed to converge to a

coordinate-wise minimum of Problem (10) that ∀i, y∗
i =

argminα≥L̂ L(y∗
i + αei).

Proof. Note that L(y) is continuous and {L(yj)} con-

verges monotonically. Assuming that it converges to L∗

with limj→∞ L(yj) = L∗, we obtain that ∀α, i = 1, ..,m:

L∗ = L(yj−1) = L(yj) ≤ L(yj−1 + αei). (12)

Therefore, the right-handed side in (12) attains it minimum

at both 0 and (yj)i− (yj−1)i. Combining with the fact that

the subproblem only contains one unique global solution,

we have (yj−1)i = (yj)i. Since the coordinate i is picked

using cyclic order, we have: yj−1 = yj = y∗ and y∗ is a

coordinate-wise minimum point.

B. Proof of Lemma 2

Lemma 2. (Sufficient Decrease Condition) It holds that:

f(xt+1)− f(xt) ≤ −θ‖xt+1−x
t‖2

2

(xt+1)TCxt+1 .

Proof. We let B be the working set in the t-th iteration and

N , {1, 2, ..., n} \ B. Since we solve Problem (3) in the

t-th iteration, we have:

(h(xt+1
B ,xt

N ) + θ
2‖x

t+1
B − xt

B‖22) / g(xt+1
B ,xt

N )

≤ (h(z,xt
N ) + θ

2‖z− xt
B‖22) / g(z,xt

N ), ∀z ∈ R
k.

We let z = xt
B and combine with the fact that xt+1

N = xt
N ,

we have:

(h(xt+1
B ,xt+1

N ) + θ
2‖xt+1 − xt‖22) / g(xt+1

B ,xt+1
N )

≤ (h(xt
B ,x

t
N ) + 0) / g(xt

B ,x
t
N ).

Noticing the fact that h(xt
B ,x

t
N ) = 1

2 (x
t)TAxt and

g(xt
B ,x

t
N ) = 1

2 (x
t)TCxt, we have:

((xt+1)TAxt+1 + θ‖xt+1 − xt‖22) / ((xt+1)TCxt+1)

≤ ((xt)TAxt) / ((xt)TCxt).

Moreover, using the structure of the objective function f(·),
we obtain: f(xt+1)−f(xt) = (xt+1)

T
Ax

t+1

(xt+1)TCxt+1 − (xt)
T
Ax

t

(xt)TCxt
≤

−θ‖xt+1−x
t‖2

2

(xt+1)TCxt+1 . Thus, we finish the proof of this lemma.

C. Proof of Theorem 2

We now prove the convergence properties of Algorith-

m 1. The following supermartingale convergence result is

useful in our analysis [31].

Lemma 3. [31] Let vt , ut and αt be three sequences of

nonnegative random variables such that

E[vt+1 | Ft] ≤ (1 +αt)vt − ut, ∀t ≥ 0 a.s.

and
∑∞

t=0 αt < ∞ a.s., (13)

where Ft denotes the collections {v0, ...,vt, u0, ...,ut,

α0, ...,αt}. Then, we have limt→∞ vt = χ for a random

variable χ ≥ 0 a.s. and
∑∞

t=0 ut < ∞ a.s.

We now present our main results.

Theorem 2. Convergence Properties of Algorithm 1. As-

sume that the subproblem in (3) is solved globally, and there

exists a constant σ such that xtCxt ≥ σ > 0 for all t. We

have the following results.

(i) When the random strategy is used to find the working

set, we have limt→∞ E[‖xt+1 − xt‖] = 0 and Algorithm 1

converges to the block-k stationary point in expectation.

(ii) When the swapping strategy is used to find the work-

ing set with k ≥ 2, we have limt→∞ ‖xt+1 − xt‖ = 0
and Algorithm 1 converges to the block-2 stationary point

deterministically.

Proof. We use x∗ and x̄ to denote any optimal point and

any block-k stationary point of (1), respectively. We use the

notation ξt for the entire history of random index selection:

ξt = {B0, B1, ..., Bt}

(i) We notice that Bt is independent on the past Bt−1,

while xt fully depends on ξt−1. Taking the expectation

conditioned on ξt−1 for the sufficient descent inequality in

Lemma 2, we obtain:

E[f(xt+1)|ξt]− f(xt)

≤ −E[
θ‖xt+1−x

t‖2
2

(xt+1)TCxt+1 |ξt]
(a)

≤ − θ
σE[‖xt+1 − xt‖22|ξt]

= − θ
σ

1
Ck

n

∑Ck

n

i=1 ‖P(B(i), x
t)− xt

B(i)
‖22

(b)
= − θ

σ · M(xt) (14)

step (a) uses the assumption that xtCxt ≥ σ > 0, ∀xt

which clearly holds since C is strictly positive and xt 6=
0; step (b) uses the definition of M(xt) in Definition 1.

Therefore, we have:

E[f(xt+1) | ξt]− f(x∗) ≤ f(xt)− f(x∗)− θM(xt)
σ (15)
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Figure 6 Accuracy of different methods on different data sets for sparse PCA problem with varying the cardinalities.
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Figure 7 Accuracy of different methods on different data sets for sparse FDA problem with varying the cardinalities.
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Figure 8 Accuracy of different methods on different data sets for sparse CCA problem with varying the cardinalities.

Using the supermartingale convergence theorem given in

Lemma 3 with vt = E[f(xt+1) | ξt] − f(x∗) ≥ 0 and

ut =
θM(xt)

σ , we have

limt→∞ f(xt)− f(x∗) = χ a.s.

for a certain random variable χ ≥ 0 and thus the sequence

f(xt) converges to a random variable F̄ = χ + f(x∗). In

addition, we have limt→∞ f(xt) − f(xt+1) = 0 almost

surely. From (14), we have

limt→∞ M(xt) = 0, limt→∞ ‖xt − xt+1‖ = 0.

Therefore, the algorithm converges to the block-k stationary

point. Summing the inequality in (14) over i = 0, 1, ..., t−
1, we have:

θ
σ ·∑t

i=0 M(xi) ≤ f(x0)− f(xt).

Using the fact that f(x∗) ≤ f(xt), we obtain:

θ
σ

∑t
i=0 E[‖M(xi) | ξi] ≤ f(x0)− f(x∗)

⇒ mini=1,...,t E[M(xi) | ξi] ≤ σ(f(x0)−f(x∗))
tθ .

We conclude that xt converges to the block-k stationary

point with mini=1,...,t E[M(xi) | xi] ≤ O(1/t).
(ii) We now prove the second part of this theorem. We

have the following inequalities:

f(xt+1)− f(xt) ≤ − θ‖xt+1−x
t‖2

2

(xt+1)TCxt+1

≤ − θ
σ‖xt+1 − xt‖22

Summing this inequality over i = 0, 1, ..., t− 1, we have:

θ
σ ·

∑t
i=0 ‖xi+1 − xi‖22 ≤ f(x0)− f(xt)

⇒ mini=1,...,t ‖xi+1 − xi‖22 ≤ σ
θ
f(x0)−f(x∗)

t .

Using the fact that f(x∗) ≤ f(xt), we have

limt→∞ ‖xt+1 − xt‖ = 0. Therefore, Algorithm 1 is con-

vergent when swapping strategy is used.

We now prove that Algorithm 1 convergence to a block-2

stationary point x̄. Since Algorithm 1 is monotonically non-

increasing and converges to a stationary point x̄ such that

no decrease is made, we have Di,j ≥ 0 for (4). Therefore,

it holds that minα f(x̄ + αei − (x̄)jej) ≥ f(x̄), ∀i ∈
S̄(x̄), j ∈ Z̄(x̄). We have the following result: f(x̄) ≤
f(x̄+d), ∀d with ‖d− x̄‖0 = 2. Therefore, x̄ is a block-2

stationary point.

D. Additional Experiments

We demonstrate the experimental results on the random-

ized generated data sets for sparse PCA, sparse FDA, and

sparse CCA in Figure 6, 7 and 8, respectively. These results

further consolidate our conclusions drawn in Section 7.
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