
A Block Decomposition Algorithm for Sparse Optimization

Ganzhao Yuan1, Li Shen2, Wei-Shi Zheng3,1
1Peng Cheng Laboratory, China 2Tencent AI Lab, China 3Sun Yat-sen University, China

yuangzh@pcl.ac.cn, mathshenli@gmail.com, zhwshi@mail.sysu.edu.cn

ABSTRACT

Sparse optimization is a central problem in machine learning
and computer vision. However, this problem is inherently
NP-hard and thus difficult to solve in general. Combinatori-
al search methods find the global optimal solution but are
confined to small-sized problems, while coordinate descent
methods are efficient but often suffer from poor local minima.
This paper considers a new block decomposition algorith-
m that combines the effectiveness of combinatorial search
methods and the efficiency of coordinate descent methods.
Specifically, we consider a random strategy or/and a greedy
strategy to select a subset of coordinates as the working set,
and then perform a global combinatorial search over the work-
ing set based on the original objective function. We show that
our method finds stronger stationary points than Amir Beck
et al.’s coordinate-wise optimization method. In addition, we
establish the convergence rate of our algorithm. Our experi-
ments on solving sparse regularized and sparsity constrained
least squares optimization problems demonstrate that our
method achieves state-of-the-art performance in terms of
accuracy. For example, our method generally outperforms
the well-known greedy pursuit method.

CCS CONCEPTS

• Mathematics of computing → Combinatorial op-
timization; • Theory of computation → Nonconvex
optimization.

KEYWORDS

Sparse Optimization; NP-hard; Block Coordinate Descent;
Nonconvex Optimization; Convex Optimization

ACM Reference Format:

Ganzhao Yuan1, Li Shen2, Wei-Shi Zheng3,1. 2020. A Block De-
composition Algorithm for Sparse Optimization. In Proceedings

of the 26th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining (KDD ’20), August 23–27, 2020, Vir-
tual Event, CA, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3394486.3403070

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403070

1 INTRODUCTION

This paper mainly focuses on the following nonconvex sparsity
constrained / sparse regularized optimization problem:

min
x

𝑓(x), 𝑠.𝑡. ‖x‖0 ≤ 𝑠 or min
x

𝑓(x) + 𝜆‖x‖0, (1)

where x ∈ R𝑛, 𝜆 is a positive constant, 𝑠 ∈ [𝑛] is a positive
integer, 𝑓(·) is assumed to be convex, and ‖ · ‖0 is a function
that counts the number of nonzero elements in a vector. Prob-
lem (1) can be rewritten as the following unified composite

minimization problem (‘,’ means define):

min
x

𝐹 (x) , 𝑓(x) + ℎ(x), with ℎ(x) , ℎcons or ℎregu.

Here, ℎcons(x) , 𝐼Ψ(x), Ψ , {x | ‖x‖0 ≤ 𝑠}, 𝐼Ψ(·) is an
indicator function on the set Ψ with 𝐼Ψ(x) =

{︀
0, x ∈ Ψ
∞, x /∈ Ψ ,

and ℎregu(x) , 𝜆‖x‖0. Problem (1) captures a variety of
applications of interest in both machine learning and com-
puter vision (e.g., sparse coding [1, 2, 15], sparse subspace
clustering [16]).

This paper proposes a block decomposition algorithm using
a proximal strategy and a combinatorial search strategy for
solving the sparse optimization problem as in (1). We review
existing methods in the literature and summarize the merits
of our approach.

I The Relaxed Approximation Method. One popu-
lar method to solve Problem (1) is the convex or nonconvex
relaxed approximation method [11, 40, 47]. Many approaches
such as ℓ1 norm, top-𝑘 norm, Schatten ℓ𝑝 norm, re-weighted
ℓ1 norm, capped ℓ1 norm, and half quadratic function have
been proposed for solving sparse optimization problems in the
last decade. It is generally believed that nonconvex methods
often achieve better accuracy than the convex counterparts
[8, 41, 42]. However, minimizing the approximate function
does not necessarily lead to the minimization of the original
function in Problem (1). ♠ Our method directly controls the
sparsity of the solution and minimize the original objective
function.

I The Greedy Pursuit Method. This method is often
used to solve sparsity constrained optimization problems.
It greedily selects at each step one coordinate of the vari-
ables which have some desirable benefits [9, 14, 27, 28, 36].
This method has a monotonically decreasing property and
achieves optimality guarantees in some situations, but it is
limited to solving problems with smooth objective functions
(typically the square function). Furthermore, the solutions
must be initialized to zero and may cause divergence when
being incorporated to solve the bilinear matrix factorization
problem [2]. ♠ Our method is a greedy coordinate descent
algorithm without forcing the initial solution to zero.

https://doi.org/10.1145/3394486.3403070
https://doi.org/10.1145/3394486.3403070

I The Combinatorial Search Method. This method
is typically concerned with NP-hard problems [13]. A naive
strategy is an exhaustive search which systematically enumer-
ates all possible candidates for the solution and picks the best
candidate corresponding to the lowest objective value. The
cutting plane method solves the convex linear programming
relaxation and adds linear constraints to drive the solution
towards binary variables, while the branch-and-cut method
performs branches and applies cuts at the nodes of the tree
having a lower bound that is worse than the current solution.
Although in some cases these two methods converge without
much effort, in the worse case they end up solving all 2𝑛 con-
vex subproblems. ♠ Our method leverages the effectiveness
of combinatorial search methods.

I The Proximal Gradient Method. Based on the
current gradient ∇𝑓(x𝑘), the proximal gradient method
[3, 10, 20, 24, 31, 32] iteratively performs a gradient up-
date followed by a proximal operation: x𝑘+1 = prox(x𝑘 −
𝛽∇𝑓(x𝑘);𝛽, ℎ). Here the proximal operator prox(a;𝛽, ℎ) =
argminx

1
2
‖x− a‖22 + 𝛽ℎ(x) can be evaluated analytically,

and 𝛽 = 1/𝐿 is the step size with 𝐿 being the Lipschitz
constant. This method is closely related to (block) coordinate
descent [17, 25, 29, 34, 39] in the literature. Due to its sim-
plicity, many strategies (e.g., variance reduction [21, 22, 38],
asynchronous parallelism [23, 35], and non-uniform sampling
[46]) have been proposed to accelerate proximal gradient
method. However, existing works use a scalar step size and
solve a first-order majorization/surrogate function via closed-
form updates. Since Problem (1) is nonconvex, such a simple
majorization function may not necessarily be a good approx-
imation. ♠ Our method significantly outperforms proximal
gradient method and inherits its computational advantages.

Contributions. The contributions of this paper are three-
fold. (i) Algorithmically, we introduce a novel block decom-
position method for sparse optimization (See Section 2). (ii)
Theoretically, we establish the optimality hierarchy of our
algorithm and show that it always finds stronger stationary
points than existing methods (See Section 3). Furthermore,
we prove the convergence rate of our algorithm (See Section
4). Additional discussions for our method is provided in Sec-
tion 5. (iii) Empirically, we have conducted experiments on
some sparse optimization tasks to show the superiority of our
method (See Section 6).

Notations. All vectors are column vectors and superscript
T denotes transpose. For any vector x ∈ R𝑛 and any 𝑖 ∈
{1, 2, ..., 𝑛}, we denote by x𝑖 the 𝑖-th component of x. The
Euclidean inner product between x and y is denoted by
⟨x,y⟩ or xᵀy. 1 is an all-one column vector, and e𝑖 is a unit
vector with a 1 in the 𝑖th entry and 0 in all other entries.
When 𝛽 is a constant, 𝛽𝑡 denotes the 𝑡-th power of 𝛽, and
when 𝛽 is an optimization variable, 𝛽𝑡 denotes the value of
𝛽 in the 𝑡-th iteration. The number of possible combinations
choosing 𝑘 items from 𝑛 without repetition is denoted by 𝐶𝑘

𝑛.
For any 𝐵 ∈ N𝑘 containing 𝑘 unique integers selected from
{1, 2, ..., 𝑛}, we define �̄� , {1, 2, ..., 𝑛} ∖𝐵 and denote x𝐵 as
the sub-vector of x indexed by 𝐵.

2 THE PROPOSED BLOCK
DECOMPOSITION ALGORITHM

This section presents our block decomposition algorithm
for solving (1). Our algorithm is an iterative procedure. In
every iteration, the index set of variables is separated into
two sets 𝐵 and �̄�, where 𝐵 is the working set. We fix the
variables corresponding to �̄�, while minimizing a sub-problem
on variables corresponding to 𝐵. The proposed method is
summarized in Algorithm 1.

Algorithm 1 The Proposed Block Decomposition Al-
gorithm

1: Input: the size of the working set 𝑘 ∈ [𝑛], the proximal
point parameter 𝜃 > 0, and an initial feasible solution x0.
Set 𝑡 = 0.

2: while not converge do
3: (S1) Employ some strategy to find a working set 𝐵 of

size 𝑘. We define �̄� , {1, 2, ..., 𝑛} ∖𝐵.
4: (S2) Solve the following subproblem globally using

combinatorial search methods:

x𝑡+1 ⇐ argmin
z

𝑓(z) + ℎ(z) + 𝜃
2
‖z− x𝑡‖2, 𝑠.𝑡. z�̄� = x𝑡

�̄� (2)

5: (S3) Increment 𝑡 by 1
6: end while

At first glance, Algorithm 1 might seem to be merely
a block coordinate descent algorithm [37] applied to (1).
However, it has some interesting properties that are worth
commenting on.
I Two New Strategies. (i) Instead of using majorization
techniques for optimizing over the block of the variables, we
consider minimizing the original objective function. Although
the subproblem is NP-hard and admits no closed-form solu-
tion, we can use an exhaustive search to solve it exactly. (ii)
We consider a proximal point strategy for the subproblem in
(2). This is to guarantee sufficient descent condition for the
optimization problem and global convergence of Algorithm 1
(refer to Proposition 2).
I Solving the Subproblem Globally. The subproblem in
(2) essentially contains 𝑘 unknown decision variables and can
be solved exactly within sub-exponential time 𝒪(2𝑘). Using
the variational reformulation of ℓ0 pseudo-norm 1, Problem
(2) can be reformulated as a mixed-integer optimization prob-
lem and solved by some global optimization solvers such as
‘CPLEX’ or ‘Gurobi’. For simplicity, we consider a simple
exhaustive search (a.k.a. generate and test method) to solve
it. Specifically, for every coordinate of the 𝑘-dimensional
subproblem, it has two states, i.e., zero/nonzero. We system-
atically enumerate the full binary tree to obtain all possible
candidate solutions and then pick the best one that leads to
the lowest objective value as the optimal solution.
I Finding the Working Set. We observe that it contains
𝐶𝑘

𝑛 possible combinations of choice for the working set. One
may use a cyclic strategy to alternatingly select all the choices

1For all x ∈ R𝑛 with ‖x‖∞ ≤ 𝜌, it always holds that ‖x‖0 =
minv ⟨1,v⟩, 𝑠.𝑡. v ∈ {0, 1}𝑛, |x| ≤ 𝜌v.

of the working set. However, past results show that the
coordinate gradient method results in faster convergence
when the working set is chosen in an arbitrary order [18] or
in a greedy manner [19, 37]. This inspires us to use a random
strategy or a greedy strategy for finding the working set. We
remark that the combination of the two strategies is preferred
in practice.

Random strategy. We uniformly select one combina-

tion (which contains 𝑘 coordinates) from the whole working
set of size 𝐶𝑘

𝑛. One good benefit of this strategy is that
our algorithm is ensured to find a block-𝑘 stationary point
(discussed later) in expectation.

Greedy strategy. Generally speaking, we pick the

top-𝑘 coordinates that lead to the greatest descent when one
variable is changed and the rest variables are fixed based on
the current solution x𝑡. We denote 𝑍 , {𝑖 : x𝑡

𝑖 = 0} and

𝑍 , {𝑗 : x𝑡
𝑗 ̸= 0}. For 𝑍, we solve a one-variable subproblem

to compute the possible decrease for all 𝑖 ∈ 𝑍 of x𝑡 when
changing from zero to nonzero:

∀𝑖 = 1, ..., |𝑍|, c𝑖 = min𝛼 𝐹 (x𝑡 + 𝛼e𝑖)− 𝐹 (x𝑡).

For 𝑍, we compute the decrease for each coordinate 𝑗 ∈ 𝑍 of
x𝑡 when changing from nonzero to exactly zero:

∀𝑗 = 1, ..., |𝑍|, d𝑗 = 𝐹 (x𝑡 + 𝛼e𝑗)− 𝐹 (x𝑡), 𝛼 = x𝑡
𝑗 .

We sort the vectors c and d in increasing order and then pick
the top-𝑘 coordinates as the working set.

3 OPTIMALITY ANALYSIS

This section provides an optimality analysis of our method.
We assume that 𝑓(x) is a smooth convex function with its
gradient being 𝐿-Lipschitz continuous. In the sequel, we
present some necessary optimal conditions for (1). Since
the block-𝑘 optimality condition is novel in this paper, it
is necessary to clarify its relations with existing optimality
conditions formally. We use x̆, x̀, and x̄ to denote an arbitrary
basic stationary point, an 𝐿-stationary point, and a block-𝑘
stationary point, respectively.

Definition 1. (Basic Stationary Point) A solution x̆ is

called a basic stationary point if the following holds. ℎ ,
ℎcons : x̆ = argminy 𝑓(y), 𝑠.𝑡. |𝑍| ≤ 𝑘, y𝑍 = 0; ℎ , ℎregu :

x̆ = argminy 𝑓(y), 𝑠.𝑡. y𝑍 = 0. Here, 𝑍 , {𝑖|x̆𝑖 = 0}, 𝑍 ,
{𝑗|x̆𝑗 ̸= 0}.

Remarks. The basic stationary point states that the solution
achieves its global optimality when the support set is restrict-
ed. The number of basic stationary points for ℎ , ℎcons

and ℎ , ℎregu is
∑︀𝑘

𝑖=0 𝐶
𝑖
𝑛 and

∑︀𝑛
𝑖=0 𝐶

𝑖
𝑛, respectively. One

good feature of the basic stationary condition is that the
solution set is enumerable, which makes it possible to val-
idate whether a solution is optimal for the original sparse
optimization problem.

Definition 2. (𝐿-Stationary Point) A solution x̀ is an 𝐿-
stationary point if it holds that: x̀ = argminy 𝑔(y, x̀) + ℎ(y)

with 𝑔(y,x) , 𝑓(x) + ⟨∇𝑓(x),y − x⟩+ 𝐿
2
‖y − x‖22.

Remarks. This is the well-known proximal thresholding
operator. The term 𝑔(y,x) is a majorization function of 𝑓(y)
and it always holds that 𝑓(y) ≤ 𝑔(y,x) for all x and y.
Although it has a closed-form solution, this simple surrogate
function may not be a good majorization/surrogate function
for the non-convex problem.

Definition 3. (Block-𝑘 Stationary Point) A solution x̄ is
a block-𝑘 stationary point if it holds that:

x̄ ∈ argmin
z

𝒫(z; x̄, 𝐵) , {𝐹 (z), 𝑠.𝑡.z�̄� = x̄�̄�},∀|𝐵| = 𝑘. (3)

Remarks. (i) The concept of the block-𝑘 stationary point is
novel in this paper. Our method can inherently better explore
the second-order / curvature information of the objective
function. (ii) The sub-problem minz 𝒫(z; x̄, 𝐵) is NP-hard,
and it takes sub-exponential time 𝒪(2𝑘) to solve it. However,
since 𝑘 is often very small, it can be tackled by some practical
global optimization methods. (iii) Testing whether a solution
x̄ is a block-𝑘 stationary point deterministically requires
solving 𝐶𝑘

𝑛 subproblems, therefore leading to a total time
complexity of 𝐶𝑘

𝑛 ×𝒪(2𝑘). However, using a random strategy
for finding the working set 𝐵 from 𝐶𝑘

𝑛 combinations, we can
test whether a solution x̄ is the block-𝑘 stationary point in
expectation within a time complexity of 𝑇 ×𝒪(2𝑘) with the
constant 𝑇 being the number of times which is related to the
confidence of the probability.

The following proposition states the relations between the
three types of the stationary point.

Proposition 1. Optimality Hierarchy between the Op-
timality Conditions. The following relationship holds:

Basic Stat. Point
(𝑎)⇐ 𝐿-Stat. Point

(𝑏)⇐ Block-𝑘 Stat. Point
(𝑐)⇐ Block-(𝑘 + 1) Stat. Point ⇐ ... ⇐ Block-𝑛 Stat. Point

(𝑑)⇔

Optimal Point for sparse regularized (resp., for sparsity con-

strained) optimization problems with 𝑘 ≥ 1 (resp., 𝑘 ≥ 2).

Proof. We denote Γ𝑠(x) as the operator that sets all but
the largest (in magnitude) 𝑠 elements of x to zero.

(a) First, we prove that an 𝐿-stationary point x̀ is also a

basic stationary point x̆ when ℎ , ℎcons. For an 𝐿-stationary
point, we have x̀ = Γ𝑠(x̀ − (∇𝑓(x̀))/𝐿). This implies that
there exists an index set 𝑆 such that x̆𝑆 = x̆𝑆 − (∇𝑓(x̆))𝑆/𝐿
and x̆{1,...,𝑛}∖𝑆 = 0, which is the optimal condition for a
basic stationary point.

Second, we prove that an 𝐿-stationary point x̀ is also a
basic stationary point x̆ when ℎ , ℎregu. Using Definition 2,
we have the following closed-form solution for x̀:

x̀𝑖 =

{︂
x̀𝑖 −∇𝑖𝑓(x̀)/𝐿, (x̀𝑖 −∇𝑖𝑓(x̀)/𝐿)

2 > 2𝜆/𝐿;
0, else.

This implies that there exists a support set 𝑆 such that
x̆𝑆 = x̆𝑆 − (∇𝑓(x̆))𝑆/𝐿, which is the optimal condition for

a basic stationary point. Defining 𝑍 , {𝑖|x̀𝑖 = 0}, 𝑍 ,
{𝑗|x̀𝑗 ̸= 0}, we note that ∀𝑖 ∈ 𝑍, |∇𝑓(x̀)|𝑖 ≤

√
2𝜆𝐿, and

∀𝑗 ∈ 𝑍, (∇𝑓(x̀))𝑗 = 0, |x̀𝑗 | ≥
√︀

2𝜆/𝐿.
(b) First, we prove that a block-2 stationary point is also

an 𝐿-stationary point for ℎ , ℎcons. Given a vector a ∈ R𝑛,

Basic Stat. L-Stat. Block-1 Stat. Block-2 Stat. Block-3 Stat. Block-4 Stat. Block-5 Stat. Block-6 Stat.

ℎ = ℎcons 57 14 – 2 1 1 1 1

ℎ = ℎregu 64 56 9 3 1 1 1 1

Table 1: Number of points satisfying optimality conditions.

we consider the following optimization problem:

z*𝐵 = arg min
z𝐵 , ∀|𝐵|=2

‖z− a‖22, 𝑠.𝑡. ‖z𝐵‖0 + ‖z�̄�‖0 ≤ 𝑠, (4)

which essentially contains 𝐶2
𝑛 2-dimensional subproblems. It

is not hard to validate that (4) achieves the optimal solution
with z* = Γ𝑠(a). For any block-2 stationary point x̄, we have
x̄𝐵 = argminz𝐵 ‖z−(x̄−∇𝑓(x̄)/𝐿)‖22, 𝑠.𝑡. ‖z𝐵‖0+‖z�̄�‖0 ≤
𝑠. Applying this conclusion with a = x̄−∇𝑓(x̄)/𝐿, we have
x̄ = Γ𝑠(x̄−∇𝑓(x̄)/𝐿).

Second, we prove that a block-1 stationary point is also an
𝐿-stationary point for ℎ , ℎregu. Assume that the convex ob-
jective function 𝑓(·) has coordinate-wise Lipschitz continuous
gradient with constant s𝑖, ∀𝑖 = 1, 2, ..., 𝑛. For all x ∈ R𝑛, 𝑡 ∈
R, 𝑖 = 1, 2, ...𝑛, it holds that [29]: 𝑓(x + 𝑡e𝑖) ≤ 𝑄𝑖(x, 𝑡) ,
𝑓(x) + ⟨∇𝑓(x), 𝑡e𝑖⟩+ s𝑖

2
‖𝑡e𝑖‖22. Any block-1 stationary point

must satisfy the following relation: 0 ∈ argmin𝑡 𝑄𝑖(x̄, 𝑡) +
𝜆‖x̄𝑖+ 𝑡‖0, ∀𝑖. We have the following optimal condition for x̄
with 𝑘 = 1: x̄𝑖 =

{︂
(x̄𝑖 − ∇𝑖𝑓(x̄)/s𝑖), (x̄𝑖 − ∇𝑖𝑓(x̄)/s𝑖)

2 > 2𝜆/s𝑖;
0, else.

}︂
.

Since ∀𝑖, s𝑖 ≤ 𝐿, the latter formulation implies the former
one.

(c) Assume 𝑘1 ≥ 𝑘2. The subproblem for the block-𝑘2

stationary point is a subset of those of the block-𝑘1 stationary
point. Therefore, the block-𝑘1 stationary point implies the
block-𝑘2 stationary point.

(d) Obvious.
�

Remarks. It is worthwhile to point out that the seminal
works of Amir Beck et al. present a coordinate-wise optimali-
ty condition for sparse optimization [3–5, 7]. However, our
block-𝑘 condition is stronger since their optimality condition
corresponds to 𝑘 = 1 in our optimality condition framework.

A Running Example. We consider the following spar-
sity constrained / sparse regularized optimization problem:
minx∈R𝑛

1
2
xᵀQx+xᵀp+ℎ(x). Here, 𝑛 = 6, Q = ccᵀ+I, p =

1, c = [1 2 3 4 5 6]ᵀ. The parameters for ℎcons(x) and ℎregu(x)
are set to (𝑠, 𝜆) = (4, 0.01). The stationary point distribu-
tion of this example can be found in Table 1. This problem
contains

∑︀4
𝑖=0 𝐶

𝑖
6 = 57 basic stationary points for ℎ , ℎcons,

while it has
∑︀6

𝑖=0 𝐶
𝑖
6 = 26 = 64 basic stationary points for

ℎ , ℎregu. As 𝑘 becomes large, the newly introduced type
of local minimizer (i.e., block-𝑘 stationary point) becomes
more restricted in the sense that it has a smaller number of
stationary points. Moreover, any block-3 stationary point is
also the unique global optimal solution for this example.

4 CONVERGENCE ANALYSIS

This section provides some convergence analysis for Algorithm
1. We assume that 𝑓(x) is a smooth convex function with
its gradient being 𝐿-Lipschitz continuous, and the working

set of size 𝑘 is selected randomly and uniformly (sample
with replacement). Due to space limitations, some proofs are
placed into the Appendix.

Proposition 2. Global Convergence. Letting {x𝑡}∞𝑡=0

be the sequence generated by Algorithm 1, we have the follow-
ing results. (a) It holds that: 𝐹 (x𝑡+1) ≤ 𝐹 (x𝑡)− 𝜃

2
‖x𝑡+1 −

x𝑡‖2, lim𝑡→∞ E[‖x𝑡+1 − x𝑡‖] = 0. (b) As 𝑡 → ∞, x𝑡 con-
verges to the block-𝑘 stationary point x̄ of (1) in expectation.

Remarks. Coordinate descent may cycle indefinitely if each
minimization step contains multiple solutions [33]. The intro-
duction of the proximal point parameter 𝜃 > 0 is necessary
for our nonconvex problem since it guarantees sufficient de-
crease condition, which is essential for global convergence.
Our algorithm is guaranteed to find the block-𝑘 stationary
point, but it is in expectation.

We prove the convergence rate of our algorithm for sparsity
constrained optimization with ℎ , ℎcons.

Theorem 1. Convergence Rate for Sparsity Constrained
Optimization. Assume that 𝑓(·) is 𝜎-strongly convex, and
Lipschitz continuous such that ∀𝑡, ‖∇𝑓(x𝑡)‖22 ≤ 𝜏 for some

positive constant 𝜏 . Denoting 𝛼 , 𝑛𝜃
𝑘𝜎

/(1 + 𝑛𝜃
𝑘𝜎

), we have the
following results:

E[𝐹 (x𝑡)− 𝐹 (x̄)] ≤ (𝐹 (x0)− 𝐹 (x̄))𝛼𝑡 + 𝜏
2𝜃

𝛼
1−𝛼

,

E[𝜎
4
‖x𝑡+1 − x̄‖22] ≤ 2𝑛𝜃

𝑘
(𝐹 (x0)− 𝐹 (x̄))𝛼𝑡 + 𝑛

𝑘
𝜏

1−𝛼
.

Proof. (a) First of all, we define the zero set and nonzero
set of the solution x𝑡+1 as follows:

𝑆 , {𝑖 | 𝑖 ∈ 𝐵, x𝑡+1
𝑖 ̸= 0}, 𝑄 , {𝑖 | 𝑖 ∈ 𝐵, x𝑡+1

𝑖 = 0}.
Using the optimality of x𝑡+1 for the subproblem, we obtain

(∇𝑓(x𝑡+1))𝑆 + 𝜃(x𝑡+1
𝑆 − x𝑡

𝑆) = 0 (5)

We derive the following inequalities:

E[𝑓(x𝑡+1)− 𝑓(x̄)]

(𝑎)

≤ E[⟨x𝑡+1 − x̄, ∇𝑓(x𝑡+1)⟩ − 𝜎
2
‖x𝑡+1 − x̄‖22]

(𝑏)
= 𝑛

𝑘
E[⟨x𝑡+1

𝐵 − x̄𝐵 , (∇𝑓(x𝑡+1))𝐵⟩ − 𝜎
2
‖x𝑡+1

𝐵 − x̄𝐵‖22]
(𝑐)

≤ 𝑛
𝑘

𝜎
2
E[‖(∇𝑓(x𝑡+1))𝐵/𝜎‖22]

(𝑑)
= 𝑛

𝑘
1
2𝜎

(︀
E[‖(∇𝑓(x𝑡+1))𝑆‖22] + E[‖(∇𝑓(x𝑡+1))𝑄‖22]

)︀
(𝑒)

≤ E[𝑛
𝑘

1
2𝜎

[‖𝜃(x𝑡
𝑆 − x𝑡+1

𝑆)‖22 + ‖(∇𝑓(x𝑡+1))𝑄‖22]]
(𝑓)

≤ E[𝑛
𝑘

𝜃2

2𝜎
‖x𝑡 − x𝑡+1‖22 + 𝑛𝜏

2𝜎𝑘
]

(𝑔)

≤ E[𝑛𝜃
𝜎𝑘

[𝑓(x𝑡)− 𝑓(x𝑡+1)] + 𝑛𝜏
2𝜎𝑘

]

(ℎ)
= E[𝑛𝜃

𝜎𝑘
[(𝑓(x𝑡)− 𝑓(x̄))− (𝑓(x𝑡+1)− 𝑓(x̄))] + 𝑛𝜏

2𝜎𝑘
] (6)

where step (𝑎) uses the strongly convexity of 𝑓(·); step (𝑏)
uses the fact that the working set 𝐵 is selected with 𝑘

𝑛

probability; step (𝑐) uses the inequality that ⟨x, a⟩− 𝜎
2
‖x‖22 =

𝜎
2
‖a/𝜎‖22− 𝜎

2
‖x−a/𝜎‖22 ≤ 𝜎

2
‖a/𝜎‖22 for all a, x; step (𝑑) uses

the fact that 𝐵 = 𝑆∪𝑄, step (𝑒) uses (5); step (𝑓) uses the fact
that ∀x, ‖x𝑆‖22 ≤ ‖x‖22 and the Lipschitz continuity of 𝑓(·)
that ∀𝑡, ‖∇𝑓(x𝑡+1)‖22 ≤ 𝜏 ; step (𝑔) uses the sufficient decrease
condition that 𝜃

2
‖x𝑡+1 − x𝑡‖2 ≤ 𝐹 (x𝑡) − 𝐹 (x𝑡+1); step (ℎ)

uses 𝑓(x𝑡)− 𝑓(x𝑡+1) = (𝑓(x𝑡)− 𝑓(x̄))− (𝑓(x𝑡+1)− 𝑓(x̄)).
From (6), we have the following inequalities:

E[(1 + 𝑛𝜃
𝑘𝑠

)(𝑓(x𝑡+1)− 𝑓(x̄))] ≤ E[𝑛𝜃
𝑘𝑠

· (𝑓(x𝑡)− 𝑓(x̄)) + 𝑛𝜏
2𝑘𝑠

]

E[𝑓(x𝑡+1)− 𝑓(x̄)] ≤ E[𝛼(𝑓(x𝑡)− 𝑓(x̄)) +
𝑛

2𝑘𝑠
𝑛𝜃
𝑘𝜎

𝛼𝜏]

E[𝑓(x𝑡+1)− 𝑓(x̄)] ≤ E[𝛼(𝑓(x𝑡)− 𝑓(x̄)) + 𝛼𝜏
2𝜃

]

Solving this recursive formulation, we have:

E[𝑓(x𝑡)− 𝑓(x̄)] ≤ E[𝛼𝑡(𝑓(x0)− 𝑓(x̄))] + 𝜏

𝑡∑︁
𝑖=1

𝛼𝑖

= E[𝛼𝑡(𝑓(x0)− 𝑓(x̄))] + 𝜏
2𝜃

· 𝛼(1−𝛼𝑡)
1−𝛼

≤ E[𝛼𝑡(𝑓(x0)− 𝑓(x̄))] + 𝜏
2𝜃

· 𝛼
1−𝛼

Since x𝑡 is always a feasible solution for all 𝑡 = 1, 2, ...∞, we
have 𝐹 (x𝑡) = 𝑓(x𝑡).
(b) We now prove the second part of this theorem. First, we
derive the following inequalities:

E[‖x𝑡+1 − x𝑡‖22]
(𝑎)

≤ E[2
𝜃

(︀
𝐹 (x𝑡)− 𝐹 (x𝑡+1)

)︀
]

(𝑏)

≤ E[2
𝜃

(︀
𝐹 (x𝑡)− 𝐹 (x̄)

)︀
]

(𝑐)

≤ E[2
𝜃
𝛼𝑡(𝑓(x0)− 𝑓(x̄))] + 𝜏𝛼

𝜃2(1−𝛼)
(7)

where step (𝑎) uses the sufficient decrease condition; step (𝑏)
uses the fact that 𝐹 (x̄) ≤ 𝐹 (x𝑡+1); step (𝑐) uses the result
in (7).

Second, we have the following results:

E[𝜎
2
‖x𝑡+1 − x̄‖22]

(𝑎)

≤ E[⟨x𝑡+1 − x̄, ∇𝑓(x𝑡+1)⟩+ 𝑓(x̄)− 𝑓(x𝑡+1)]

(𝑏)

≤ E[⟨x𝑡+1 − x̄, ∇𝑓(x𝑡+1)⟩]
(𝑐)

≤ E[‖x𝑡+1 − x̄‖ · ‖∇𝑓(x𝑡+1)‖] (8)

where step (𝑎) uses the strongly convexity of 𝑓(·); step (𝑏)
uses the fact that 𝑓(x̄) ≤ 𝑓(x𝑡+1); step (𝑐) uses the Cauchy-
Schwarz inequality.

From (8), we further have the following results:

E[𝜎
4
‖x𝑡+1 − x̄‖22]

(𝑎)

≤ E[‖∇𝑓(x𝑡+1)‖22]
= 𝑛

𝑘
E[‖∇𝐵𝑓(x

𝑡+1)‖22]
(𝑏)
= 𝑛

𝑘
E[‖∇𝑆𝑓(x

𝑡+1)‖22 + ‖∇𝑄𝑓(x
𝑡+1)‖22]

(𝑐)

≤ 𝑛
𝑘
E[𝜃2‖x𝑡+1

𝑆 − x𝑡
𝑆‖22] + 𝑛

𝑘
𝜏

(𝑑)
= 𝑛

𝑘
E[2𝜃𝛼𝑡(𝑓(x0)− 𝑓(x̄)) + 𝜏

1−𝛼
]

where step (𝑎) uses the strongly convexity of 𝑓(·); step (𝑏)
uses the fact that 𝐵 = 𝑆 ∪𝑄; step (𝑐) uses the assumption

that ‖∇𝑓(x𝑡)‖22 ≤ 𝜏 for all x𝑡 and the optimality of x𝑡+1 in
(5); step (𝑑) uses (7). Therefore, we finish the proof of this
theorem.

�

Remarks. Our results of convergence rate are similar to
those of the gradient hard thresholding pursuit as in [45].
The first term and the second term for our convergence rate
are called parameter estimation error and statistical error,
respectively. While their analysis relies on the conditions of
restricted strong convexity/smoothness, our study relies on
the requirements of generally strong convexity/smoothness.

We prove the convergence rate of our algorithm for sparse
regularized optimization with ℎ , ℎregu.

Theorem 2. Convergence Rate for Sparse Regular-
ized Optimization. For ℎ , ℎregu, we have the following
results:

(a) It holds that ∀𝑖, |x𝑡
𝑖| ≥ 𝛿 > 0 with x𝑡

𝑖 ̸= 0. Whenever

x𝑡+1 ̸= x𝑡, we have ‖x𝑡+1 − x𝑡‖22 ≥ 𝑘𝛿2

𝑛
and the objective

value is decreased at least by 𝐷. The solution changes at most
𝐽 times in expectation for finding a block-𝑘 stationary point
x̄. Here 𝛿, 𝐷, and 𝐽 are respectively defined as:

𝛿 , min(
√︁

2𝜆
𝜃+𝐿

,min(|x0|)), 𝐷 , 𝑘𝜃𝛿2

2𝑛
, 𝐽 , 𝐹 (x0)−𝐹 (x̄)

𝐷
. (9)

(b) Assume that 𝑓(·) is generally convex, and the solution
is always bounded with ‖x𝑡‖∞ ≤ 𝜌, ∀𝑡. If the support set
of x𝑡 does not changes for all 𝑡 = 0, 1, ...,∞, Algorithm 1
takes at most 𝑉1 iterations in expectation to converge to a
stationary point x̄ satisfying 𝐹 (x𝑡) − 𝐹 (x̄) ≤ 𝜖. Moreover,
Algorithm 1 takes at most 𝑉1 × 𝐽 iterations in expectation to
converge to a stationary point x̄ satisfying 𝐹 (x𝑡)− 𝐹 (x̄) ≤ 𝜖.
Here, 𝑉1 is defined as:

𝑉1 = max(4𝜈
2

𝜃
,

√︁
2𝜈2(𝐹 (x0)−𝐹 (x̄))

𝜃
)/𝜖, with 𝜈 , 2𝑛𝜌

√
𝑘𝜃

𝑘
. (10)

(c) Assume that 𝑓(·) is 𝜎-strongly convex. If the support
set of x𝑡 does not changes for all 𝑡 = 0, 1, ...,∞, Algorithm
1 takes at most 𝑉2 iterations in expectation to converge to
a stationary point x̄ satisfying 𝐹 (x𝑡)− 𝐹 (x̄) ≤ 𝜖. Moreover,
Algorithm 1 takes at most 𝑉2 × 𝐽 iterations in expectation to
converge to a stationary point x̄ satisfying 𝐹 (x𝑡)− 𝐹 (x̄) ≤ 𝜖.
Here, 𝑉2 is defined as:

𝑉2 = log𝛼(𝜖/(𝐹 (x0)− 𝐹 (x̄))), with 𝛼 , 𝑛𝜃
𝑘𝜎

/(1 + 𝑛𝜃
𝑘𝜎

). (11)

Remarks. (i) When the support set is fixed, the optimiza-
tion problem reduces to a convex problem. (ii) We derive a
upper bound for the number of changes 𝐽 for the support
set in (a), and a upper bound on the number of iterations
𝑉1 (or 𝑉2) performed after the support set is fixed in (b)
(or (c)). Multiplying these two bounds, we can establish the
upper bound of the number of iterations for Algorithm 1 to
converge. However, these bounds are not tight enough.

The following theorem establishes an improved convergence
rate of our algorithm with ℎ , ℎregu.

Theorem 3. Improved Convergence Rate for Sparse
Regularized Optimization. For ℎ , ℎregu, we have the
following results:

(a) Assume that 𝑓(·) is generally convex, and the solution
is always bounded with ‖x𝑡‖∞ ≤ 𝜌, ∀𝑡. Algorithm 1 takes
at most 𝑁1 iterations in expectation to converge to a block-
𝑘 stationary point x̄ satisfying 𝐹 (x𝑡) − 𝐹 (x̄) ≤ 𝜖, where

𝑁1 = (𝐽
𝐷

+ 1
𝜖
)×max(4𝜈

2

𝜃
,

√︁
2𝜈2(𝐹 (x0)−𝐹 (x̄)−𝐷)

𝜃
).

(b) Assume that 𝑓(·) is 𝜎-strongly convex. Algorithm 1
takes at most 𝑁2 iterations in expectation to converge to a
block-𝑘 stationary point x̄ satisfying 𝐹 (x𝑡)−𝐹 (x̄) ≤ 𝜖, where
𝑁2 = 𝐽 log𝛼(

𝐷
(𝐹 (x0)−𝐹 (x̄))

) + log𝛼(
𝜖

𝐹 (x0)−𝐷−𝐹 (x̄)
).

Remarks. (i) Our proof of Theorem 3 is based on the results
in Theorem 2 and a similar iterative bounding technique as in
[24]. (ii) If 𝐽 ≥ 2 and the accuracy 𝜖 is sufficiently small such

that 𝜖 ≤ 𝐷
2
, we have 𝐽

𝐷
+ 1

𝜖
≤ 𝐽

2𝜖
+ 1

𝜖
≤ 𝐽

2𝜖
+ 𝐽/2

𝜖
= 𝐽

𝜖
, lead-

ing to (𝐽
𝐷

+ 1
𝜖
) × max(4𝜈

2

𝜃
,
√︀

2𝜈2(𝐹 (x0)− 𝐹 (x̄)−𝐷)/𝜃) ≤
𝐽
𝜖
× max(4𝜈

2

𝜃
,
√︀

2𝜈2(𝐹 (x0)− 𝐹 (x̄))/𝜃). Using the same as-

sumption and strategy, we have 𝐽 log𝛼(𝐷/(𝐹 (x0)− 𝐹 (x̄))) +
log𝛼(𝜖/(𝐹 (x0)−𝐷 − 𝐹 (x̄))) ≤ 𝐽 × log𝛼(𝜖/(𝐹 (x0)− 𝐹 (x̄))).
In this situation, the bounds in Theorem 3 are tighter than
those in Theorem 2.

5 DISCUSSIONS

This section provides additional discussions for the proposed
method.

I When the objective function is complicated. In
step (S2) of the proposed algorithm, a global solution is to
be found for the subproblem. When 𝑓(·) is simple (e.g., a
quadratic function), we can find efficient and exact solutions
to the subproblems. We now consider the situation when 𝑓
is complicated (e.g., logistic regression, maximum entropy
models). One can still find a quadratic majorizer 𝑄(x, z) for
the convex smooth function 𝑓(x) with

∀ z, x, 𝑓(x) ≤ 𝑄(x, z) , 𝑓(z) + (x− z)ᵀ∇𝑓(z) +
1
2
(x− z)ᵀM(z)(x− z), M(z) ≻ ∇𝑓2(z).

By minimizing the upper bound of 𝑓(x) (i.e., the quadratic
surrogate function) at the current estimate x𝑡, i.e.,

x𝑡+1 ⇐ argmin
x

𝑄(x,x𝑡) + ℎ(x),

we can drive the objective downward until a stationary point
is reached. We will obtain a stationary point ẍ satisfying:

ẍ = argmin
z

ℎ(z) + 𝑓(ẍ) + (z− ẍ)ᵀ∇𝑓(ẍ)

+ 1
2
(z− ẍ)ᵀM(ẍ)(z− ẍ), 𝑠.𝑡. ẍ�̄� = z�̄�

for all �̄�. We denote this optimality condition as the Newton
block-𝑘 stationary point. It is weaker than the full block-𝑘
stationary point as in Definition 3. However, it is stronger
than the L-Stationary Point as in Definition 2.

I Computational efficiency. Block coordinate descent
is shown to be very efficient for solving convex problems
(e.g., support vector machines [12, 18], LASSO problems [37],
nonnegative matrix factorization [19]). The main difference
of our block coordinate descent from existing ones is that
our method needs to solve a small-sized NP-hard subprob-
lem globally which takes subexponential time 𝒪(2𝑘). As a

result, our algorithm finds a block-𝑘 approximation solution
for the original NP-hard problem within 𝒪(2𝑘) time. When
𝑘 is large, it is hard to enumerate the full binary tree since
the subproblem is equally NP-hard. However, 𝑘 is relatively
small in practice (e.g., 2 to 20). In addition, real-world ap-
plications often have some special (e.g., unbalanced, sparse,
local) structure and block-𝑘 stationary point could also be
the global stationary point (refer to Table 1 of this paper).

6 EXPERIMENTAL VALIDATION

This section demonstrates the effectiveness of our algorithm
on two sparse optimization tasks, namely the sparse regular-
ized least squares problem and the sparsity constrained least
squares problem.

Given a design matrix A ∈ R𝑚×𝑛 and an observation
vector b ∈ R𝑚, we solve the following optimization problem:

minx
1
2
‖Ax− b‖22, 𝑠.𝑡. ‖x‖0 ≤ 𝑠,

or minx
1
2
‖Ax− b‖22 + 𝜆‖x‖0,

where 𝑠 and 𝜆 are given parameters.
Experimental Settings. We use DEC-R𝑖G𝑗 to denote

our block decomposition method along with selecting 𝑖 coordi-
nates using the Random strategy and 𝑗 coordinates using the
Greedy strategy. We keep a record of the relative changes of
the objective function values by 𝑟𝑡 = (𝑓(x𝑡)−𝑓(x𝑡+1))/𝑓(x𝑡).
We let DEC run up to 𝑇 iterations and stop it at iteration
𝑡 < 𝑇 if mean([𝑟𝑡−min(𝑡,𝜚)+1, 𝑟𝑡−𝑚𝑖𝑛(𝑡,𝜚)+2, ..., 𝑟𝑡]) ≤ 𝜖. We

use the default value (𝜃, 𝜖, 𝜚, 𝑇) = (10−3, 10−5, 50, 1000)
for DEC. All codes were implemented in Matlab on an Intel
3.20GHz CPU with 8 GB RAM. We measure the quality of
the solution by comparing the objective values for differen-
t methods. Note that although DEC uses the randomized
strategy to find the working set, we can always measure
the quality of the solution by computing the deterministic
objective value.

Data Sets. Four types of data sets for {A,b} are consid-
ered in our experiments. (i) ‘random-m-n’: We generate the
design matrix as A = randn(𝑚,𝑛), where randn(𝑚,𝑛) is a
function that returns a standard Gaussian random matrix
of size 𝑚× 𝑛. To generate the sparse original signal ẍ ∈ R𝑛,
we select a support set of size 100 uniformly at random
and set them to arbitrary number sampled from standard
Gaussian distribution, the observation vector is generated
via b = Aẍ+ o with o = 10× randn(𝑚, 1). (ii) ‘e2006-m-n’:
We use the real-world data set ‘e2006’ 2 which has been used
in sparse optimization [46]. We uniformly select 𝑚 examples
and 𝑛 dimensions from the original data set. (iii) ‘random-m-
n-C’: To verify the robustness of DEC, we generate design
matrices containing outliers by 𝒫(A). Here, 𝒫(A) ∈ R𝑚×𝑛

is a noisy version of A ∈ R𝑚×𝑛 where 2% of the entries of
A are corrupted uniformly by scaling the original values by
100 times 3. We use the same sampling strategy to generate
A as in ‘random-m-n’. Note that the Hessian matrix can be

2https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
3Matlab script: I=randperm(m*n,round(0.02*m*n)); A(I)=A(I)*100.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

1 3 5 10 20 60

Time (seconds)

1

1.2

1.4

1.6

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(a) s=20 on random-256-1024

1 3 5 1020 60

Time (seconds)

4000

6000

8000

10000

12000

O
bj

ec
tiv

e

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(b) s=40 on random-256-1024

1 3 5 10 20 60

Time (seconds)

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(c) s=20 on e2006-5000-1024

1 3 5 10 20 60

Time (seconds)

1.5

2

2.5

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(d) s=40 on e2006-5000-1024

1 3 5 10 20 60

Time (seconds)

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(e) s=20 on e2006-5000-2048

1 3 5 10 20 60

Time (seconds)

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(f) s=40 on e2006-5000-2048

1 3 5 10 20 60

Time (seconds)

2

3

4

5

O
bj

ec
tiv

e

×10
6

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(g) s=20 on random-256-1024-C

1 3 5 10 20 60

Time (seconds)

1

2

3

O
bj

ec
tiv

e

×10
6

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(h) s=40 on random-256-1024-C

1 3 5 1020 60

Time (seconds)

2.9

3

3.1

3.2

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(i) s=20 on e2006-5000-1024-C

1 3 5 1020 60

Time (seconds)

2.95

3

3.05

3.1

3.15

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(j) s=40 on e2006-5000-1024-C

1 3 5 10 20 60

Time (seconds)

2.6

2.8

3

3.2

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(k) s=20 on e2006-5000-2048-C

1 3 5 10 20 60

Time (seconds)

2.4

2.6

2.8

3

O
bj

ec
tiv

e

×10
4

PGM

APGM

QPM

DEC-R0G2

DEC-R0G4

DEC-R2G0

DEC-R4G0

DEC-R12G4

(l) s=40 on e2006-5000-2048-C

Figure 1: Convergence curve and computional efficiency for solving sparsity constrained least squares problems
on different data sets with different 𝑠.

10 20 30 40 50

Sparsity

0.5

1

1.5

2

O
bj

ec
tiv

e

10
4

(a) random-256-1024

10 20 30 40 50

Sparsity

0.5

1

1.5

2

O
bj

ec
tiv

e

10
4

(b) random-256-2048

10 20 30 40 50

Sparsity

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e

10
4

(c) e2006-5000-1024

10 20 30 40 50

Sparsity

0.5

1

1.5

O
bj

ec
tiv

e

10
4

(d) e2006-5000-2048

10 20 30 40 50

Sparsity

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e

10
6

(e) random-256-1024-C

10 20 30 40 50

Sparsity

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e

10
6

(f) random-256-2048-C

10 20 30 40 50

Sparsity

2.4

2.6

2.8

3

O
bj

ec
tiv

e

10
4

(g) e2006-5000-1024-C

10 20 30 40 50

Sparsity

2.2

2.4

2.6

2.8

3

O
bj

ec
tiv

e

10
4

(h) e2006-5000-2048-C

Figure 2: Experimental results on sparsity constrained least squares problems on different data sets with
varying the sparsity of the solution.

ill-conditioned. (iv) ‘e2006-m-n-C’: We use the same corrupt-
ing strategy to generate the corrupted real-world data as in
‘random-m-n-C’.

I Sparsity Constrained Least Squares Problem.
We compare DEC with 8 state-of-the-art sparse optimization
algorithms. (i) Proximal Gradient Method (PGM) [2], (ii)
Accerlated Proximal Gradient Method (APGM), and (iii)
Quadratic Penalty Method (QPM) [26] are gradient-type
methods based on iterative hard thresholding. (iv) Subspace
Pursuit (SSP) [14], (v) Regularized Orthogonal Matching
Pursuit (ROMP) [28], (vi) Orthogonal Matching Pursuit
(OMP) [36], and (vii) Compressive Sampling Matched Pur-
suit (CoSaMP)[27] are greedy algorithms based on iterative
support set detection. We use the Matlab implementation in
the ‘sparsify’ toolbox4. We also include the comparison with
(viii) Convex ℓ1 Approximation Method (CVX-ℓ1). We use
PGM to solve the convex ℓ1 regularized problem, with the reg-
ulation parameter being swept over 𝜆 = {2−10, 2−8, ..., 210}.

4http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html

The solution that leads to smallest objective after a hard
thresholding projection and re-optimization over the support
set is selected. Since the optimal solution is expected to be
sparse, we initialize the solutions of {PGM, APGM, QP-
M, CVX-ℓ1, DEC} to 10−7 × randn(𝑛, 1) and project them
to feasible solutions. The initial solution of greedy pursuit
methods are initialized to zero points implicitly. We vary
𝑠 = {3, 8, 13, 18, ..., 50} on different data sets and show
the average results of using 5 random initial points.

First, we show the convergence curve and computational
efficiency of DEC by comparing with gradient-type methods
{PGM, APGM, QPM}. Several observations can be drawn
from Figure 1. (i) PGM and APGM achieve similar perfor-
mance and they get stuck into poor local minima. (ii) DEC
is more effective than {PGM, APGM}. In addition, we find
that as the parameter 𝑘 becomes larger, more higher accuracy
is achieved. (iii) DEC-R0G2 converges quickly but it gener-
ally leads to worse solution quality than DEC-R2G0. Based
on this observation, we conclude that a combined random
and greedy strategy is preferred. (iv) DEC generally takes

http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html

PGM-ℓ0 APGM-ℓ0 PGM-ℓ1 PGM-ℓ𝑝 DEC-R10G2

results on random-256-1024
𝜆 = 100 6.9e+2 2.4e+4 7.8e+2 4.0e+2 4.8e+2
𝜆 = 101 2.3e+3 3.8e+4 3.3e+3 1.9e+3 2.2e+3
𝜆 = 102 2.0e+4 1.3e+5 1.8e+4 1.1e+4 9.4e+3
𝜆 = 103 2.5e+4 1.0e+6 2.4e+4 2.4e+4 2.4e+4

results on random-256-2048

𝜆 = 100 1.3e+3 2.7e+4 1.4e+3 6.0e+2 5.4e+2
𝜆 = 101 2.9e+3 4.5e+4 4.9e+3 2.2e+3 2.2e+3
𝜆 = 102 2.2e+4 2.3e+5 2.1e+4 1.1e+4 9.5e+3
𝜆 = 103 2.7e+4 2.1e+6 2.6e+4 2.7e+4 2.6e+4

results on e2006-5000-1024

𝜆 = 100 8.5e+3 3.3e+4 1.1e+4 1.8e+4 7.3e+3
𝜆 = 101 9.4e+3 4.2e+4 3.2e+4 3.2e+4 8.6e+3
𝜆 = 102 3.2e+4 1.3e+5 3.2e+4 3.2e+4 1.3e+4
𝜆 = 103 1.8e+4 1.1e+6 3.2e+4 3.2e+4 1.1e+4

results on e2006-5000-2048

𝜆 = 100 3.1e+3 3.4e+4 4.4e+3 1.4e+4 2.6e+3
𝜆 = 101 5.2e+3 5.3e+4 1.2e+4 1.2e+4 4.5e+3
𝜆 = 102 3.2e+4 2.4e+5 3.2e+4 3.2e+4 7.0e+3
𝜆 = 103 1.8e+4 2.1e+6 3.2e+4 3.2e+4 1.3e+4

results on random-256-1024-C

𝜆 = 100 9.6e+2 5.7e+6 1.0e+3 1.0e+3 8.9e+2
𝜆 = 101 8.1e+3 3.5e+6 1.0e+4 8.2e+3 7.3e+3
𝜆 = 102 5.8e+4 6.2e+6 8.9e+4 5.4e+4 5.1e+4
𝜆 = 103 2.5e+5 5.3e+6 3.7e+5 2.2e+5 2.0e+5

results on random-256-2048-C

𝜆 = 100 1.9e+3 5.7e+6 2.0e+3 1.9e+3 1.2e+3
𝜆 = 101 1.7e+4 7.7e+6 2.0e+4 1.6e+4 9.2e+3
𝜆 = 102 8.4e+4 4.2e+6 1.6e+5 6.4e+4 5.3e+4
𝜆 = 103 2.5e+5 9.6e+6 6.3e+5 2.5e+5 2.4e+5

results on e2006-5000-1024-C

𝜆 = 100 3.0e+4 3.3e+4 2.8e+4 2.9e+4 2.2e+4
𝜆 = 101 3.2e+4 4.2e+4 3.2e+4 3.2e+4 2.3e+4
𝜆 = 102 3.2e+4 1.3e+5 3.2e+4 3.2e+4 2.9e+4
𝜆 = 103 3.2e+4 1.1e+6 3.2e+4 3.2e+4 3.2e+4

results on e2006-5000-2048-C

𝜆 = 100 2.9e+4 3.4e+4 2.6e+4 2.7e+4 1.7e+4
𝜆 = 101 3.2e+4 5.3e+4 3.2e+4 3.2e+4 2.1e+4
𝜆 = 102 3.2e+4 2.4e+5 3.2e+4 3.2e+4 2.7e+4
𝜆 = 103 3.2e+4 2.1e+6 3.2e+4 3.2e+4 3.2e+4

Table 2: Comparisons of objective values of all the
methods for solving the sparse regularized least
squares problem. The 1𝑠𝑡, 2𝑛𝑑, and 3𝑟𝑑 best results
are colored with red, blue and green, respectively.

less than 30 seconds to converge in all our instances with
obtaining reasonably good accuracy.

Second, we show the experimental results on sparsity con-
strained least squares problems with varying the cardinality
𝑠. Several conclusions can be drawn from Figure 2. (i) The
methods {PGM, APGM, QPM} based on iterative hard
thresholding generally lead to bad performance. (ii) OMP
and ROMP are not stable and sometimes they achieve bad
accuracy. (iii) DEC presents comparable performance to the
greedy methods on {‘random-256-1024’, ‘ random-256-2048’}

but it significantly and consistently outperforms the greedy
methods on the other data sets.

I Sparse Regularized Least Squares Problem. We
use Proximal Gradient Method (PGM) and Accelerated Prox-
imal Gradient Method (APGM) [6, 30] to solve the ℓ0 norm
problem directly, leading to two compared methods (i) PGM-
ℓ0 and (ii) APGM-ℓ0. We apply PGM to solve the convex
ℓ1 relaxation and nonconvex ℓ𝑝 relaxation of the original
ℓ0 norm problem, resulting in additional two methods (iii)
PGM-ℓ1 and (iv) PGM-ℓ𝑝. We compare DEC with {PGM-
ℓ0, APGM-ℓ0, PGM-ℓ1, PGM-ℓ𝑝}. We initialize the solutions
of all the methods to 10−7 × randn(𝑛, 1). For PGM-ℓ𝑝, we set
𝑝 = 1

2
and use the efficient closed-form solver [40] to compute

the proximal operator.
We show the objective values of all the methods with

varying the hyper-parameter 𝜆 on different data sets in Table
2. Two observations can be drawn. (i) PGM-ℓ𝑝 achieves
better performance than the convex method PGM-ℓ1. (ii)
DEC generally outperforms the other methods in all our
data sets.

We demonstrate the average computing time for the com-
pared methods in Table 3. We have two observations. (i)
DEC takes several times longer to converge than the com-
pared methods. (ii) DEC generally takes less than 70 seconds
to converge in all our instances. We argue that the compu-
tational time is acceptable and pays off as DEC achieves
significantly higher accuracy. The main bottleneck of com-
putation is on solving the small-sized subproblems using
sub-exponential time 𝒪(2𝑘). The parameter 𝑘 can be viewed
as a tuning parameter to balance the efficacy and efficiency.

PGM-ℓ0 APGM-ℓ0 PGM-ℓ1 PGM-ℓ𝑝 DEC-R10G2

r.-256-1024 12± 3 13± 3 5± 3 15± 3 36± 3
r.-256-2048 11± 3 11± 3 9± 3 16± 3 66± 7
e.-5000-1024 12± 3 11± 3 8± 3 14± 3 45± 3
e.-5000-2048 12± 3 10± 3 12± 3 5± 3 65± 8

Table 3: Comparisons of average times (in seconds)
of all the methods on different data sets for solving
the sparse regularized least squares problem.

7 CONCLUSIONS

This paper presents an effective and practical method for
solving sparse optimization problems. Our approach takes
advantage of the effectiveness of the combinatorial search
and the efficiency of coordinate descent. We provided rig-
orous optimality analysis and convergence analysis for the
proposed algorithm. Our experiments show that our method
achieves state-of-the-art performance. Our block decomposi-
tion algorithm has been extended to solve binary optimization
problems [44] and sparse generalized eigenvalue problems [43].

Acknowledgments. This work was supported by NSFC (U1911401),
Key-Area Research and Development Program of Guangdong Province
(2019B121204008), NSFC (61772570, U1811461), Guangzhou Research
Project (201902010037), Pearl River S&T Nova Program of Guangzhou
(201806010056), and Guangdong Natural Science Funds for Distin-
guished Young Scholar (2018B030306025).

REFERENCES
[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. 2006. K-

SVD: An Algorithm for Designing Overcomplete Dictionaries for
Sparse Representation. IEEE Transactions on Signal Processing
54, 11 (2006), 4311–4322.

[2] Chenglong Bao, Hui Ji, Yuhui Quan, and Zuowei Shen. 2016. Dic-
tionary Learning for Sparse Coding: Algorithms and Convergence
Analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 38, 7 (2016), 1356–1369.

[3] Amir Beck and Yonina C Eldar. 2013. Sparsity constrained non-
linear optimization: Optimality conditions and algorithms. SIAM
Journal on Optimization (SIOPT) 23, 3 (2013), 1480–1509.

[4] Amir Beck and Nadav Hallak. 2019. Optimization problems
involving group sparsity terms. Mathematical Programming 178,
1-2 (2019), 39–67.

[5] Amir Beck and Nadav Hallak. 2020. On the Minimization Over
Sparse Symmetric Sets: Projections, Optimality Conditions, and
Algorithms. Mathematics of Operations Research (2020).

[6] Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences (SIIMS) 2, 1 (2009), 183–202.

[7] Amir Beck and Yakov Vaisbourd. 2016. The Sparse Principal
Component Analysis Problem: Optimality Conditions and Algo-
rithms. Journal of Optimization Theory and Applications 170,
1 (2016), 119–143.

[8] Shujun Bi, Xiaolan Liu, and Shaohua Pan. 2014. Exact Penalty
Decomposition Method for Zero-Norm Minimization Based on
MPEC Formulation. SIAM Journal on Scientific Computing
(SISC) 36, 4 (2014).

[9] Thomas Blumensath and Mike E Davies. 2008. Gradient pursuits.
IEEE Trans. on Signal Processing 56, 6 (2008), 2370–2382.

[10] Thomas Blumensath and Mike E. Davies. 2009. Iterative hard
thresholding for compressed sensing. Applied and Computational
Harmonic Analysis 27, 3 (2009), 265 – 274.

[11] Emmanuel J Candes and Terence Tao. 2005. Decoding by linear
programming. IEEE Transactions on Information Theory 51,
12 (2005), 4203–4215.

[12] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. 2008. Coordi-
nate descent method for large-scale l2-loss linear support vector
machines. J. of Machine Learning Research 9 (2008), 1369–1398.

[13] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. 2014.
Integer programming. Vol. 271. Springer.

[14] Wei Dai and Olgica Milenkovic. 2009. Subspace pursuit for com-
pressive sensing signal reconstruction. IEEE Transactions on
Information Theory 55, 5 (2009), 2230–2249.

[15] David L. Donoho. 2006. Compressed sensing. IEEE Transactions
on Information Theory 52, 4 (2006), 1289–1306.

[16] Ehsan Elhamifar and Rene Vidal. 2013. Sparse subspace clustering:
Algorithm, theory, and applications. IEEE Trans. on Pattern
Analysis and Machine Intelligence 35, 11 (2013), 2765–2781.

[17] Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, and Zhi-
Quan Luo. 2013. Iteration complexity analysis of block coordinate
descent methods. Mathematical Programming (2013), 1–30.

[18] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi,
and Sellamanickam Sundararajan. 2008. A dual coordinate descent
method for large-scale linear SVM. In International Conference
on Machine Learning (ICML). 408–415.

[19] Cho-Jui Hsieh and Inderjit S Dhillon. 2011. Fast coordinate
descent methods with variable selection for non-negative matrix
factorization. In ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 1064–1072.

[20] Prateek Jain, Ambuj Tewari, and Purushottam Kar. 2014. On
iterative hard thresholding methods for high-dimensional m-
estimation. In Neural Information Processing Systems. 685–693.

[21] Rie Johnson and Tong Zhang. 2013. Accelerating stochastic
gradient descent using predictive variance reduction. In Advances
in Neural Information Processing Systems (NeurIPS). 315–323.

[22] Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, and Jarvis D.
Haupt. 2016. Stochastic Variance Reduced Optimization for Non-
convex Sparse Learning. In Proceedings of the 33nd International
Conference on Machine Learning (ICML), Vol. 48. 917–925.

[23] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and
Srikrishna Sridhar. 2015. An asynchronous parallel stochastic
coordinate descent algorithm. Journal of Machine Learning
Research (JMLR) 16, 285-322 (2015), 1–5.

[24] Zhaosong Lu. 2014. Iterative hard thresholding methods for ℓ0 reg-
ularized convex cone programming. Mathematical Programming

147, 1-2 (2014), 125–154.
[25] Zhaosong Lu and Lin Xiao. 2015. On the complexity analysis

of randomized block-coordinate descent methods. Mathematical
Programming 152, 1-2 (2015), 615–642.

[26] Zhaosong Lu and Yong Zhang. 2013. Sparse Approximation via
Penalty Decomposition Methods. SIAM Journal on Optimization
(SIOPT) 23, 4 (2013), 2448–2478.

[27] Deanna Needell and Joel A Tropp. 2009. CoSaMP: Iterative signal
recovery from incomplete and inaccurate samples. Applied and
Computational Harmonic Analysis 26, 3 (2009), 301–321.

[28] Deanna Needell and Roman Vershynin. 2010. Signal recovery
from incomplete and inaccurate measurements via regularized
orthogonal matching pursuit. IEEE Journal of Selected Topics
in Signal Processing 4, 2 (2010), 310–316.

[29] Yu Nesterov. 2012. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on Optimiza-
tion (SIOPT) 22, 2 (2012), 341–362.

[30] Yurii Nesterov. 2013. Introductory lectures on convex optimiza-
tion: A basic course. Vol. 87. Springer Science & Business Media.

[31] Andrei Patrascu and Ion Necoara. 2015. Efficient random coor-
dinate descent algorithms for large-scale structured nonconvex
optimization. J. of Global Optimization 61, 1 (2015), 19–46.

[32] Andrei Patrascu and Ion Necoara. 2015. Random Coordinate
Descent Methods for ℓ0 Regularized Convex Optimization. IEEE
Trans. Automat. Control 60, 7 (2015), 1811–1824.

[33] M. J. D. Powell. 1973. On search directions for minimization
algorithms. Mathematical Programming 4, 1 (1973), 193–201.

[34] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. 2013. A u-
nified convergence analysis of block successive minimization meth-
ods for nonsmooth optimization. SIAM Journal on Optimization
(SIOPT) 23, 2 (2013), 1126–1153.

[35] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu.
2011. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Neural Information Processing Systems
(NeurIPS). 693–701.

[36] Joel A Tropp and Anna C Gilbert. 2007. Signal recovery from
random measurements via orthogonal matching pursuit. IEEE
Transactions on Information Theory 53, 12 (2007), 4655–4666.

[37] Paul Tseng and Sangwoon Yun. 2009. A coordinate gradient
descent method for nonsmooth separable minimization. Mathe-
matical Programming 117, 1 (2009), 387–423.

[38] Lin Xiao and Tong Zhang. 2014. A proximal stochastic gradient
method with progressive variance reduction. SIAM Journal on
Optimization (SIOPT) 24, 4 (2014), 2057–2075.

[39] Yangyang Xu and Wotao Yin. 2013. A block coordinate descent
method for regularized multiconvex optimization with applica-
tions to nonnegative tensor factorization and completion. SIAM
Journal on Imaging Sciences (SIIMS) 6, 3 (2013), 1758–1789.

[40] Zongben Xu, Xiangyu Chang, Fengmin Xu, and Hai Zhang. 2012.
𝐿1/2 regularization: A thresholding representation theory and a
fast solver. IEEE Transactions on Neural Networks and Learning
Systems 23, 7 (2012), 1013–1027.

[41] Ganzhao Yuan and Bernard Ghanem. 2016. Sparsity Constrained
Minimization via Mathematical Programming with Equilibrium
Constraints. In arXiv:1608.04430.

[42] Ganzhao Yuan and Bernard Ghanem. 2019. ℓ0𝑇𝑉 : A Sparse
Optimization Method for Impulse Noise Image Restoration. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 41, 2 (2019), 352–364.

[43] Ganzhao Yuan, Li Shen, and Wei-Shi Zheng. 2019. A Decomposi-
tion Algorithm for the Sparse Generalized Eigenvalue Problem. In
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 6113–6122.

[44] Ganzhao Yuan, Li Shen, and Wei-Shi Zheng. June, 2017. A
Hybrid Method of Combinatorial Search and Coordinate Descent
for Discrete Optimization. arXiv:1706.06493 (June, 2017).

[45] Xiao-Tong Yuan, Ping Li, and Tong Zhang. 2017. Gradient Hard
Thresholding Pursuit. Journal of Machine Learning Research
18 (2017), 166:1–166:43.

[46] Aston Zhang and Quanquan Gu. 2016. Accelerated Stochastic
Block Coordinate Descent with Optimal Sampling. In ACM Inter-
national Conference on Knowledge Discovery and Data Mining
(SIGKDD). 2035–2044.

[47] Tong Zhang. 2010. Analysis of Multi-stage Convex Relaxation for
Sparse Regularization. Journal of Machine Learning Research
(JMLR) 11, 35 (2010), 1081–1107.

Appendix
The appendix section is organized as follows. Section 8

presents a useful lemma. Section 9, 10, and 11 present respec-
tively the proof of Proposition 1, Theorem 2, and Theorem
3.

8 A USEFUL LEMMA

The following lemma is useful in our proof.

Lemma 1. Assume a nonnegative sequence {𝑢𝑡}∞𝑡=0 satis-
fies (𝑢𝑡+1)2 ≤ 𝐶(𝑢𝑡 − 𝑢𝑡+1) for some nonnegative constant
𝐶. We have:

𝑢𝑡 ≤ max(2𝐶,
√
𝐶𝑢0)

𝑡
(12)

Proof. We denote 𝐶1 , max(2𝐶,
√
𝐶𝑢0). Solving this

quadratic inequality, we have:

𝑢𝑡+1 ≤ −𝐶
2
+ 𝐶

2

√︁
1 + 4𝑢𝑡

𝐶
(13)

We now show that 𝑢𝑡+1 ≤ 𝐶1
𝑡+1

, which can be obtained by

mathematical induction. (i) When 𝑡 = 0, we have 𝑢1 ≤ −𝐶
2
+

𝐶
2

√︁
1 + 4𝑢0

𝐶
≤ −𝐶

2
+𝐶

2
(1+

√︁
4𝑢0

𝐶
) = 𝐶

2

√︁
4𝑢0

𝐶
=

√
𝐶𝑢0 ≤ 𝐶1

𝑡+1
.

(ii) When 𝑡 ≥ 1, we assume that 𝑢𝑡 ≤ 𝐶1
𝑡

holds. We derive

the following results: 𝑡 ≥ 1 ⇒ 𝑡+1
𝑡

≤ 2
(𝑎)⇒ 𝐶 𝑡+1

𝑡
≤ 𝐶1

(𝑏)⇒
𝐶(1

𝑡
− 1

𝑡+1
) ≤ 𝐶1

(𝑡+1)2
⇒ 𝐶

𝑡
≤ 𝐶

𝑡+1
+ 𝐶1

(𝑡+1)2
⇒ 𝐶𝐶1

𝑡
≤ 𝐶𝐶1

𝑡+1
+

𝐶2
1

(𝑡+1)2
⇒ 𝐶2

4
+ 𝐶𝐶1

𝑡
≤ 𝐶𝐶1

𝑡+1
+

𝐶2
1

(𝑡+1)2
+ 𝐶2

4
⇒ 𝐶2

4
(1 + 4𝐶1

𝐶𝑡
) ≤

(𝐶
2
+ 𝐶1

𝑡+1
)2⇒ 𝐶

2

√︁
1 + 4𝐶1

𝐶𝑡
≤ 𝐶

2
+ 𝐶1

𝑡+1
⇒ −𝐶

2
+ 𝐶

2

√︁
1 + 4𝐶1

𝐶𝑡
≤

𝐶1
𝑡+1

(𝑐)⇒ −𝐶
2
+ 𝐶

2

√︁
1 + 4𝑢𝑡

𝐶
≤ 𝐶1

𝑡+1
⇒ 𝑢𝑡+1 ≤ 𝐶1

𝑡+1
. Here, step

(𝑎) uses 2𝐶 ≤ 𝐶1; step (𝑏) uses 1
𝑡(𝑡+1)

= 1
𝑡
− 1

𝑡+1
; step (𝑐)

uses 𝑢𝑡 ≤ 𝐶1
𝑡
.

�

9 PROOF OF PROPOSITION 1

Proof. (a)Due to the optimality of x𝑡+1, we have: 𝐹 (x𝑡+1)+
𝜃
2
‖x𝑡+1 − x𝑡‖22 ≤ 𝐹 (u) + 𝜃

2
‖u− x𝑡‖22 for all u�̄� = (x𝑡)�̄� . Let-

ting u = x𝑡, we obtain the sufficient decrease condition:

𝐹 (x𝑡+1) ≤ 𝐹 (x𝑡)− 𝜃
2
‖x𝑡+1 − x𝑡‖2 (14)

Taking the expectation of 𝐵 for the sufficient descent in-
equality, we have E[𝐹 (x𝑡+1)] ≤ 𝐹 (x𝑡) − E[𝜃

2
‖x𝑡+1 − x𝑡‖].

Summing this inequality over 𝑖 = 0, 1, 2, ..., 𝑡 − 1, we have:
𝜃
2

∑︀𝑡
𝑖=0 E[‖x

𝑖+1 − x𝑖‖22] ≤ 𝐹 (x0)− 𝐹 (x𝑡).

Using the fact that 𝐹 (x̄) ≤ 𝐹 (x𝑡), we obtain:

min𝑖=1,...,𝑡 E[𝜃2‖x
𝑖+1 − x𝑖‖22] ≤ 𝜃

2𝑡

∑︀𝑡
𝑖=0 E[‖x

𝑖+1 − x𝑖‖22]

≤ 𝐹 (x0)−𝐹 (x̄)
𝑡

(15)

Therefore, we have lim𝑡→∞ E[‖x𝑡+1 − x𝑡‖] = 0.
(b) We assume that the stationary point is not a block-

𝑘 stationary point. In expectation there exists a block of
coordinates 𝐵 such that x𝑡 /∈ argminz 𝒫(z;x𝑡, 𝐵) for some
𝐵, where 𝒫(·) is defined in Definition 3. However, according
to the fact that x𝑡 = x𝑡+1 and subproblem (2) in Algorithm
1, we have x𝑡+1 ∈ argminz 𝒫(z;x𝑡, 𝐵). Hence, we have

x𝑡
𝐵 ̸= x𝑡+1

𝐵 . This contradicts with the fact that x𝑡 = x𝑡+1

as 𝑡 → ∞. We conclude that x𝑡 converges to the block-𝑘
stationary point.

�

10 PROOF OF THEOREM 2

Proof. (a) Note that Algorithm 1 solves problem (2)
in every iteration. Using Proposition 1, we have that the
solution x𝑡+1

𝐵 is also a 𝐿-stationary point. Therefore, we have

|x𝑡+1|𝑖 ≥
√︀

2𝜆/(𝜃 + 𝐿) for all x𝑡+1
𝑖 ̸= 0. Taking the initial

point of x for consideration, we have that:

|x𝑡+1
𝑖 | ≥ min(|x0

𝑖 |,
√︀

2𝜆/(𝜃 + 𝐿)), ∀ 𝑖 = 1, 2, ..., 𝑛.

Therefore, we have: ‖x𝑡+1−x𝑡‖2 ≥ 𝛿. Taking the expectation
of 𝐵, we have the following results: E[‖(x𝑡+1 − x𝑡)𝐵‖22] =
𝑘
𝑛
‖x𝑡+1 − x𝑡‖22 ≥ 𝑘

𝑛
𝛿2. Every time the support set of x

is changed, the objective value is decreased at least by

E[𝜃
2
‖x𝑡+1 − x𝑡‖2] ≥ 𝑘𝜃𝛿2

2𝑛
, 𝐷. Combining with the result in

(15), we obtain: [2𝐹 (x0)−2𝐹 (x̄)]
𝑡𝜃

≥ 𝛿2𝑘
𝑛

. Therefore, the number

of iterations is upper bounded by 𝐽 .
(b) We notice that when the support set is fixed, the origi-

nal problem reduces to a convex problem. Since the algorithm
solves the following subproblem: x𝑡+1 ⇐ argminz 𝑓(z) +
𝜃
2
‖z− x𝑡‖2, 𝑠.𝑡. z�̄� = x𝑡

�̄� , we have the following optimality

condition for x𝑡+1:

(∇𝑓(x𝑡+1))𝐵 + 𝜃(x𝑡+1 − x𝑡)𝐵 = 0, (x𝑡+1)�̄� = (x𝑡)�̄� , (16)

We now consider the case when 𝑓(·) is generally convex.
We derive the following inequalities:

E[𝐹 (x𝑡+1)]− 𝐹 (x̄)

(𝑎)

≤ E[⟨∇𝑓(x𝑡+1),x𝑡+1 − x̄⟩],
(𝑏)

≤ E[𝑛
𝑘
⟨(∇𝑓(x𝑡+1))𝐵 , (x

𝑡+1 − x̄)𝐵⟩],
(𝑐)
= E[𝑛

𝑘
⟨−𝜃(x𝑡+1 − x𝑡)𝐵 , (x

𝑡+1 − x̄)𝐵⟩]
(𝑑)

≤ E[𝑛
𝑘
𝜃‖(x𝑡+1 − x𝑡)𝐵‖2 · ‖(x𝑡+1 − x̄)𝐵‖2]

(𝑒)
= E[𝑛

𝑘
𝜃‖(x𝑡+1 − x𝑡)‖2 · ‖(x𝑡+1 − x̄)𝐵‖2]

(𝑓)

≤ E[𝑛
𝑘
2𝜃𝜌

√
𝑘‖x𝑡+1 − x𝑡‖2] = E[𝜈‖x𝑡+1 − x𝑡‖2] (17)

where step (𝑎) uses the convexity of 𝐹 (·); step (𝑏) uses the fact
that each block 𝐵 is picked randomly with probability 𝑘/𝑛;
step (𝑐) uses the optimality condition of x𝑡+1 in (16); step (𝑑)
uses the Cauchy-Schwarz inequality; step (𝑒) uses ‖(x𝑡+1 −
x𝑡)‖2 = ‖(x𝑡+1 − x𝑡)𝐵‖2; step (𝑓) uses ‖(x𝑡+1 − x̄)𝐵‖ ≤√
𝑘‖(x𝑡+1 − x̄)𝐵‖∞ ≤

√
𝑘‖x𝑡+1 − x̄‖∞ ≤

√
𝑘(‖x𝑡+1‖∞ +

‖x̄‖∞) ≤ 2𝜌
√
𝑘.

Using the result in (17) and the sufficient decent condition
in (14), we derive the following results:

E[𝐹 (x𝑡+1)− 𝐹 (x̄)] ≤ E[𝜈
√︁

2
𝜃
(𝐹 (x𝑡)− 𝐹 (x𝑡+1))] (18)

Denoting ∆𝑡 , E[𝐹 (x𝑡)− 𝐹 (x̄)] and 𝐶 , 2𝜈2

𝜃
, we have the

following inequality:

(∆𝑡+1)2 ≤ 𝐶(∆𝑡 −∆𝑡+1)

Combining with Lemma 1, we have:

E[𝐹 (x𝑡)− 𝐹 (x̄)] ≤ max(4𝜈
2

𝜃
,

√︁
2𝜈2Δ0

𝜃
)/𝑡

Therefore, we obtain the upper bound of the number of
iterations to converge to a stationary point x̄ satisfying
𝐹 (x𝑡) − 𝐹 (x̄) ≤ 𝜖 with fixing the support set. Combing
the upper bound for the number of changes 𝐽 for the sup-
port set in (a), we naturally establish the actual number of
iterations for Algorithm 1.

(c) We now consider the case when 𝑓(·) is 𝜎-strongly
convex. We derive the following results:

E[𝐹 (x𝑡+1)− 𝐹 (x̄)]

(𝑎)

≤ E[−𝜎
2
‖x̄− x𝑡+1‖22 − ⟨x̄− x𝑡+1,∇𝑓(x𝑡+1)⟩]

(𝑏)

≤ E[1
2𝜎

‖∇𝑓(x𝑡+1)‖22]
(𝑐)
= E[1

2𝜎
‖(∇𝑓(x𝑡+1))𝐵‖22 × 𝑛

𝑘
]

(𝑑)
= E[1

2𝜎
‖𝜃(x𝑡+1 − x𝑡)𝐵‖22 × 𝑛

𝑘
]

= E[− 𝜃2𝑛
2𝜎𝑘

‖x𝑡+1 − x𝑡‖22]
(𝑒)

≤ E[𝜃
2𝑛

2𝜎𝑘
2
𝜃

(︀
𝐹 (x𝑡)− 𝐹 (x𝑡+1)]

)︀
(𝑓)
= E[𝜛

(︀
[𝐹 (x𝑡)− 𝐹 (x̄)]− [𝐹 (x𝑡+1)− 𝐹 (x̄)]

)︀
] (19)

where step (𝑎) uses the strong convexity of 𝑓(·); step (𝑏) uses
∀x,y, −𝜎

2
‖x‖22 − ⟨x,y⟩ ≤ 1

2𝜎
‖y‖22; step (𝑐) uses E[‖w𝐵‖22] =

𝑘
𝑛
‖w‖22; step (𝑑) uses the optimality of x𝑡+1; step (𝑒) uses

the sufficient condition in (14); step (𝑓) uses 𝜛 , 𝑛𝜃
𝑘𝜎

.

Rearranging terms for (19), we have: E[𝐹 (x𝑡+1)−𝐹 (x̄)]
E[𝐹 (x𝑡)−𝐹 (x̄)]

≤
𝜛

1+𝜛
= 𝛼. Solving the recursive formulation, we obtain:

E[𝐹 (x𝑡)− 𝐹 (x̄)] ≤ E[𝛼𝑡[𝐹 (x0)− 𝐹 (x̄)]],

and it holds that 𝑡 ≤ log𝛼

(︁
𝐹 (x𝑡)−𝐹 (x̄)

𝐹 (x0)−𝐹 (x̄)

)︁
in expectation. Using

similar techniques as in (b), we obtain (11).
�

11 PROOF OF THEOREM 3

Proof. (a) We first consider the case when 𝑓(·) is gener-
ally convex. We denote 𝑍𝑡 = {𝑖 : x𝑡

𝑖 = 0} and known that
the 𝑍𝑡 only changes for a finite number of times. We assume
that 𝑍𝑡 only changes at 𝑡 = 𝑐1, 𝑐2, ..., 𝑐𝐽 and define 𝑐0 = 0.
Therefore, we have:

𝑍0 = 𝑍1 =, ..., 𝑍−1+𝑐1 ̸= 𝑍𝑐1 = 𝑍1+𝑐1 = 𝑍2+𝑐1 =,

...,= 𝑍−1+𝑐𝑗 ̸= 𝑍𝑐𝑗 = ... ̸= 𝑍𝑐𝐽
= ...

with 𝑗 = 1, ..., 𝐽 . We denote x̄𝑐𝑗 as the optimal solution of
the following optimization problem:

min
x

𝑓(x), 𝑠.𝑡. x𝑍𝑐𝑗
= 0 (20)

with 1 ≤ 𝑗 ≤ 𝐽 .
The solution x𝑐𝑗 changes 𝑗 times, the objective values

decrease at least by 𝑗𝐷, where 𝐷 is defined in (9). Therefore,
we have:

𝐹 (x𝑐𝑗) ≤ 𝐹 (x0)− 𝑗 ×𝐷

Combing with the fact that 𝐹 (x̄) ≤ 𝐹 (x̄𝑐𝑗), we obtain:

0 ≤ 𝐹 (x𝑐𝑗)− 𝐹 (x̄𝑐𝑗) ≤ 𝐹 (x0)− 𝐹 (x̄)− 𝑗 ×𝐷 (21)

We now focus on the intermediate solutions x𝑐𝑗−1 , x1+𝑐𝑗−1 ,
..., x−1+𝑐𝑗 ,x𝑐𝑗 . Using part (b) in Theorem 2, we conclude
that to obtain an accuracy such that 𝐹 (x𝑐𝑗)−𝐹 (x̄𝑐𝑗) ≤ 𝐷, it

takes at most max

(︂
4𝜈2

𝜃
,

√︁
2𝜈2(𝐹 (x

𝑐𝑗)−𝐹 (x̄
𝑐𝑗))

𝜃

)︂
/𝐷 iterations

to converge to x̄𝑐𝑗 , that is,

𝑐𝑗 − 𝑐𝑗−1 ≤ max(4𝜈
2

𝜃
,

√︁
2𝜈2(𝐹 (x

𝑐𝑗)−𝐹 (x̄
𝑐𝑗))

𝜃
)/𝐷

≤ max(4𝜈
2

𝜃
,

√︁
2𝜈2(𝐹 (x0)−𝐹 (x̄)−𝑗×𝐷)

𝜃
)/𝐷(22)

Summing up the inequality in (22) for 𝑗 = 1, 2, ..., 𝐽 and
using the fact that 𝑗 ≥ 1 and 𝑐0 = 0, we obtain that:

𝑐𝐽 ≤ 𝐽
𝐷

×max(4𝜈
2

𝜃
,

√︁
2𝜈2(𝐹 (x0)−𝐹 (x̄)−𝐷)

𝜃
)

After 𝑐𝐽 iterations, Algorithm 1 becomes the proximal gradi-
ent method applied to the problem as in (20). Therefore, the
total number of iterations for finding a block-𝑘 stationary
point 𝑁1 is bounded by:

𝑁1

(𝑎)

≤ 𝑐𝐽 +max(4𝜈
2

𝜃
,

√︁
2𝜈2[𝐹 (x

𝑐𝐽)−𝐹 (x̄)]
𝜃

)/𝜖

(𝑏)

≤ 𝑐𝐽 +max(4𝜈
2

𝜃
,

√︁
2𝜈2[𝐹 (x0)−𝐹 (x̄)−𝐷]

𝜃
)/𝜖

= (𝐽
𝐷

+ 1
𝜖
)×max(4𝜈

2

𝜃
,

√︁
2𝜈2(𝐹 (x0)−𝐹 (x̄)−𝐷)

𝜃
)

where step (𝑎) uses the fact that the total number of iterations
for finding a stationary point after x𝑐𝐽

is upper bounded by

max(4𝜈
2

𝜃
,

√︁
2𝜈2[𝐹 (x

𝑐𝐽)−𝐹 (x̄)]
𝜃

)/𝜖; step (𝑏) uses (21) and 𝑗 ≥ 1.

(b) We now discuss the case when 𝑓(·) is strongly convex.
Using part (c) in Theorem 2, we have:

𝑐𝑗 − 𝑐𝑗−1 ≤ log𝛼
𝐷

𝐹 (x0)−𝐹 (x̄)
, (23)

Summing up the inequality (23) for 𝑗 = 1, 2, ..., 𝐽 , we obtain:

𝑐𝐽 ≤ log𝛼(
𝐷𝐽

(𝐹 (x0)−𝐹 (x̄))𝐽
) = 𝐽 log𝛼(

𝐷
(𝐹 (x0)−𝐹 (x̄))

)

Therefore, the total number of iterations 𝑁2 is bounded by:

𝑁2

(𝑎)

≤ 𝑐𝐽 + log𝛼(
𝜖

𝐹 (x
𝑐𝐽)−𝐹 (x̄)

)
(𝑏)

≤ 𝑐𝐽 + log𝛼(
𝜖

𝐹 (x0)−𝐷−𝐹 (x̄)
)

where step (𝑎) uses the fact that the total number of
iterations for finding a stationary point after x𝑐𝐽

is up-

per bounded by log𝛼

(︁
𝜖

𝐹 (x
𝑐𝐽)−𝐹 (x̄)

)︁
; step (𝑏) uses (21) that

0 ≤ 𝐹 (x0)− 𝐹 (x̄)− 𝑡×𝐷 and 𝑡 ≥ 1.
�

REPRODUCIBLE RESEARCH

We provide our code in the authors’ research webpage at:
https://yuangzh.github.io.

https://yuangzh.github.io

	Abstract
	1 Introduction
	2 The Proposed Block Decomposition Algorithm
	3 Optimality Analysis
	4 Convergence Analysis
	5 Discussions
	6 Experimental Validation
	7 Conclusions
	References
	8 A Useful Lemma
	9 Proof of Proposition 1
	10 Proof of Theorem 2
	11 Proof of Theorem 3

