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Introduction



Introduction

Optimization Problem:

min
x

f (x), s.t. ‖x‖0 ≤ s or min
x

f (x) + λ‖x‖0,

f (x): smooth, convex, its gradient is L-Lipschitz continuous
They can be rewritten as the following problem

min
x

F (x) , f (x) + h(x), with h(x) , hcons or hregu.

hcons(x) , IΨ(x), Ψ , {x|‖x‖0 ≤ s}, IΨ(x) = { 0, x ∈ Ψ
∞, x /∈ Ψ

These two problems are equivalent in the sense that λ ∝ 1
s .

Applications: compressive sensing, sparse coding, subspace
clustering
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Application: Compressed Sensing

Signal recovery problem under noisy observations:

min
x∈Rn

1
2
‖Φx− y‖22, s.t. ‖x‖0 ≤ s

Remarks.
1 Signal recovery problem:

min
x∈Rn

‖x‖0, s.t. Φx = y

2 Many applications: magnetic resonance imaging, single-pixel
camera
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Application: Sparse Logistic Regression

Sparse logistic regression model:

min
x∈Rn

m∑
i=1

log(1 + exp(−yi 〈si , x〉)), s.t. ‖x‖0 ≤ s

Remarks.
1 Tackle both binary and multiclass classification problems
2 Other alternative loss functions f (x) =

∑m
i=1 l(x, si , yi )

Zero-one loss: I (f (si ) = yi ) (I is the indicator function)
Slant loss: min(1,min(0, 0.5− f (si )yi )))
Hinge loss: max(0, 1− f (si )yi )
Perceptron loss: max(0,−f (si )yi )
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The Proposed Algorithm



The Proposed Algorithm

Input: the size of the working set k , an initial feasible solution x0.
Set t = 0.
while not converge do

S1 Employ some strategy to find a working set B of size k .
Denote B̄ , {1, ..., n} \ B
S2 Solve the following subproblem globally using combinatorial
search:

xt+1 ⇐ argminz F (z) + θ
2‖z− xt‖2, s.t. zB̄ = xt

B̄

S3 Increment t by 1
end
Algorithm 1: A Block Decomposition Algorithm for Sparse Opti-
mization
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Comments on the Algorithm

S1 Finding the working set
Random strategy. Select one combination (which contains k
coordinates) from the whole working set of size C k

n uniformly.
Greedy strategy. Pick top-k coordinates (as in c and d below)
that lead to the greatest descent when one variable is changed
(the rest variables are fixed) based on the current solution xt .

∀i = 1, ..., |Z |, Z , {i : xt
i = 0}, ci = minα F (xt + αei )− F (xt).

∀j = 1, ..., |Z̄ |, Z̄ , {j : xt
j 6= 0}, dj = F (xt + αej)− F (xt), α = −xt

j .
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Comments on the Algorithm

S2 The main procedure:

xt+1 ⇐ argminz F (z) + θ
2‖z− xt‖2, s.t. zB̄ = xt

B̄

1 Two New Strategies
a proximal point strategy: global convergence
an exhaustive search function: minimize the original function

2 Solving the Subproblem Globally
k unknown decision variables, a simple exhaustive search
An example: F (x) = 1

2x
TQx + 〈x,p〉+ λ‖x‖0

reduce to solving
∑k

i=0 C i
k linear systems
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Comparisons of the Methods

1 Relaxed approximation method

convex: f (x) + λ‖x‖1, f (x) + λ‖x‖tok−k
nonconvex: f (x) + λ‖x‖p, reweighted `1 norm

⇒ our method directly controls the sparsity of the solution
2 Greedy pursuit method

the solution MUST be initialized to zero
S = ∅, S = S ∪ i1, minxS f (x), S = S ∪ i2, minxS f (x), ...

⇒ our method is a greedy coordinate descent algorithm without
forcing the initial solution to zero
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Comparisons of the Methods

3 Combinatorial search method: global optimization methods

cutting plane methods
branch-and-cut methods

⇒ our method leverages the effectiveness of combinatorial
search method methods

4 Proximal gradient method

xk+1 = Proxγh(xk − γ∇f (xk))
with Proxh̄(a) = argminx

1
2‖x− a‖22 + h̄(x)

⇒ our method significantly outperforms proximal gradient
method
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Contributions

Contributions of this paper are three-fold:
1 Algorithmically: a new decomposition method, use

combinatorial search and coordinate descent
2 Theoretically:

optimality analysis: optimality hierarchy, finds stronger
stationary points (e.g. it finds stronger stationary points than
Beck and Eldar’s method 1)
convergence analysis: convergence, convergence rate

3 Empirically: state-of-the-art performance (e.g. generally
outperforms OMP method)

1Sparsity Constrained Nonlinear Optimization: Optimality Conditions and
Algorithms, SIAM Journal on Optimization, 2014.
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Optimality Analysis



Optimality Analysis

Basic Stationary Point
A solution x̆ is called a basic stationary point if the following holds.
h , hregu : x̆ = argminy f (y), s.t. yZ = 0;
h , hcons : x̆ = argminy f (y), s.t. |S | ≤ k , yZ = 0.
Here, S , {i |x̆i 6= 0}, Z , {j |x̆j = 0}.

L-Stationary Point
A solution x̀ is an L-stationary point if it holds that:
x̀ = argminx g(x, x̀) + h(x) with
g(x, z) , f (z) + 〈∇f (z), x− z〉+ L

2‖x− z‖22.

Block-k Stationary Point
A solution x̄ is a block-k stationary point if it holds that:
∀|B| = k , x̄ ∈ argminz∈Rn P(z; x̄,B) , {F (z), s.t. zB̄ = x̄B̄}
B̄ , {1, ..., n} \ B .
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Optimality Hierarchy

Relations between the three types of stationary point.
We have the following optimality hierarchy:

Basic Stat. Point
(1)⇐ L-Stat. Point

(2)⇐ Block-1 Stat. Point
(3)⇐

Block-2 Stat. Point ⇐ ...⇐ Block-n Stat. Point
(4)⇔

Optimal Point .

Basic Stationary Points

L-stationary Points

Block-k Stationary Points

Optimal Solution Points
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A Running Example

Optimization Problems:

min
x∈Rn

1
2x

TQx + xTp, s.t. ‖x‖0 ≤ 4

min
x∈Rn

1
2x

TQx + xTp + 0.01‖x‖0

n = 6, Q = ccT + I, p = 1, c = [1 2 3 4 5 6]T .

Number of points satisfying optimality conditions.

Basic-
Stat.

L-Stat. Block-1
Stat.

Block-2
Stat.

Block-3
Stat.

Block-4
Stat.

Block-5
Stat.

Block-6
Stat.

h , hcons. 57 14 – 2 1 1 1 1
h , hregu. 64 56 9 3 1 1 1 1
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Global Convergence for Sparse Optimization

Global Convergence.

Letting xt be the sequence generated by Algorithm 1, we have the
following results.
(i) It holds that:

F (xt+1)− F (xt) ≤ − θ
2‖x

t+1 − xt‖2, limt→∞ E[‖xt+1 − xt‖] = 0.

(ii) As t →∞, xt converges to the block-k stationary point x̄ in
expectation.
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Convergence rate when h , fcons

Optimization problem:

min
x

f (x), s.t. ‖x‖0 ≤ k

Convergence Rate for Sparsity Constrained Optimization

Let f (·) be a σ-strongly convex function. We assume that f (·) is
Lipschitz continuous such that ∀t, ‖∇f (xt)‖22 ≤ κ for some positive
constant κ. Denote α , nθ

kσ/(1+ nθ
kσ ). We have the following results:

E[F (xt)− F (x̄)] ≤ (F (x0)− F (x̄))αt + κ
2θ

α
1−α ,

and E[σ4 ‖x
t+1 − x̄‖22] ≤ n2θ

k (F (x0)− F (x̄))αt + n
k

κ
1−α .
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Convergence Rate When h , fregu (a)

Optimization problem:

min
x

f (x) + λ‖x‖0

Convergence Rate for Sparse Regularized Optimization.

(a) It holds that |xt
i | ≥ δ for all i with xt

i 6= 0. Whenever xt+1 6= xt ,
we have ‖xt+1 − xt‖22 ≥ kδ2

n and the objective value is decreased at
least by D. The solution changes at most J̄ times in expectation for
finding a block-k stationary point x̄. Here δ, D, and J̄ are
respectively defined as:

δ , min(ρ,
√

2λ/(θ + L),min(|x0|)), D , kθδ2
2n , J̄ , F (x0)−F (x̄)

D .

22 / 33



Convergence Rate When h , fregu (b)

Optimization problem:

min
x

f (x) + λ‖x‖0

Convergence Rate for Sparse Regularized Optimization.

(b) Assume that f (·) is generally convex, and it holds that
∀t, ‖xt‖∞ ≤ ρ. If the support set of xt does not changes for all
t = 0, 1, ...,∞, Algorithm 1 takes at most V1 iterations in
expectation to converge to a stationary point x̄ satisfying
F (xt)− F (x̄) ≤ ε. Moreover, Algorithm 1 takes at most V1 × J̄ in
expectation to converge to a stationary point x̄ satisfying
F (xt)− F (x̄) ≤ ε. Here, V1 is defined as:

V1 = max(4ν2
θ ,

√
2ν2(F (x0)−F (x̄))

θ )/ε, with ν , 2nρ
√

kθ
k .
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Convergence Rate When h , fregu (c)

Optimization problem:

min
x

f (x) + λ‖x‖0

Convergence Rate Sparse Regularized Optimization.

(c)Assume that f (·) is σ-strongly convex. If the support set of xt

does not changes for all t = 0, 1, ...,∞, Algorithm 1 takes at most
V2 iterations in expectation to converge to a stationary point x̄
satisfying F (xt)− F (x̄) ≤ ε. Moreover, Algorithm 1 takes at most
V2 × J̄ in expectation to converge to a stationary point x̄ satisfying
F (xt)− F (x̄) ≤ ε. Here, V2 is defined as:

V2 = logα(ε/(F (x0)− F (x̄))), with α , nθ
kσ/(1 + nθ

kσ ).
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Improved Convergence Rate When h , fregu

Optimization problem:

min
x

f (x) + λ‖x‖0, s.t. ‖x‖∞ ≤ ρ

Improved Convergence Rate for Sparse Regularized Optimization.

(a) Assume that f (·) is generally convex, Algorithm 1 takes at most
N1 iterations in expectation to converge to a block-k stationary
point x̄ satisfying F (xt)− F (x̄) ≤ ε, where

N1 = ( J̄
D + 1

ε )×max(4ν2
θ ,

√
2ν2(F (x0)−F (x̄)−D)

θ ).

(b) Assume that f (·) is σ-strongly convex, Algorithm 1 takes at
most N2 iterations in expectation to converge to a block-k stationary
point x̄ satisfying F (xt)− F (x̄) ≤ ε, where

N2 = J̄ logα( D
(F (x0)−F (x̄))

) + logα( ε
F (x0)−D−F (x̄)

).
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Sparsity Constrained Least Squares Problem

Optimization problems:

minx∈Rn 1
2‖Ax− b‖22, s.t. ‖x‖0 ≤ s

Compared Methods:
Proximal Gradient Method (PGM)
Accerlated Proximal Gradient Method (APGM)
Quadratic Penalty Method (QPM)
Subspace Pursuit (SSP)
Regularized Orthogonal Matching Pursuit (ROMP)
Orthogonal Matching Pursuit (OMP)
Compressive Sampling Matched Pursuit (CoSaMP)
Convex `1 Approximation Method (CVX-`1)
Proposed Decomposition Method (DEC-RiGj) 2

2Selecting i coordinates using Random strategy and j coordinates using Greedy strategy
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Sparsity Constrained Least Squares Problem

Conclusions:
DEC is more effective than {PGM, APGM}. As k becomes
larger, higher accuracy is achieved.
DEC-R0G2 converges quickly but it leads to worse solution
quality than DEC-R2G0. A combined strategy is preferred.
DEC generally takes less than 30 seconds to converge.
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Figure: Convergence curve and computional efficiency for solving sparsity constrained least squares
problems on different data sets with different s.
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Sparsity Constrained Least Squares Problem

Conclusions:
IHT methods {PGM, APGM, QPM} lead to bad performance.
OMP and ROMP sometimes achieve bad accuracy.
DEC significantly and consistently outperforms the greedy
methods on many data sets.

10 20 30 40 50

Sparsity

0.5

1

1.5

2

O
bj

ec
tiv

e

104

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

10 20 30 40 50

Sparsity

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e

104

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

10 20 30 40 50

Sparsity

0.5

1

1.5

O
bj

ec
tiv

e

104

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

10 20 30 40 50

Sparsity

0.5

1

1.5

2

2.5

3

O
bj

ec
tiv

e

106

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

10 20 30 40 50

Sparsity

2.4

2.6

2.8

3

O
bj

ec
tiv

e

104

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

10 20 30 40 50

Sparsity

2.2

2.4

2.6

2.8

3

O
bj

ec
tiv

e

104

CVX-L1
SSP
ROMP
OMP
COSAMP
PGM
QPM
DEC-R12G4

Figure: Experimental results on sparsity constrained least squares problems on different data sets
with varying the sparsity of the solution.
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Sparse Regularized Least Squares Problem

Optimization problems:

minx
1
2‖Ax− b‖22 + λ‖x‖0

Compared Methods:
PGM-`0: PGM for `0 Problem
APGM-`0: Accerlated PGM for `0 Problem
PGM-`1: PGM for `1 Problem
PGM-`p: PGM for `p Problem (p = 1

2)
Proposed Decomposition Method (DEC-RiGj)

30 / 33



Sparse Regularized Least Squares Problem

Conclusions:
PGM-`p achieves better performance than PGM-`1.
DEC generally outperforms the other methods in all data sets.

PGM-`0 APGM-`0 PGM-`1 PGM-`p DEC-R10G2

results on random-256-1024
λ = 100 6.9e+2 2.4e+4 7.8e+2 4.0e+2 4.8e+2
λ = 101 2.3e+3 3.8e+4 3.3e+3 1.9e+3 2.2e+3
λ = 102 2.0e+4 1.3e+5 1.8e+4 1.1e+4 9.4e+3
λ = 103 2.5e+4 1.0e+6 2.4e+4 2.4e+4 2.4e+4

results on random-256-2048
λ = 100 1.3e+3 2.7e+4 1.4e+3 6.0e+2 5.4e+2
λ = 101 2.9e+3 4.5e+4 4.9e+3 2.2e+3 2.2e+3
λ = 102 2.2e+4 2.3e+5 2.1e+4 1.1e+4 9.5e+3
λ = 103 2.7e+4 2.1e+6 2.6e+4 2.7e+4 2.6e+4

results on e2006-5000-1024
λ = 100 8.5e+3 3.3e+4 1.1e+4 1.8e+4 7.3e+3
λ = 101 9.4e+3 4.2e+4 3.2e+4 3.2e+4 8.6e+3
λ = 102 3.2e+4 1.3e+5 3.2e+4 3.2e+4 1.3e+4
λ = 103 1.8e+4 1.1e+6 3.2e+4 3.2e+4 1.1e+4

results on e2006-5000-2048
λ = 100 3.1e+3 3.4e+4 4.4e+3 1.4e+4 2.6e+3
λ = 101 5.2e+3 5.3e+4 1.2e+4 1.2e+4 4.5e+3
λ = 102 3.2e+4 2.4e+5 3.2e+4 3.2e+4 7.0e+3
λ = 103 1.8e+4 2.1e+6 3.2e+4 3.2e+4 1.3e+4

PGM-`0 APGM-`0 PGM-`1 PGM-`p DEC-R10G2

results on random-256-1024-C
λ = 100 9.6e+2 5.7e+6 1.0e+3 1.0e+3 8.9e+2
λ = 101 8.1e+3 3.5e+6 1.0e+4 8.2e+3 7.3e+3
λ = 102 5.8e+4 6.2e+6 8.9e+4 5.4e+4 5.1e+4
λ = 103 2.5e+5 5.3e+6 3.7e+5 2.2e+5 2.0e+5

results on random-256-2048-C
λ = 100 1.9e+3 5.7e+6 2.0e+3 1.9e+3 1.2e+3
λ = 101 1.7e+4 7.7e+6 2.0e+4 1.6e+4 9.2e+3
λ = 102 8.4e+4 4.2e+6 1.6e+5 6.4e+4 5.3e+4
λ = 103 2.5e+5 9.6e+6 6.3e+5 2.5e+5 2.4e+5

results on e2006-5000-1024-C
λ = 100 3.0e+4 3.3e+4 2.8e+4 2.9e+4 2.2e+4
λ = 101 3.2e+4 4.2e+4 3.2e+4 3.2e+4 2.3e+4
λ = 102 3.2e+4 1.3e+5 3.2e+4 3.2e+4 2.9e+4
λ = 103 3.2e+4 1.1e+6 3.2e+4 3.2e+4 3.2e+4

results on e2006-5000-2048-C
λ = 100 2.9e+4 3.4e+4 2.6e+4 2.7e+4 1.7e+4
λ = 101 3.2e+4 5.3e+4 3.2e+4 3.2e+4 2.1e+4
λ = 102 3.2e+4 2.4e+5 3.2e+4 3.2e+4 2.7e+4
λ = 103 3.2e+4 2.1e+6 3.2e+4 3.2e+4 3.2e+4

Table: Comparisons of objective values of all the methods for solving the sparse regularized least
squares problem. The 1st , 2nd , and 3rd best results are colored with red, blue and green, respectively.

31 / 33



Sparse Regularized Least Squares Problem

Conclusions:
DEC takes several times longer to converge. (70 seconds)
The computational time is acceptable and pays off as DEC
achieves significantly higher accuracy.
The main bottleneck: small-sized subproblems (O(2k)).
k is a parameter to balance the efficacy and efficiency.

PGM-`0 APGM-`0 PGM-`1 PGM-`p DEC-R10G2

r.-256-1024 12± 3 13± 3 5± 3 15± 3 36± 3
r.-256-2048 11± 3 11± 3 9± 3 16± 3 66± 7
e.-5000-1024 12± 3 11± 3 8± 3 14± 3 45± 3
e.-5000-2048 12± 3 10± 3 12± 3 5± 3 65± 8

Table: Comparisons of average times (in seconds) of all the methods on different data sets for solving
the sparse regularized least squares problem.
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