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Introduction



Introduction

Optimization Problem:

4/33

min f(x), s.t. [|x]lo < s| or |min f(x)+ Al|x]|o,
X X

@ f(x): smooth, convex, its gradient is L-Lipschitz continuous

@ They can be rewritten as the following problem

min F(x) £ f(x) + h(x), with h(x) £ Acons OF Aregu-
X

heons(x) = hy(x), W = {x[[[x[lo < s}, h(x) = { % gV
@ These two problems are equivalent in the sense that A %

@ Applications: compressive sensing, sparse coding, subspace
clustering



Application: Compressed Sensing

Signal recovery problem under noisy observations:
min 1H<I>x —y|5, s.t. [|x]o <s
xeRn 2 -

Remarks.

© Signal recovery problem:

i o dx =
min [x[lo, s.t. x =y

© Many applications: magnetic resonance imaging, single-pixel
camera

G =i e N1
F" Incoherent linear projection : _: Mx1 ! % sparse
- — measurements signal

K < M << N nonzero

entries
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Application: Sparse Logistic Regression

Sparse logistic regression model:

min Zlog 1+ exp(—y;(si,x))), s.t. [xflo <'s
xRN

Remarks.

© Tackle both binary and multiclass classification problems
@ Other alternative loss functions f(x) = > I(x, si, yi)

Zero-one loss: I(f(s;) = y;) (I is the indicator function)
Slant loss: min(1, min(0,0.5 — f(s;)yi))) °

Hinge loss: max(0,1 — f(s;)y;) v
Perceptron loss: max(0, —f(s;)y;) n8

——zero-one
——hinge
logis
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The Proposed Algorithm



The Proposed Algorithm

Input: the size of the working set k, an initial feasible solution x°.

Set t = 0.

while not converge do
S1 Employ some strategy to find a working set B of size k.

Denote B £ {1,...,n} \ B
S2 Solve the following subproblem globally using combinatorial
search:

xt+ < argmin, F(z) + 4|z — x|?, s.t. 25 = x5

S3 Increment t by 1

end
Algorithm 1: A Block Decomposition Algorithm for Sparse Opti-

mization
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Comments on the Algorithm

S1 Finding the working set
e Random strategy. Select one combination (which contains k
coordinates) from the whole working set of size C¥ uniformly.

e Greedy strategy. Pick top-k coordinates (as in ¢ and d below)
that lead to the greatest descent when one variable is changed
(the rest variables are fixed) based on the current solution x*.

<
I
“I—‘

wolZly ZE{i:xt =0}, ¢ =min, F(x! + ae;) — F(x}).

Vi=1,.,]Z|, Z2{j: x; # 0}, d; = F(x" + aej) — F(x), o= —x}.
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Comments on the Algorithm

S2 The main procedure:

xi*1 < argmin, F(z) + 4|z — x!|]?, s.t. z5 = x5

©@ Two New Strategies

e a proximal point strategy: global convergence
e an exhaustive search function: minimize the original function

@ Solving the Subproblem Globally

e k unknown decision variables, a simple exhaustive search
o An example: F(x) = 2x7Qx + (x, p) + Al|x[|o
e reduce to solving Zf'(:o C} linear systems
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Comparisons and Contributions



Comparisons of the Methods

@ Relaxed approximation method

o convex: f(x)+ Alx|[1, F(X) + Al[X]tok—k
e nonconvex: f(x)+ Al|x||,, reweighted ¢; norm

= our method directly controls the sparsity of the solution
@ Greedy pursuit method

o the solution MUST be initialized to zero
o S=0, S=SUi, ming f(x), S=SUh, ming f(x),...

= our method is a greedy coordinate descent algorithm without
forcing the initial solution to zero
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Comparisons of the Methods

© Combinatorial search method: global optimization methods

e cutting plane methods
e branch-and-cut methods

= our method leverages the effectiveness of combinatorial
search method methods

@ Proximal gradient method
o xK+1 = Prox. (xk — 4V f(x)) B
o with Proxz(a) = argmin, 1||x — a3 + h(x)

= our method significantly outperforms proximal gradient
method
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Contributions

Contributions of this paper are three-fold:

@ Algorithmically: a new decomposition method, use
combinatorial search and coordinate descent
@ Theoretically:
e optimality analysis: optimality hierarchy, finds stronger
stationary points (e.g. it finds stronger stationary points than
Beck and Eldar's method 1)
o convergence analysis: convergence, convergence rate
@ Empirically: state-of-the-art performance (e.g. generally
outperforms OMP method)

1Sparsity Constrained Nonlinear Optimization: Optimality Conditions and
Algorithms, SIAM Journal on Optimization, 2014.
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Optimality Analysis



Optimality Analysis

Basic Stationary Point

A solution X is called a basic stationary point if the following holds.
h £ heegy : X = argminy f(y), s.t. y; =0;

h £ heons : X = argminy f(y), s.t. |S| < k, y; =0.

Here, S = {i|%; # 0}, Z = {j|%; = 0}.

L-Stationary Point

A solution x is an L-stationary point if it holds that:
X = argmink g(x,X) + h(x) with
g(x,2) £ f(2) + (VF(2).x — 2) + 5]lx — z[}3.

Block-k Stationary Point

A solution X is a block-k stationary point if it holds that:
V|B| = k, X € argminzern P(z; X, B) £ {F(2), s.t. zg = Xz}
B21{1,..,n}\B.
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Optimality Hierarchy

Relations between the three types of stationary point.

We have the following optimality hierarchy:
| Basic Stat. Point | (<1:) | L-Stat. Point | @ | Block-1 Stat. Point | @

Block-2 Stat. Point | S | Block-n Stat. Point | Q
Optimal Point|.

( Optimal Solution Points
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A Running Example

Optimization Problems:

xrg]iRrL %XTQX—i-XTp, s.t. ||x|lo < 4

XrgliRnn IxTQx +x"p + 0.01x|o

n=6Q=cc’ +I,p=1c=[123456]".

Number of points satisfying optimality conditions.

Basic- L-Stat. Block-1 Block-2 Block-3 Block-4 | Block-5 Block-6
Stat. Stat. Stat. Stat. Stat. Stat. Stat.
h2 heons. | 57 14 - 2 1 1 1 1
h 2 g | 64 56 9 3 1 1 1 1

18 / 33



Convergence Analysis



Global Convergence for Sparse Optimization

Global Convergence.

Letting x* be the sequence generated by Algorithm 1, we have the
following results.
(i) It holds that:

F(x1) = F(xt) < =5[x" = x|, limeoo E[]x — x*[[] = 0.

(i1) As t — oo, x* converges to the block-k stationary point X in
expectation.
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A
Convergence rate when h = f s

Optimization problem:

min f(x), s.t. |[x]jo < k

Convergence Rate for Sparsity Constrained Optimization
Let f(-) be a o-strongly convex function. We assume that f(+) is

Lipschitz continuous such that Vt, |VF(x!)||3 < k for some positive
constant x. Denote v = 72 /(1+ 2£). We have the following results:

E[F(x") = F(R)] < (F() = F(R)a’ + 5125,
and  E[g]Ix"" — %|3] < RA(F(°) — F(R))a’ + 255
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Convergence Rate When h £ £y, (a)

Optimization problem:

mxin f(x) + Al[x]lo

Convergence Rate for Sparse Regularized Optimization.

(a) It holds that |xf| > § for all i with x! # 0. Whenever xt*1 =£ xt,
we have ||xtT1 — xt||3 > k—,‘iz and the objective value is decreased at
least by D. The solution changes at most J times in expectation for
finding a block-k stationary point X. Here 6, D, and J are

respectively defined as:

2 min(p, v/2)/(0 + L), min(|x°])), D £ k622§ & FEFE)

22 /33



Convergence Rate When h £ £, (b)

Optimization problem:

min £(x) + Alx]lo

Convergence Rate for Sparse Regularized Optimization.

(b) Assume that f(-) is generally convex, and it holds that

Vt, [|x]lco < p. If the support set of x* does not changes for all
t=0,1,...,00, Algorithm 1 takes at most V/ iterations in
expectation to converge to a stationary point X satisfying

F(xt) — F(X) < e. Moreover, Algorithm 1 takes at most V; x J in
expectation to converge to a stationary point X satisfying

F(x*) — F(X) < €. Here, V; is defined as:

Vi = max(%, \/ —2V2(F(XZ)_F(’_()))/6, with v £ —2””;@0.
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Convergence Rate When h £ f.ey, (c)

Optimization problem:

mxin f(x) + Al[x]lo

Convergence Rate Sparse Regularized Optimization.

(c)Assume that f(-) is o-strongly convex. If the support set of x*
does not changes for all t = 0,1, ..., 00, Algorithm 1 takes at most
V5, iterations in expectation to converge to a stationary point X
satisfying F(x!) — F(X) < e. Moreover, Algorithm 1 takes at most
Vb x J in expectation to converge to a stationary point X satisfying
F(x') — F(X) < e. Here, V, is defined as:

Vs = log, (¢/(F(x°) — F(X))), with a2 22 /(1 4+ ).
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Improved Convergence Rate When h £ f,,

Optimization problem:

min £(x) + Allx[lo, s:t. [[X]lcc < p

Improved Convergence Rate for Sparse Regularized Optimization.

(a) Assume that f(-) is generally convex, Algorithm 1 takes at most
Ny iterations in expectation to converge to a block-k stationary
point X satisfying F(x') — F(X) < ¢, where

M= (% + 1) x max(452, | 22ECIZFI=D))

(b) Assume that f(-) is o-strongly convex, Algorithm 1 takes at
most N iterations in expectation to converge to a block-k stationary
point X satisfying F(x") — F(X) < ¢, where
— D
Nz = Jloga((7goy=rray) + 108 Froy=p-r))-
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Sparsity Constrained Least Squares Problem

Optimization problems:
Minycrn %HAX — b3, s.t. x|lo < s

Compared Methods:

@ Proximal Gradient Method (PGM)

@ Accerlated Proximal Gradient Method (APGM)

e Quadratic Penalty Method (QPM)

@ Subspace Pursuit (SSP)
Regularized Orthogonal Matching Pursuit (ROMP)
Orthogonal Matching Pursuit (OMP)
Compressive Sampling Matched Pursuit (CoSaMP)
Convex £1 Approximation Method (CVX-¢;)
Proposed Decomposition Method (DEC-RIiGj) 2

Selecting i coordinates using Random strategy and j coordinates using Greedy strategy
27 / 33
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Sparsity Constrained Least Squares Problem

Conclusions:
e DEC is more effective than {PGM, APGM}. As k becomes
larger, higher accuracy is achieved.
e DEC-R0G2 converges quickly but it leads to worse solution
quality than DEC-R2G0. A combined strategy is preferred.
@ DEC generally takes less than 30 seconds to converge.

><10% »10%
., - PGM 12000 R Y = PGM
1.6 AN APGM \\ APGM 25
N\, ——QPM == QPM
©1a N —-DEC-ROG2 || @ 10000 Y |=-pEcRoc2 (1 @ o
— . - DEC-ROG4 || B — DEC-ROGA || =
=1 \ = . =1
o . DEC-R2G0 || 8. 8000 \ |7 pECR2c0 || 8
=12 N |=-DEC-R4cO |{ = »=DEC-RaGO || =
<] =] <]
Vo= DEC-R12G4 5000 = DEC-R12G4 [ .
1 ———— = “m ~
i
——— 4000 \ 0.5
1 351020 6C 1 351020 6C
»10% »10%
3.2 -
— PGM = = PGM = PGM
3.15 APGM ~ ~en APGM 3 \ APGM
—==QPM 3 * == QPM <|=-aoPm
o 31 ~ === DEC-R0G2 3 == = DEC-ROG2 3 \ == = DEC-R0OG2
=1 = DEC-R0G4 || = ~ DEC-ROG4 || = 2.8 ~ DEC-ROG4
8 a.0s —— DEC-R2GO M 8 2.8 pec-r2co [ 8 \ DEC-R2GO
= ~=-DEC-R4GO || & = |-=-DEC-R4GO || & == DEC-R4GO
© 3 *._ |=pecrizes © ~—DbEc-r12G4[T © 26 = DEC-R12G4
[ A — 2.6 - -
2.95 e | 24
1 351020 6C 1 351020 6C 1 351020 60

Time (seconds)

Time (seconds)

Time (seconds)

FIgU re. Convergence curve and computional efficiency for solving sparsity constrained least squares
problems on different data sets with different s.
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Sparsity Constrained Least Squares Problem

Conclusions:
@ IHT methods {PGM, APGM, QPM} lead to bad performance.
@ OMP and ROMP sometimes achieve bad accuracy.
e DEC significantly and consistently outperforms the greedy
methods on many data sets.

a ’
% 10° 2.5 240
VXL
R e SSP
- ROMP
[<2) [<23 <5
15 — -omp
£ = cosave || =
—v—PGM
) 2 = |2
1 == DEC-R12G4
o o 1 o
05 05
3
3 3
25
[<2) [<&] [<&]
= 2 =28 =28
k=1 k=1 k=1
L5 L2 2,26
= =26 =
S} 1 o o 2.4
05 2.4 22
10 20 30 40 5C 10 20 30 40 5C 10 20 30 40 50
Sparsity Sparsity Sparsity

FIgU €. Experimental results on sparsity constrained least squares problems on different data sets
with varying the sparsity of the solution.
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Sparse Regularized Least Squares Problem

Optimization problems:
ing 2||[Ax — b||3 + A
miny 5[|Ax — bl|3 + Al[x[|o

Compared Methods:
o PGM-£y: PGM for £y Problem
o APGM-{gy: Accerlated PGM for ¢y Problem
o PGM-¢1: PGM for ¢1 Problem
o PGM-{,: PGM for ¢, Problem (p = 3)
@ Proposed Decomposition Method (DEC-RiGj)
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Sparse Regularized Least Squares Problem

Conclusions:
@ PGM-/, achieves better performance than PGM-/;.

e DEC generally outperforms the other methods in all data sets.

[ powre | avcuio | pamss | pows, | Decricez | | [ omto | Aramsy | powss | ramr, | DECRiG
results on random-256-1024 results on random-256-1024-C
A=100 | 6.9e+2 | 2.4e+4 | 7.8e+2 | 4.0e+2 | 4.8e+2 A=100[ 0.6e+2 | 5.7e+6 | 1.0e+3 | 1.0e+3 | 8.9e+2
A=10' | 2.3e+3 | 3.8e+4 | 3.3e+3 | 1.9e+3 | 2.2e+3 A=10! | 8.1e+3 | 3.5e+6 | L0et+4 | 8.2e+3 | 7.3e+3
A=102 | 2.0e+4 | 1.3e+5 | 1.8e+4 | 1.1e+4 | 9.4e+3 A=10? | 5.8e+4 | 6.2e+6 | 8.9e+4 | 5.4e+4 | 5.let+4
A=10° | 25e+4 | 1.0e+6 | 2.4e+4 | 24e+4 | 24et+d A =10 | 2.5e+5 | 5.3e+6 | 3.7e+5 | 2.2e+5 | 2.0e+5
results on random-256-2048 results on random-256-2048-C
X=100 [ 1.3e+3 | 2.7e+4 | L4e+3 | 6.0e+2 | 5.4e+2 A =100 [ 1.9¢+3 | 5.7e+6 | 2.0e+3 | 1.9e+3 | 1.2e+3
A=10' | 2.9e+3 | 4.5e+4 | 4.9e+3 | 2.2e+3 | 2.2e+3 A=10! | 1.7e+4 | 7.7e+6 | 2.0e+4 | 1.6e+4 | 9.2¢+3
A=102 | 2.2e+4 | 2.3e+5 | 2.1e+4 | 1.1e+4 | 9.5e+3 A=10? | 8.4e+4 | 4.2e+6 | 1.6e+5 | 6.4e+4 | 5.3e+4
A=10° | 2.7e+4 | 2.1e+6 | 2.6e+4 | 2.7e+4 | 2.6e+4 A =10 | 2.5e+5 | 9.6e+6 | 6.3e+5 | 2.5e+5 | 2.4e+5
results on €2006-5000-1024 results on €2006-5000-1024-C
X =100 [ 8.5e+3 | 3.3e+4 | Llet4 | 1.8e+4 | 7.3e+3 A=100 | 3.0e+4 | 3.3e+4 | 2.8e+4 | 2.9e+4 | 2.2e+4
A=10' | 9.4e+3 | 4.2e+4 | 3.2e+4 | 3.2e+4 | 8.6e+3 A =101 | 3.2e+4 | 4.2e+4 | 3.2e+4 | 3.2e+4 | 2.3e+4
A=10? | 3.2e+4 | 13e+5 | 3.2e+4 | 3.2e+4 | 13e+4 A=10% | 3.2e+4 | 1.3e+5 | 3.2e+4 | 3.2e+4 | 2.9e+4
A=10° | 1.8e+4 | 1.1e+6 | 3.2e+4 | 3.2e+4 | 1.1et+4 A =10 | 3.2e+4 | 1.1e+6 | 3.2e+4 | 3.2e+4 | 3.2e+4
results on €2006-5000-2048 results on €2006-5000-2048-C
A=100 [ 3.1e+3 | 3.4e+4 | 4.4e+3 | 14e+4 | 2.6e+3 A=100] 2.9e+4 [ 3.4et+4 [ 2.6e+4 [ 2.7e+4 | 1.7e+4
A=10' | 5.2e+3 | 5.3e+4 | 1.2e+4 | 1.2e+4 | 4.5e+3 A=10' | 3.2e+4 | 5.3e+4 | 3.2e+4 | 3.2e+4 | 2.le+4
A =102 | 3.2e+4 | 2.4e+5 | 3.2e+4 | 3.2e+4 | 7.0e+3 A=10% | 3.2e+4 | 2.4e+5 | 3.2e+4 | 3.2e+4 | 2.7e+4
A=10° | 1.8e+4 | 2.1e+6 | 3.2e+4 | 3.2e+4 | 1.3e+4 A =10 | 3.2e+4 | 2.1e+6 | 3.2e+4 | 3.2e+4 | 3.2e+4

Ta ble: Comparisons of objective values of all the methods for solving the sparse regularized least

squares problem. The 15¢, 2'"1, and 3"’ best results are colored with red, blue and green, respectively.
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Sparse Regularized Least Squares Problem

Conclusions:
o DEC takes several times longer to converge. (70 seconds)

@ The computational time is acceptable and pays off as DEC
achieves significantly higher accuracy.

@ The main bottleneck: small-sized subproblems (O(2%)).

@ k is a parameter to balance the efficacy and efficiency.

PGM-£o APGM-£o PGM-/{y PGM-£p, DEC-R10G2
r-256-1024 | 12£3 | 13£3 | 5+3 | 15+3 | 36+3
r-256-2048 | 11£3 | 11£3 | 9+3 | 16+3 | 667

e-5000-1024 | 12+3 | 11+3 | 8+£3 | 14+3 | 453

e.-5000-2048 | 12+3 | 10+3 | 12+3 | 5£3 | 658

Table: Comparisons of average times (in seconds) of all the methods on different data sets for solving
the sparse regularized least squares problem.
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