Coordinate Descent Methods for DC Minimization: Optimality Conditions and Global Convergence

Ganzhao Yuan

Peng Cheng Laboratory, China

Outline of This Talk

Introduction

- Ocordinate Descent Methods
- Theoretical Analysis
- A Breakpoint Searching Method
- Second Second
- **6** Discussions and Extensions

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

The DC minimization problem:

$$\min_{\mathbf{x}\in\mathbb{R}^n} \mathcal{F}(\mathbf{x}) \triangleq f(\mathbf{x}) + h(\mathbf{x}) - g(\mathbf{x})$$
(1)

Assumptions

• $f(\cdot)$ is convex and continuously differentiable:

$$\forall \mathbf{x}, \eta, \ f(\mathbf{x} + \eta e_i) \leq f(\mathbf{x}) + \langle \nabla_i f(\mathbf{x}), \ \eta e_i) + \frac{\mathbf{c}_i}{2} \| \eta e_i \|_2^2$$

 $e_i \in \mathbb{R}^n$ is an indicator vector with one on the *i*-th entry and zero everywhere else.

- $h(\cdot) = \sum_{i=1}^{n} h_i(\mathbf{x}_i)$ is convex and coordinate-wise separable.
- g(·) is convex and its associated proximal operator can be computed exactly:

$$\min_{\eta \in \mathbb{R}} p(\eta) \triangleq \frac{a}{2}\eta^2 + b\eta + h_i(\mathbf{x} + \eta e_i) - g(\mathbf{x} + \eta e_i),$$

1 ℓ_p Norm Generalized Eigenvalue Problem

$$\max_{\mathbf{x}} \|\mathbf{G}\mathbf{x}\|_{p}, \ s.t. \ \mathbf{x}^{T}\mathbf{Q}\mathbf{x} = 1$$
$$\Leftrightarrow \quad \bar{\mathbf{x}} = \arg\min_{\mathbf{x}} \ \frac{\alpha}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} - \|\mathbf{G}\mathbf{x}\|_{p},$$

② Generalized Linear Regression

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\sigma(\mathbf{G}\mathbf{x}) - \mathbf{y}\|_F^2 \\ \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\sigma(\mathbf{G}\mathbf{x})\|_2^2 - \langle \mathbf{1}, \sigma(\operatorname{diag}(\mathbf{y})\mathbf{G}\mathbf{x}) \rangle + \frac{1}{2} \|\mathbf{y}\|_2^2 \end{split}$$

RELU Neural Network: $\sigma(t) = \max(0, t)$ Phase Retrieval: $\sigma(t) = |t|$.

Examples

Approximate Sparse Optimization

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_{2}^{2}, \ s.t. \ \|\mathbf{x}\|_{0} \le s$$

Using the fact that: $\|\mathbf{x}\|_0 \le s \Leftrightarrow \|\mathbf{x}\|_1 = \sum_{i=1}^s |\mathbf{x}_{[i]}|$, we have the following equivalent DC problem:

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \rho(\|\mathbf{x}\|_{1} - \sum_{i=1}^{s} |\mathbf{x}_{[i]}|)$$

Approximate Binary Optimization

$$\min_{\mathbf{x} \in \{-1,+1\}^n} \ \frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_2^2$$

Using the fact that: $\mathbf{x} \in \{-1, +1\}^n \Leftrightarrow -1 \leq \mathbf{x} \leq 1, \|\mathbf{x}\|_2^2 = n$, we have the following equivalent DC problem:

we have the following equivalent DC problem:

$$\min_{\|\mathbf{x}\|_{\infty} \leq 1} \frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \rho(\sqrt{n} - \|\mathbf{x}\|)$$

Related Topics of This Paper

- OC programming
- 2 Coordinate Descent Methods
- **③** Iterative Majorization Minimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Provable Nonconvex Algorithms

DC programming

- An extension of convex maximization over a convex set, closely related to CCCP and alternating minimization
- The class of DC functions is very broad, considered in global optimization
- Recent developments focus on local solution methods (proximal bundle DC methods, double bundle DC methods, inertial proximal methods, enhanced proximal methods)
- Many applications (sparse PCA, variable selection, single source localization, piecewise linear programming)

Coordinate descent methods

- A popular method for solving large-scale problems
- Enjoys faster convergence, avoids tricky parameters tuning, allows for easy parallelization
- Well studied for convex optimization (Lasso, SVM, NMF, PageRank)
- Extended to solve nonconvex problems (penalized regression, eigenvalue complementarity problem, long norm minimization, resource allocation problem, leading eigenvector computation, sparse phase retrieval)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Iterative Majorization Minimization

(日) (문) (문) (문) (문)

- Lipschitz gradient surrogate
- Proximal gradient surrogate
- OC programming surrogate
- ovariational surrogate
- saddle point surrogate
- Jensen surrogate
- quadratic surrogate
- 8 Frank-Wolfe surrogate
- Output cubic surrogate

Provable Nonconvex Algorithms

find stronger stationary points

- \bullet second-order stationary point \in first-order stationary point
- block-k stationary point ∈ coordinate-wise stationary point ∈
 Lipschitz stationary point
- Onvergence analysis
 - Kurdyka-Łojasiewicz inequality
 - weakly convex, a regularity condition, a sharpness condition

• Luo-Tseng error bound assumption

Related Work

Multi-Stage Convex Relaxation

$$\mathbf{x}^{t+1} = rg\min_{\mathbf{x}} f(\mathbf{x}) + h(\mathbf{x}) - \langle \mathbf{x} - \mathbf{x}^t, \ \mathbf{g}^t
angle, \ \mathbf{g}^t \in \partial g(\mathbf{x}^t)$$

Proximal DC algorithm (PDCA)

$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} \mathcal{Q}(\mathbf{x}, \mathbf{x}^t) + h(\mathbf{x}) - \langle \mathbf{x} - \mathbf{x}^t, \mathbf{g}^t \rangle$$

$$\mathcal{Q}(\mathbf{x}, \mathbf{x}^t) \triangleq f(\mathbf{x}^t) + \langle \nabla f(\mathbf{x}^t), \ \mathbf{x} - \mathbf{x}^t \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^t\|_2^2$$

Toland's duality method

$$\min_{\mathbf{y}} \bar{g}^*(\mathbf{y}) - f^*(\mathbf{A}^T \mathbf{y}) - h^*(\mathbf{A}^T \mathbf{y})$$

Subgradient descent method

$$\mathbf{x}^{t+1} = \mathcal{P}(\mathbf{x}^t - \eta^t \mathbf{g}^t)$$

Contributions

- A new coordinate descent method based on sequential nonconvex approximation
- Coordinate-wise optimality condition is always stronger than the critical/directional point condition
- Inear convergence rate
- A breakpoint searching method for computing the proximal operator
- Stensive experiments on some statistical learning tasks
- **O** Several important discussions and extensions

Coordinate Descent Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Coordinate Descent Methods

The Coordinate Descent Methods:

$$ar{\eta}^t = \operatorname{arg\,min}_{\eta \in \mathbb{R}} \ f(\mathbf{x}^t + \eta e_{i^t}) + h(\mathbf{x}^t + \eta e_{i^t}) - g(\mathbf{x}^t + \eta e_{i^t})$$

 $\mathbf{x}^{t+1} = \mathbf{x}^t + ar{\eta}^t e_{i^t}$

Choosing the Majorization Function

$$f(\mathbf{x}^{t} + \eta e_{i^{t}}) \leq S_{i^{t}}(\mathbf{x}^{t}, \eta) \triangleq f(\mathbf{x}^{t}) + \langle \nabla f(\mathbf{x}^{t}), \eta e_{i^{t}} \rangle + \frac{c_{i^{t}}}{2}\eta^{2},$$

$$-g(\mathbf{x}^{t} + \eta e_{i^{t}}) \leq \mathcal{R}_{i^{t}}(\mathbf{x}^{t}, \eta) \triangleq -g(\mathbf{x}^{t}) - \langle \partial g(\mathbf{x}^{t}), (\mathbf{x}^{t} + \eta e_{i^{t}}) - \mathbf{x}^{t} \rangle.$$

The two CD methods:

 $NonConvex: \quad \bar{\eta}^{t} = \arg\min_{\eta} \ \mathcal{S}_{i^{t}}(\mathbf{x}^{t},\eta) + h_{i^{t}}(\mathbf{x}^{t}+\eta e_{i^{t}}) - g(\mathbf{x}^{t}+\eta e_{i^{t}})$ $Convex: \quad \bar{\eta}^{t} = \arg\min_{\eta} \ \mathcal{S}_{i^{t}}(\mathbf{x}^{t},\eta) + h_{i^{t}}(\mathbf{x}^{t}+\eta e_{i}) + \mathcal{R}_{i^{t}}(\mathbf{x}^{t},\eta)$

Coordinate Descent Methods

Input: an initial feasible solution \mathbf{x}^0 , $\theta > 0$. Set t = 0.

while not converge do

S1 Use some strategy to find a coordinate $i^t \in \{1, ..., n\}$ for the *t*-th iteration.

S2 Solve the following nonconvex or convex subproblem.

• Option I: SNCA strategy. $\bar{\eta}^{t} = \arg\min_{\eta} S_{it}(\mathbf{x}^{t}, \eta) + h_{it}(\mathbf{x}^{t} + \eta e_{it}) - g(\mathbf{x}^{t} + \eta e_{it}) + \frac{\theta}{2} \|\eta e_{it}\|_{2}^{2}$ • Option II: SCA strategy. $\bar{\eta}^{t} = \arg\min_{\eta} S_{it}(\mathbf{x}^{t}, \eta) + h_{it}(\mathbf{x}^{t} + \eta e_{i}) + \mathcal{R}_{it}(\mathbf{x}^{t}, \eta) + \frac{\theta}{2} \|\eta e_{it}\|_{2}^{2}$ S3 $\mathbf{x}^{t+1} = \mathbf{x}^{t} + \bar{\eta}^{t} \cdot e_{it} \quad (\Leftrightarrow \mathbf{x}_{it}^{t+1} = \mathbf{x}_{it}^{t} + \bar{\eta}^{t})$ S4 Increment t by 1

end

Algorithm 1: Coordinate Descent Methods for Minimizing DC functions using **SNCA** or **SCA** strategy.

Remarks

- $\textbf{0} A proximal term is used \Rightarrow sufficient descent condition$
- The subproblem is equivalent to solving the following nonconvex problem which has a bilinear structure:

$$\min_{\eta,\mathbf{y}} \ \mathcal{S}_{i^t}(\mathbf{x}^t,\eta) + \frac{\theta}{2}\eta^2 + h(\mathbf{x}^t + \eta e_{i^t}) - \langle \mathbf{y}, \mathbf{x}^t + \eta e_{i^t} \rangle + g^*(\mathbf{y})$$

- One can apply CD to the primal/dual
- CD fails for nonseparable nonsmooth convex functions.
 Example: min_{x,y} x² + y² + 2|x y|.
 (x⁰, y⁰) = (1, 1). It gets stuck at (x[∞], y[∞]) = (1, 1).
- CD converges for nonseparable nonsmooth concave functions. Example: $\min_{x,y} x^2 + y^2 - 2|x - y|$. $(x^0, y^0) = (1, 1)$. It stops at $(x^{\infty}, y^{\infty}) = (-1, 1)$ or (1, -1).

Remarks

CD-SNCA is more accurate than CD-SCA.
 Example: min_x(x - 1)² - 4|x|. Three critical points {-1, 0, 3}
 CD-SCA only finds one of the critical points
 CD-SNCA finds the global optimal solution x = 3
 This is achieved by using a breakpoint searching algorithm

Theoretical Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Assumption (globally *p*-bounded nonconvexity)

 $\ddot{g}(\mathbf{x}) \triangleq -g(\mathbf{x})$ is ρ -bounded nonconvex that:

$$\ddot{g}(\mathbf{x}) \leq \ddot{g}(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \; \partial \ddot{g}(\mathbf{x})
angle + rac{
ho}{2} \|\mathbf{x} - \mathbf{y}\|_2^2, \; orall \mathbf{x}, \mathbf{y}.$$

▶ ▲ 분 ▶ ▲ 분 ▶

Definition (Critical Point)

A solution $\check{\mathbf{x}}$ is called a critical point if the following holds:

$$0 \in
abla f(\check{\mathbf{x}}) + \partial h(\check{\mathbf{x}}) - \partial g(\check{\mathbf{x}})$$

Definition (Directional Point)

A solution $\dot{\mathbf{x}}$ is called a directional point if the following holds:

$$\mathcal{F}'(\dot{\mathbf{x}};\mathbf{y}-\dot{\mathbf{x}}) \triangleq \lim_{t\downarrow 0} rac{\mathcal{F}(\dot{\mathbf{x}}+t(\mathbf{y}-\dot{\mathbf{x}}))-\mathcal{F}(\dot{\mathbf{x}})}{t} \geq 0, \,\, orall \mathbf{y}$$

with $\mathbf{y} \in \operatorname{dom}(\mathcal{F}) \triangleq \{\mathbf{x} : |\mathcal{F}(\mathbf{x})| < +\infty\}.$

Definition (Coordinate-Wise Stationary Point)

We let

$$\mathcal{M}_i(\mathbf{x},\eta) \triangleq \frac{\mathbf{c}_i + \theta}{2} \eta^2 + \nabla f(\mathbf{x})_i \eta + h(\mathbf{x} + \eta \mathbf{e}_i) - g(\mathbf{x} + \eta \mathbf{e}_i)$$

for a given constant $\theta \ge 0$. A solution $\ddot{\mathbf{x}}$ is called a coordinate-wise stationary point if the following holds:

$$0 \in \arg\min_{\eta} \mathcal{M}_i(\ddot{\mathbf{x}}, \eta), \forall i = 1, ..., n.$$

Optimality Hierarchy

Theorem (Optimality Hierarchy between the Optimality Conditions.)

Assume that $-g(\cdot)$ is globally ρ -bounded nonconvex. (a) It holds that $\forall \mathbf{d}, \ \mathcal{F}(\ddot{\mathbf{x}}) \leq \mathcal{F}(\ddot{\mathbf{x}} + \mathbf{d}) + \frac{1}{2} \|\mathbf{d}\|_{(\mathbf{c}+\theta+\rho)}^2$. (b) The following relation holds:

$$\{\bar{\mathbf{x}}\} \stackrel{\text{(b-i)}}{\subseteq} \{\ddot{\mathbf{x}}\} \stackrel{\text{(b-ii)}}{\subseteq} \{\check{\mathbf{x}}\} \stackrel{\text{(b-iii)}}{\subseteq} \{\check{\mathbf{x}}\}$$

→ < Ξ →

Theorem (Global Convergence)

(a) For CD-SNCA, we have: $\mathcal{F}(\mathbf{x}^{t+1}) - \mathcal{F}(\mathbf{x}^t) \leq -\frac{\theta}{2} \|\mathbf{x}^{t+1} - \mathbf{x}^t\|^2$. Algorithm 1 finds an ϵ -approximate coordinate-wise stationary **point** of Problem (1) in at most T iterations in the sense of expectation, where $T \leq \lceil \frac{2n(\mathcal{F}(\mathbf{x}^0) - \mathcal{F}(\bar{\mathbf{x}}))}{\alpha_{\epsilon}} \rceil = O(\epsilon^{-1}).$ (b) For CD-SCA, we have: $\mathcal{F}(\mathbf{x}^{t+1}) - \mathcal{F}(\mathbf{x}^t) \leq -\frac{\beta}{2} \|\mathbf{x}^{t+1} - \mathbf{x}^t\|^2$ with $\beta \triangleq \min(\mathbf{c}) + 2\theta$. Algorithm 1 finds an ϵ -approximate critical **point** of Problem (1) in at most T iterations in the sense of expectation, where $T \leq \lceil \frac{2n(\mathcal{F}(\mathbf{x}^0) - \mathcal{F}(\bar{\mathbf{x}}))}{\beta_{\epsilon}} \rceil = O(\epsilon^{-1}).$

Assumption

(Luo-Tseng Error Bound) We define a residual function as $\mathcal{R}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |dist(0, \overline{\mathcal{M}}_{i}(\mathbf{x}))|$ or $\mathcal{R}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |dist(0, \overline{\mathcal{P}}_{i}(\mathbf{x}))|$, where $\overline{\mathcal{M}}_{i}(\mathbf{x})$ and $\overline{\mathcal{P}}_{i}(\mathbf{x})$ are respectively defined in **CD-SNCA** and **CD-SCA**. For any $\varsigma \ge \min_{\mathbf{x}} F(\mathbf{x})$, there exist scalars $\delta > 0$ and $\varrho > 0$ such that:

 $\forall \mathbf{x}, \ dist(\mathbf{x}, \mathcal{X}) \leq \delta \mathcal{R}(\mathbf{x}), \ whenever \ F(\mathbf{x}) \leq \varsigma, \mathcal{R}(\mathbf{x}) \leq \varrho.$

Here, \mathcal{X} is the set of stationary points satisfying $\mathcal{R}(\mathbf{x}) = 0$.

Convergence Rate

$$\ddot{\mathbf{q}}^{t} \triangleq F(\mathbf{x}^{t}) - F(\ddot{\mathbf{x}}), \ddot{r}^{t} \triangleq \frac{1}{2} \|\mathbf{x}^{t} - \ddot{\mathbf{x}}\|_{\bar{\mathbf{c}}}^{2}$$
$$\bar{\mathbf{c}} \triangleq \mathbf{c} + \theta, \bar{\rho} = \frac{\rho}{\min(\bar{\mathbf{c}})}, \ \gamma \triangleq 1 + \frac{\rho}{\theta}, \varpi \triangleq 1 - \bar{\rho}$$

Theorem (Convergence Rate for CD-SNCA)

Assume that $z(\mathbf{x}) \triangleq -g(\mathbf{x})$ is globally ρ -bounded non-convex. (a) We have $\varpi \mathbb{E}_{it}[\ddot{r}^{t+1}] + \gamma \mathbb{E}_{it}[\ddot{q}^{t+1}] \leq \varpi \ddot{r}^t + \gamma \ddot{q}^t + \frac{\bar{\rho}}{n} \ddot{r}^t - \frac{\ddot{q}^t}{n}$. (b) If θ is sufficiently large such that $\varpi \geq 0$, $\mathcal{M}_{it}(\mathbf{x}^t, \eta)$ in (2) is convex w.r.t. η for all t. (c) $\ddot{q}^{t+1} \leq (\frac{\kappa_1 - \frac{1}{n}}{\kappa_1})^{t+1} \ddot{q}^0$, where $\kappa_0 \triangleq \max(\bar{\mathbf{c}}) \frac{\delta^2}{\theta}$ and $\kappa_1 \triangleq n\kappa_0(\varpi + \frac{\bar{\rho}}{n}) + \gamma$.

$$\check{q}^t \triangleq F(\mathbf{x}^t) - F(\check{\mathbf{x}}), \check{r}^t \triangleq \frac{1}{2} \|\mathbf{x}^t - \check{\mathbf{x}}\|_{\bar{\mathbf{c}}}^2, \ \bar{\mathbf{c}} \triangleq \mathbf{c} + \theta, \bar{\rho} = \frac{\rho}{\min(\bar{\mathbf{c}})}.$$

Theorem (Convergence Rate for CD-SCA)

Assume that $z(\mathbf{x}) \triangleq -g(\mathbf{x})$ is globally ρ -bounded non-convex. (a) We have $\mathbb{E}_{i^t}[\check{r}^{t+1}] + \mathbb{E}[\check{q}^{t+1}] \leq \check{r}^t + \frac{\bar{\rho}}{n}\check{r}^t - \frac{1}{n}\check{q}^t + \check{q}^t$. (b) It holds that: $\check{q}^{t+1} \leq (\frac{\kappa_2 - \frac{1}{n}}{\kappa_2})^{t+1}\check{q}^0$, where $\kappa_0 \triangleq \max(\bar{\mathbf{c}})\frac{\delta^2}{\theta}$ and $\kappa_2 = n\kappa_0(1 + \frac{\bar{\rho}}{n}) + 1$.

Conclusions:

- Q-linearly convergence rate for CD-SNCA and CD-SCA
- When n is large and we choose 0 ≤ ∞ < 1, CD-SNCA is much faster than CD-SCA.

A Breakpoint Searching Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A Breakpoint Searching Method

Two steps:

- identifies all the possible critical points / breakpoints Θ for min_{η∈ℝ} p(η)
- picks the solution that leads to the lowest value as the optimal solution.

Examples:

2
$$g(\mathbf{y}) \triangleq \|\mathbf{A}\mathbf{y}\|_2$$
 and $h_i(\cdot) \triangleq 0$

3
$$g(\mathbf{y}) \triangleq \sum_{i=1}^{s} |\mathbf{y}_{[i]}|$$
 and $h_i(\mathbf{y}) \triangleq |\mathbf{y}_i|$

• $g(\mathbf{y}) \triangleq \|\mathbf{A}\mathbf{y}\|_1 \text{ and } h_i(\cdot) \triangleq 0$

•
$$g(\mathbf{y}) \triangleq \| \max(0, \mathbf{A}\mathbf{y}) \|_1$$
 and $h_i(\cdot) \triangleq 0$

Example 1: $g(\mathbf{y}) \triangleq \|\mathbf{A}\mathbf{y}\|_{\infty}$ and $h_i(\cdot) \triangleq 0$

Consider the problem:

$$\begin{split} \min_{\eta} \frac{a}{2}\eta^2 + b\eta - \|\mathbf{A}(\mathbf{x} + \eta e_i)\|_{\infty} \\ \Leftrightarrow \quad \min_{\eta} \frac{a}{2}\eta^2 + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_{\infty} \\ \Leftrightarrow \quad \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^2 + b\eta + \max_{i=1}^{2m} (\bar{\mathbf{g}}_i \eta + \bar{\mathbf{d}}_i) \end{split}$$
with $\bar{\mathbf{g}} = [\mathbf{g}_1, \mathbf{g}_2, ..., \mathbf{g}_m, -\mathbf{g}_1, -\mathbf{g}_2, ..., -\mathbf{g}_m]$ and $\bar{\mathbf{d}} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_m, -\mathbf{d}_1, -\mathbf{d}_2, ..., -\mathbf{d}_m].$

$$\mathbf{\bar{d}} = [\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_m, -\mathbf{d}_1, -\mathbf{d}_2, ..., -\mathbf{d}_m].$$
Letting $0 \in \partial p(\cdot)$, we have: $a\eta + b + \mathbf{\bar{g}}_i = 0$ with
 $i = 1, 2, ..., (2m)$. We have $\eta = (-b - \mathbf{\bar{g}})/a$.
This problem contains $2m$ breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_{2m}\}$.

æ

'문▶' ★ 문≯

Example 2: $g(\mathbf{y}) \triangleq \|\mathbf{A}\mathbf{y}\|_2$ and $h_i(\cdot) \triangleq 0$

Consider the problem:

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta - \|\mathbf{A}(\mathbf{x} + \eta e_i)\|_{p} \Leftrightarrow \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^2 + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_{p}$$

We have

$$0 \in \partial p(\eta) = a\eta + b + \|\mathbf{g}\eta - \mathbf{d}\|_{p}^{1-p} \langle \mathbf{g}, \operatorname{sign}(\mathbf{g}\eta + \mathbf{d}) \odot |\mathbf{g}\eta + \mathbf{d}|^{p-1} \rangle.$$

We only focus on $p = 2$. We obtain:

$$0 = -a\eta - b = \frac{\langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle}{\|\mathbf{g}\eta - \mathbf{d}\|} \iff \|\mathbf{g}\eta - \mathbf{d}\|(-a\eta - b) = \langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle$$
$$\Leftrightarrow \|\mathbf{g}\eta - \mathbf{d}\|_2^2(a\eta + b)^2 = (\langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle)^2$$

Solving this quartic equation we obtain all of its real roots $\{\eta_1, \eta_2, ..., \eta_c\}$ with $1 \le c \le 4$. This problem at most contains 4 breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_c\}_{c \ge 0, < 0}$

Example 3: $g(\mathbf{y}) \triangleq \sum_{i=1}^{s} |\mathbf{y}_{[i]}|$ and $h_i(\mathbf{y}) \triangleq |\mathbf{y}_i|$

Consider the problem:

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta + |\mathbf{x}_i + \eta| - \sum_{i=1}^{s} |(\mathbf{x} + \eta e_i)_{[i]}|$$

Since the variable η only affects the value of \mathbf{x}_i , we consider two cases for $\mathbf{x}_i + \eta$.

(i) x_i + η belongs to the top-s subset. It reduces to min_η ^a/₂η² + bη. It has 1 breakpoint: {-^b/_a}.
(ii) x_i + η does not belong to the top-s subset. It reduces to min_η ^a/₂η² + bt + |x_i + η|. It has 3 breakpoints {-x_i, -1-b/_a, 1-b/_a}. This problem contains 4 breakpoints Θ = {-^b/_a, -x_i, -1-b/_a, 1-b/_a}.

Example 4: $g(\mathbf{y}) \triangleq \|\mathbf{A}\mathbf{y}\|_1$ and $h_i(\cdot) \triangleq 0$

Consider the problem:

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta - \|\mathbf{A}(\mathbf{x} + \eta e_i)\|_1 \Leftrightarrow \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^2 + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_1$$

Letting $0 \in \partial p(\eta)$, we have: $0 \in a\eta + b - \langle \operatorname{sign}(\eta \mathbf{g} + \mathbf{d}), \mathbf{g} \rangle = a\eta + b - \langle \operatorname{sign}(\eta + \mathbf{d} \div |\mathbf{g}|), |\mathbf{g}| \rangle.$ We define $\mathbf{z} \triangleq \{+\frac{\mathbf{d}_1}{\mathbf{\sigma}_1}, -\frac{\mathbf{d}_1}{\mathbf{\sigma}_1}, ..., +\frac{\mathbf{d}_m}{\mathbf{\sigma}_m}, -\frac{\mathbf{d}_m}{\mathbf{\sigma}_m}\} \in \mathbb{R}^{2m \times 1}$, and $z_1 \leq z_2 \leq ... \leq z_{2m}$. The domain $p(\eta)$ can be divided into 2m + 1intervals: $(-\infty, \mathbf{z}_1)$, $(\mathbf{z}_1, \mathbf{z}_2)$,..., and $(\mathbf{z}_{2m}, +\infty)$. There are 2m + 1breakpoints $\eta \in \mathbb{R}^{(2m+1) \times 1}$. In each interval, the sign of $(\eta + \mathbf{d} \div |\mathbf{g}|)$ can be determined. Thus, the *i*-th breakpoints for the *i*-th interval is: $\eta_i = (\langle sign(\eta + \mathbf{d} \div |\mathbf{g}|), \mathbf{g} \rangle - b)/a$. It contains 2m+1 breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_{(2m+1)}\}_{i=1}$

Example 5: $g(\mathbf{y}) \triangleq \| \max(0, \mathbf{Ay}) \|_1$ and $h_i(\cdot) \triangleq 0$

Consider the problem:

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta - \|\max(0, \mathbf{A}(\mathbf{x} + \eta e_i))\|_1$$

Using the fact that $\max(0, a) = \frac{1}{2}(a + |a|)$, we have the following equivalent problem:

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta - \frac{1}{2} \langle \mathbf{1}, \mathbf{A} \mathbf{e}_i \rangle \eta - \frac{1}{2} \| \mathbf{A} (\mathbf{x} + \eta \mathbf{e}_i) \|_1$$

Therefore, the proximal operator of $g(\mathbf{x}) = \|\max(0, \mathbf{A}\mathbf{x})\|_1$ can be transformed to the proximal operator of $g(\mathbf{x}) = \|\mathbf{A}\mathbf{x}\|_1$.

When the breakpoint set Θ is found, we pick the solution that leads to the lowest value as the global optimal solution $\overline{\eta}$:

 $\bar{\eta} = \arg \min_{\eta} p(\eta), \ s.t. \ \eta \in \Theta.$

The function $h_i(\cdot)$ does not bring much difficulty for solving the subproblem.

Experimental Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We consider the following four types of data sets for the sensing/channel matrix $\mathbf{G} \in \mathbb{R}^{m \times n}$

• 'randn-m-n': $\mathbf{G} = \operatorname{randn}(m, n)$.

2 'e2006-m-n':
$$G = X$$
.

• 'randn-m-n-C':
$$\mathbf{G} = \mathcal{N}(randn(m, n))$$
.

• 'e2006-m-n-C':
$$\mathbf{G} = \mathcal{N}(\mathcal{X})$$
.

randn(m, n) is a Gaussian random matrix of size $m \times n$. \mathcal{X} is sampled from the data set 'e2006'. $\mathcal{N}(\mathbf{G})$ is defined as: $[\mathcal{N}(\mathbf{G})]_I = 100 \cdot \mathbf{G}_I, [\mathcal{N}(\mathbf{G})]_{\overline{I}} = \mathbf{G}_{\overline{I}}$, where I is a random subset of $\{1, ..., mn\}, \overline{I} = \{1, ..., mn\} \setminus I$, and $|I| = 0.1 \cdot mn$.

ℓ_p Norm Generalized Eigenvalue Problem

We consider the following problem:

$$\min_{\mathbf{x}} \ \frac{\alpha}{2} \|\mathbf{x}\|_2^2 - \|\mathbf{G}\mathbf{x}\|_1$$

Compared methods

- Multi-Stage Convex Relaxation (MSCR)
- Iteration Toland's dual method (T-DUAL)
- Subgradient method (SubGrad)
- **3 CD-SCA**: $\mathbf{x}_{jt}^{t+1} = \mathbf{x}_{jt}^{t} + \arg \min_{\eta} \frac{\mathbf{c}_{i} + \theta}{2} \eta^{2} + (\nabla_{jt} f(\mathbf{x}^{t}) \mathbf{g}_{jt}^{t}) \eta$
- OCD-SNCA:

$$\mathbf{x}_{i^t}^{t+1} = \mathbf{x}_{i^t}^t + \arg\min_{\eta} \frac{\mathbf{c}_i + \theta}{2} \eta^2 + \nabla_{i^t} f(\mathbf{x}^t) \eta - \|\mathbf{G}(\mathbf{x} + \eta e_i)\|_1$$

Experimental Results

	MSCR	PDCA	T-DUAL	CD-SCA	CD-SNCA
randn-256-1024	-1.329 ± 0.038	-1.329 ± 0.038	-1.329 ± 0.038	-1.426 ± 0.056	$\textbf{-1.447} \pm \textbf{0.053}$
randn-256-2048	-1.132 ± 0.021	-1.132 ± 0.021	-1.132 ± 0.021	-1.192 ± 0.019	$\textbf{-1.202} \pm \textbf{0.016}$
randn-1024-256	-5.751 ± 0.163	-5.751 ± 0.163	-5.664 ± 0.173	-5.755 ± 0.108	$\textbf{-5.817} \pm \textbf{0.129}$
randn-2048-256	-9.364 ± 0.183	-9.364 ± 0.183	-9.161 ± 0.101	-9.405 ± 0.182	$\textbf{-9.408} \pm \textbf{0.164}$
e2006-256-1024	-28.031 ± 37.894	-28.031 ± 37.894	$\textbf{-27.996} \pm \textbf{37.912}$	$\text{-}27.880 \pm 37.980$	-28.167 \pm 37.826
e2006-256-2048	-22.282 ± 24.007	-22.282 ± 24.007	-22.282 ± 24.007	$\textbf{-22.113} \pm \textbf{23.941}$	$\textbf{-22.448} \pm \textbf{23.908}$
e2006-1024-256	-43.516 ± 77.232	-43.516 ± 77.232	-43.364 ± 77.265	-43.283 ± 77.297	$\textbf{-44.269} \pm \textbf{76.977}$
e2006-2048-256	-44.705 ± 47.806	-44.705 ± 47.806	-44.705 ± 47.806	-44.633 ± 47.789	$\textbf{-45.176} \pm \textbf{47.493}$
randn-256-1024-C	-1.332 ± 0.019	-1.332 ± 0.019	-1.332 ± 0.019	-1.417 ± 0.027	$\textbf{-1.444} \pm \textbf{0.029}$
randn-256-2048-C	-1.161 ± 0.024	-1.161 ± 0.024	-1.161 ± 0.024	-1.212 ± 0.022	$\textbf{-1.219} \pm \textbf{0.023}$
randn-1024-256-C	-5.650 ± 0.141	-5.650 ± 0.141	-5.591 ± 0.145	-5.716 ± 0.159	$\textbf{-5.808} \pm \textbf{0.134}$
randn-2048-256-C	-9.236 ± 0.125	-9.236 ± 0.125	-9.067 ± 0.137	-9.243 ± 0.145	$\textbf{-9.377} \pm \textbf{0.233}$
e2006-256-1024-C	-4.841 ± 6.410	-4.841 ± 6.410	-4.840 ± 6.410	-4.837 ± 6.411	$\textbf{-5.027} \pm \textbf{6.363}$
e2006-256-2048-C	-4.297 ± 2.825	-4.297 ± 2.825	-4.297 ± 2.823	-4.259 ± 2.827	$\textbf{-4.394} \pm \textbf{2.814}$
e2006-1024-256-C	-6.469 ± 3.663	-6.469 ± 3.663	-6.469 ± 3.663	-6.470 ± 3.663	$\textbf{-6.881} \pm \textbf{3.987}$
e2006-2048-256-C	-31.291 ± 60.597	-31.291 ± 60.597	-31.291 ± 60.597	-31.284 ± 60.599	$\textbf{-32.026} \pm \textbf{60.393}$

Comparisons of objective values of all the methods for solving the ℓ_1 norm PCA problem.

Conclusions: CD-SNCA consistently gives the best performance.

Approximate Sparse Optimization

We consider the following problem:

$$\frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_2^2 + \rho \sum_{i=1}^s |\mathbf{x}_{[i]}^t|$$

Compared methods

- Multi-Stage Convex Relaxation (MSCR)
- Proximal DC algorithm (PDCA)
- Subgradient method (SubGrad)
- OCC CD-SCA:

 $\mathbf{x}_{i^t}^{t+1} = \mathbf{x}_{i^t}^t + \arg\min_{\eta} 0.5(\mathbf{c}_{i^t} + \theta)\eta^2 + \rho |\mathbf{x}_{i^t}^t + \eta| + [\nabla f(\mathbf{x}^t) - \mathbf{g}^t]_{i^t} \cdot \eta$

S CD-SNCA: $\mathbf{x}_{i^t}^{t+1} = \mathbf{x}_{i^t}^t + \arg \min_{\eta} \frac{\mathbf{c}_i + \theta}{2} \eta^2 + \nabla_{i^t} f(\mathbf{x}^t) \eta + \rho |\mathbf{x}_{i^t}^t + \eta| - \rho \sum_{i=1}^s |(\mathbf{x}^t + \eta e_i)_{[i]}|$

Experimental Results

	MSCR	PDCA	SubGrad	CD-SCA	CD-SNCA
randn-256-1024	0.090 ± 0.017	0.090 ± 0.016	0.775 ± 0.040	0.092 ± 0.018	$\textbf{0.034} \pm \textbf{0.004}$
randn-256-2048	0.052 ± 0.009	0.052 ± 0.010	1.485 ± 0.030	0.061 ± 0.012	$\textbf{0.027} \pm \textbf{0.002}$
randn-1024-256	1.887 ± 0.353	1.884 ± 0.352	2.215 ± 0.379	1.881 ± 0.337	$\textbf{1.681} \pm \textbf{0.346}$
randn-2048-256	3.795 ± 0.518	3.794 ± 0.518	4.127 ± 0.525	3.772 ± 0.522	$\textbf{3.578} \pm \textbf{0.484}$
e2006-256-1024	0.217 ± 0.553	0.217 ± 0.553	0.597 ± 0.391	0.218 ± 0.556	$\textbf{0.087} \pm \textbf{0.212}$
e2006-256-2048	0.050 ± 0.068	0.050 ± 0.068	0.837 ± 0.209	0.050 ± 0.068	$\textbf{0.025} \pm \textbf{0.032}$
e2006-1024-256	3.078 ± 2.928	3.078 ± 2.928	3.112 ± 2.844	$\textbf{3.097} \pm \textbf{2.960}$	$\textbf{2.697} \pm \textbf{2.545}$
e2006-2048-256	1.799 ± 1.453	1.799 ± 1.453	1.918 ± 1.518	1.805 ± 1.456	$\textbf{1.688} \pm \textbf{1.398}$
randn-256-1024-C	0.086 ± 0.012	0.087 ± 0.012	0.775 ± 0.038	0.083 ± 0.011	$\textbf{0.033} \pm \textbf{0.002}$
randn-256-2048-C	0.043 ± 0.006	0.044 ± 0.006	1.472 ± 0.027	0.051 ± 0.009	$\textbf{0.026} \pm \textbf{0.001}$
randn-1024-256-C	1.997 ± 0.250	1.998 ± 0.250	2.351 ± 0.297	1.979 ± 0.265	$\textbf{1.781} \pm \textbf{0.244}$
randn-2048-256-C	3.618 ± 0.681	3.617 ± 0.682	3.965 ± 0.717	3.619 ± 0.679	$\textbf{3.420} \pm \textbf{0.673}$
e2006-256-1024-C	0.031 ± 0.031	0.031 ± 0.031	0.339 ± 0.073	0.030 ± 0.028	$\textbf{0.015} \pm \textbf{0.014}$
e2006-256-2048-C	0.217 ± 0.575	0.217 ± 0.575	0.596 ± 0.418	0.215 ± 0.568	$\textbf{0.071} \pm \textbf{0.176}$
e2006-1024-256-C	3.789 ± 4.206	3.798 ± 4.213	3.955 ± 4.363	3.851 ± 4.339	$\textbf{3.398} \pm \textbf{3.855}$
e2006-2048-256-C	4.480 ± 6.916	4.482 ± 6.918	4.710 ± 7.292	4.461 ± 6.844	$\textbf{4.200} \pm \textbf{6.608}$

Comparisons of objective values of all the methods for solving the approximate sparse optimization problem.

Conclusions: CD-SNCA consistently gives the best performance.

→ < ∃→

Computational Efficiency

Conclusions:

CD-SNCA generally takes a little more time to converge. **CD-SNCA** generally achieves higher accuracy.

Discussions and Extensions: Equivalent Reformulations for the ℓ_p Norm Generalized Eigenvalue Problem

(日) (四) (문) (문) (문)

Equivalent Reformulations

We consider the following problems with $\mathbf{Q} \succ \mathbf{0}$:

$$\min_{\mathbf{x}} \ \mathcal{F}_1(\mathbf{x}) \triangleq \frac{\alpha}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} - \|\mathbf{A}\mathbf{x}\|_p$$
(2)

$$\min_{\mathbf{x}} \mathcal{F}_{2}(\mathbf{x}) \triangleq -\|\mathbf{A}\mathbf{x}\|_{p}, \ s.t. \ \mathbf{x}^{T}\mathbf{Q}\mathbf{x} \leq 1$$
(3)

$$\min_{\mathbf{x}} \mathcal{F}_{3}(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}, \ s.t. \ \|\mathbf{A}\mathbf{x}\|_{p} \ge 1$$
(4)

We have the following results.

(a) If $\bar{\mathbf{x}}$ is an optimal solution to (2), then $\pm \bar{\mathbf{x}}(\bar{\mathbf{x}}^T \mathbf{Q} \bar{\mathbf{x}})^{-\frac{1}{2}}$ and $\frac{\pm \bar{\mathbf{x}}}{\|\mathbf{A}\bar{\mathbf{x}}\|_p}$ are respectively optimal solutions to (3) and (4). (b) If $\bar{\mathbf{y}}$ is an optimal solution to (3), then $\frac{\pm \|\mathbf{A}\bar{\mathbf{y}}\|_{p}, \bar{\mathbf{y}}}{\alpha \bar{\mathbf{y}}^T \mathbf{Q} \bar{\mathbf{y}}}$ and $\frac{\pm \bar{\mathbf{y}}}{\|\mathbf{A}\bar{\mathbf{y}}\|_p}$ are respectively optimal solutions to (2) and (4). (c) If $\bar{\mathbf{z}}$ is an optimal solution to (4), then $\frac{\pm \bar{\mathbf{z}}\|\mathbf{A}\bar{\mathbf{z}}\|_p}{\alpha \bar{\mathbf{z}}^T \mathbf{Q}\bar{\mathbf{z}}}$ and $\pm \bar{\mathbf{z}}(\bar{\mathbf{z}}^T \mathbf{Q}\bar{\mathbf{z}})^{-\frac{1}{2}}$ are respectively optimal solutions to (2).

Discussions and Extensions: A Local Analysis for the PCA Problem

(日) (四) (문) (문) (문)

A Local Analysis for the PCA Problem

The PCA problem:

$$\max_{\mathbf{v}} \mathbf{v}^{\mathsf{T}} \mathbf{C} \mathbf{v}, \ s.t. \|\mathbf{v}\| = 1$$

where $\mathbf{C} \succcurlyeq \mathbf{0}$ is given.

Equivalent problem:

$$\min_{\mathbf{x}} \mathcal{F}(\mathbf{x}) = \frac{\alpha}{2} \|\mathbf{x}\|_2^2 - \sqrt{\mathbf{x}^T \mathbf{C} \mathbf{x}}.$$
 (5)

for any given constant $\alpha > 0$.

We assume

$$\mathbf{C} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{U}, \ \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0.$$

Theorem

We have the following results:

(a) The set of critical points of Problem (5) are $\{\{\mathbf{0}\} \cup \{\pm \frac{\sqrt{\lambda_k}}{\alpha} \mathbf{u}_k : k = 1, ..., n\}\}.$

(b) The PCA Problem in (5) has at most two local minima $\{\pm \frac{\sqrt{\lambda_1}}{\alpha} \mathbf{u}_1\}$ which are the global optima with $\mathcal{F}(\bar{\mathbf{x}}) = -\frac{\lambda_1}{2\alpha}$.

A Local Analysis for the PCA Problem

Theorem

We define
$$\delta \triangleq 1 - \frac{\lambda_2}{\lambda_1}, \xi \triangleq \frac{\lambda_1}{6} \left(-1 - \frac{3}{\sqrt{\lambda_1}} + \sqrt{\left(1 + \frac{3}{\sqrt{\lambda_1}}\right)^2 + \frac{12}{\lambda_1}} \delta \right)$$
.
Assume that $0 < \delta < 1$. When **x** is sufficiently close to the global optimal solution $\bar{\mathbf{x}}$ such that $\|\mathbf{x} - \bar{\mathbf{x}}\| \leq \varpi$ with $\varpi < \bar{\varpi} \triangleq \min\{\sqrt{\lambda_1}\mathcal{K}(\frac{\lambda_2}{\lambda_1}), \xi\}$, we have:
(a) $\sqrt{\lambda_1} - \varpi \leq \|\mathbf{x}\| \leq \sqrt{\lambda_1} + \varpi$.
(b) $\lambda_1 - \varpi\sqrt{\lambda_1} \leq \|\mathbf{x}\|_{\mathbf{C}} \leq \lambda_1 + \varpi\sqrt{\lambda_1}$.
(c) $\lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \rho \mathbf{I} \succeq \mathbf{x} \mathbf{x}^T \succeq \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T - \rho \mathbf{I}$ with $\rho \triangleq 3\varpi^2 + 2\varpi\sqrt{\lambda_1}$.
(d) $\tau \mathbf{I} \succeq \nabla^2 \mathcal{F}(\mathbf{x}) \succeq \sigma \mathbf{I}$ with $\sigma \triangleq 1 - \frac{\lambda_2}{\lambda_1} - \varpi(1 + \frac{3}{\sqrt{\lambda_1}}) - \frac{3\varpi^2}{\lambda_1} > 0$
and $\tau \triangleq 1 + \frac{\lambda_1^2(\sqrt{\lambda_1} + \varpi)^2}{(\lambda_1 - \varpi\sqrt{\lambda_1})^3}$.

Theorem (Convergence Rate of **CD-SNCA** for the PCA Problem)

. We assume that the random-coordinate selection rule is used. Assume that $\|\mathbf{x}^t - \bar{\mathbf{x}}\| \leq \bar{\varpi}$ that $\mathcal{F}(\cdot)$ is σ -strongly convex and τ -smooth. Here the parameters $\bar{\varpi}, \sigma$ and τ are define in Theorem 9. We define $r_t^2 \triangleq \frac{(1+\sigma)\tau}{2} \|\mathbf{x} - \bar{\mathbf{x}}\|_2^2$ and $\beta \triangleq \frac{2\sigma}{1+\sigma}$. We have: $\mathbb{E}[r_t^2] \leq (1 - \frac{\beta}{n})^{t+1} \left(r_0^2 + \mathcal{F}(\mathbf{x}^0) - \mathcal{F}(\bar{\mathbf{x}})\right)$

Note that the theorem above does not rely on the weak convexity condition or the sharpness condition of $\mathcal{F}(\cdot)$.

Discussions and Extensions: Examples for Optimality Hierarchy between the Optimality Conditions

(日) (四) (문) (문) (문)

The First Running Example

• . We consider the following problem:

$$\label{eq:min_s_state} \underset{\mathbf{x}}{\text{min}} \ \frac{1}{2} \mathbf{x}^{\mathcal{T}} \mathbf{Q} \mathbf{x} + \langle \mathbf{x}, \mathbf{p} \rangle - \|\mathbf{A} \mathbf{x}\|_1$$

with using the following parameters:

$$\mathbf{Q} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \ \mathbf{p} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 3 & 1 & 0 \\ 4 & 2 & -1 \end{pmatrix}$$

.

The First Running Example

у	x	Function Value	Critical Point	CWS Point
[1; 1; 1]	[1.75; 0; -1]	-6.625	Yes	No
[1; 1; [-1, 1]]	NA	NA	No	No
[1; 1; -1]	[-0.25; -2; -1]	-8.125	No	No
[1; [-1, 1]; 1]	NA	NA	No	No
[1; [-1, 1]; [-1, 1]]	NA	NA	No	No
[1; [-1, 1]; -1]	NA	NA	No	No
[1; -1; 1]	[0.25; -2; -3]	-4.1250	No	No
[1; -1; [-1, 1]]	[-0.3333; 0.2667; -0.1333]	-1.9956	No	No
[1; -1; -1]	[-1.75; -4; -3]	-16.1250	No	No
[[-1, 1]; 1; 1]	NA	NA	No	No
[[-1, 1]; 1; [-1, 1]]	NA	NA	No	No
[[-1, 1]1; -1]	[0; -2; -2]	-6.0000	No	No
[[-1, 1]; [-1, 1]; 1]	NA	NA	No	No
[[-1,1];[-1,1];[-1,1]]	[0; 0; 0]	0	Yes	No
[[-1,1]; [-1,1]; -1]	[0; 0; 0]	0	Yes	No
[[-1,1];-1;1]	NA	NA	No	No
[[-1,1];-1;[-1,1]]	[0; 0; 0]	0	Yes	No
[[-1, 1]; -1; -1]	[0; 0; 0]	0	Yes	No
[-1; 1; 1]	[1.25; 0; -3]	-7.6250	Yes	No
[-1; 1; [-1, 1]]	NA	NA	No	No
[-1; 1; -1]	[-0.75; -2; -3]	-12.1250	No	No
[-1; [-1, 1]; 1]	NA	NA	No	No
[-1; [-1, 1]; [-1, 1]]	[0; 0; 0]	0	Yes	No
[-1; [-1, 1]; -1]	[0; 0; 0]	0	Yes	No
[-1; -1; 1]	[-0.25; -2; -5]	-6.6250	No	No
[-1; -1; [-1, 1]]	[0; 0; 0]	0	Yes	No
[-1; -1; -1]	[-2.25; -4; -5]	-18.625	Yes	Yes

Table: Solutions satisfying optimality conditions.

The Second Running Example

• The Second Running Example. We consider the following example:

$$\min_{\mathbf{x}} \ \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{x} - \|\mathbf{A}\mathbf{x}\|_2$$

with using the following parameter:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 0 \\ 4 & 2 & -1 \end{pmatrix}$$

٠

The Second Running Example

$(\lambda_i, \mathbf{u}_i)$	x	Function Value	Critical Point	CWS Point
(0.5468, [-0.2934, 0.8139, 0.5015])	$\pm [-0.2169, 0.6019, 0.3709]$	-5.7418	Yes	No
(7.8324, [0.1733, -0.4707, 0.8651])	$\pm [0.4850, -1.3172, 2.4212]$	-82.2404	Yes	No
(33.6207, [-0.9402, -0.3407, 0.0030])	$\pm [-5.4514, -1.9755, 0.0172]$	-353.0178	Yes	Yes
	[0,0,0]	0	Yes	No

Table: Solutions satisfying optimality conditions.

The Third Running Example

• The Third Running Example. We consider the following example:

$$\min_{\mathbf{x}} \ \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{x} - \|\mathbf{A}\mathbf{x}\|_{\infty}$$

with using the following parameter:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 0 \\ 4 & 2 & -1 \end{pmatrix}$$

٠

The Third Running Example

у	x	Function Value	Critical Point	CWS Point
[1; 0; 0; 0]	[1; -1; 1]	-2.5000	Yes	No
[0; 1; 0; 0]	[2; 0; 2]	-4.0000	Yes	No
[0; 0; 1; 0]	[3; 1; 0]	-9.0000	Yes	No
[0; 0; 0; 1]	[4; 2; -1]	-10.5000	Yes	Yes
[-1; 0; 0; 0]	[-1; 1; -1]	-2.5000	Yes	No
[0; -1; 0; 0]	[-2; 0; -2]	-4.0000	Yes	No
[0; 0; -1; 0]	[-3; -1; 0]	-9.0000	Yes	No
[0; 0; 0; -1]	[-4; -2; 1]	-10.5000	Yes	Yes

Table: Solutions satisfying optimality conditions.

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?