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Introduction



Introduction

The DC minimization problem:

min F(x) £ £(x) + h(x) - g(x) (1)

Assumptions
@ f(-) is convex and continuously differentiable:

Cj
vx,n, f(x+ne) < f(x)+ (Vif(x), ne;)+§|!ne;||§

e; € R is an indicator vector with one on the i-th entry and
zero everywhere else.
@ h(-) =>_7 1 hi(x;) is convex and coordinate-wise separable.
@ g(-) is convex and its associated proximal operator can be

computed exactly:

_ a
min p(n) £ Sn% + by + hi(x + ne;) — g(x + ner),
ner 2



© (, Norm Generalized Eigenvalue Problem

max [|Gx||,, s.t. x' Qx =1
X

3 — oa T
& X=argmin 5x Qx — [|Gx|| p,
@ Generalized Linear Regression

Minkern 3[lo(Gx) — y||2

minkern 3|0(Gx)|3 — (1, 0(diag(y)Gx)) + 3 lyll3

RELU Neural Network: o(t) = max(0, t)
Phase Retrieval: o(t) = |¢].



@ Approximate Sparse Optimization
mxin %HGX —y|3, s.t. |x]o <5

Using the fact that: [|x|lo < s < [x[[1 = >7_; |x[j], we have
the following equivalent DC problem:
S
: 2
min 3Gx —y[3 + p(Ixll1 = > Ixj3])
i=1
@ Approximate Binary Optimization

. 1 2
min =|Gx —
xe{—1,41}" al yll

Using the fact that: x € {—1,+1}" & —1 < x < 1,[|x||3 = n,

we have the following equivalent DC problem:

||Xr”nin<1 21Gx —y|13 + p(+v/n — [|x]|)



Related Topics of This Paper

@ DC programming
@ Coordinate Descent Methods
© lterative Majorization Minimization

@ Provable Nonconvex Algorithms



DC programming

@ An extension of convex maximization over a convex set,
closely related to CCCP and alternating minimization

@ The class of DC functions is very broad, considered in global
optimization

© Recent developments focus on local solution methods

(proximal bundle DC methods, double bundle DC methods,

inertial proximal methods, enhanced proximal methods)

© Many applications (sparse PCA, variable selection, single

source localization, piecewise linear programming)



Coordinate descent methods

© A popular method for solving large-scale problems

@ Enjoys faster convergence, avoids tricky parameters tuning,

allows for easy parallelization

© Well studied for convex optimization (Lasso, SVM, NMF,
PageRank)

© Extended to solve nonconvex problems (penalized regression,
eigenvalue complementarity problem, £; norm minimization,
resource allocation problem, leading eigenvector computation,

sparse phase retrieval)



Iterative Majorization Minimization

o
2]
o
o
o
o
o
o
o

Lipschitz gradient surrogate
proximal gradient surrogate
DC programming surrogate
variational surrogate

saddle point surrogate
Jensen surrogate

quadratic surrogate
Frank-Wolfe surrogate

cubic surrogate



Provable Nonconvex Algorithms

O find stronger stationary points

e second-order stationary point € first-order stationary point

o block-k stationary point € coordinate-wise stationary point €
Lipschitz stationary point

@ Convergence analysis

o Kurdyka-tojasiewicz inequality

e weakly convex, a regularity condition, a sharpness condition
o Luo-Tseng error bound assumption



Related Work

@ Multi-Stage Convex Relaxation
x1 = arg min f(x) + h(x) — (x - xt, g"), gf € 9g(x")
@ Proximal DC algorithm (PDCA)
x1 = arg mxin Q(x,x") + h(x) — (x — x*, g)

Q(x,x") = f(x) + (VF(x'), x —x*) + 5x — x|[3
© Toland's duality method

ming"(y) - £*(ATy) - h"(ATy)
@ Subgradient descent method

xt+1 _ P(Xt _ 77tgt)



Contributions

o

2]

A new coordinate descent method based on sequential

nonconvex approximation

Coordinate-wise optimality condition is always stronger than

the critical /directional point condition
Linear convergence rate

A breakpoint searching method for computing the proximal

operator
Extensive experiments on some statistical learning tasks

Several important discussions and extensions



Coordinate Descent Methods



Coordinate Descent Methods

The Coordinate Descent Methods:
7t = argminyer f(x" +7nejt) + h(x* +neir) — g(x* + neir)
xtH = xt + fjte;
Choosing the Majorization Function
fF(xt +meie) < Sie(xt,m) £ F(xP) + (VF(x?), neie) + S,
—g(x" +neje) < Rie(x",n) £ —g(x*) — (9g(x"), (x* +neir) —x).
The two CD methods:
NonConvex : " = argmin,, Sit(x',n) + hit(x* + neir) — g(x* + nejt)
Convex : 7' =argmin, S;t(xf, 1)+ hi:(x* + nei) + Rie(xt, 1)
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Coordinate Descent Methods

Input: an initial feasible solution x°, # > 0. Set t = 0.

while not converge do
S1 Use some strategy to find a coordinate it € {1, ..., n} for

the t-th iteration.
S2 Solve the following nonconvex or convex subproblem.

e Option |: SNCA strategy.
7' = argmin Se(x',n) + hie(x" + neje) — g(x" + neie) + §lineil3

e Option Il: SCA strategy.
" = arg mnin Sie(xt,m) + hie(x" + nep) + Rie(x',m) + §lIneie|3

S3xH =xt 4+t e (& xET =xb +7F)
S4 Increment t by 1

end
Algorithm 1: Coordinate Descent Methods for Minimizing DC func-

tions using SNCA or SCA strategy.



@ A proximal term is used = sufficient descent condition
@ The subproblem is equivalent to solving the following
nonconvex problem which has a bilinear structure:
min St ) + 577+ B+ ) — {3, + ) + 8°()
© One can apply CD to the primal/dual
@ CD fails for nonseparable nonsmooth convex functions.
Example: miny, x% + y? + 2|x — y/|.
(x%,y%) = (1,1). It gets stuck at (x>, y>®) = (1,1).
© CD converges for nonseparable nonsmooth concave functions.
Example: miny, x% 4+ y? — 2|x — y/|.
(x%,y%) = (1,1). It stops at (x>, y*>°) = (—1,1) or (1,—1).



@ CD-SNCA is more accurate than CD-SCA.
Example: min,(x — 1)? — 4|x|. Three critical points {—1,0,3}
CD-SCA only finds one of the critical points
CD-SNCA finds the global optimal solution x = 3

This is achieved by using a breakpoint searching algorithm
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Theoretical Analysis



Theoretical Analysis

Assumption (globally p-bounded nonconvexity)

g(x) £ —g(x) is p-bounded nonconvex that:

£(x) < g(y) + (x —y, 08(x)) + Zlx—yl3, ¥x.y.
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Optimality Definition

Definition (Critical Point)

A solution X is called a critical point if the following holds:

0 € VF(X) + 0h(X) — Og(X)

Definition (Directional Point)

A solution X is called a directional point if the following holds:

f’(i(;y—i() A lim ]:()\(—i—t(y—)\())—f(i()

>0,V
t}0 t - y

with y € dom(F) £ {x : |F(x)| < +oo}.



Optimality Definition

Definition (Coordinate-Wise Stationary Point)
We let

Mi(x, 1) & S92 L VF(x)im + h(x + ne;) — g(x + ne;)

for a given constant 6§ > 0. A solution X is called a coordinate-wise

stationary point if the following holds:

0 € argmin M;(x,7n),Vi=1,...,n.
7



Optimality Hierarchy

Theorem (Optimality Hierarchy between the Optimality

Conditions.)

Assume that —g(-) is globally p-bounded nonconvex.
(a) It holds that ¥d, F(X) < F(x +d) 4

2ldlEesosp):
(b) The following relation holds:

e e m e 5

Optimal Points
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Global Convergence

Theorem (Global Convergence)

(@) For CD-SNCA, we have: F(xt*1) — F(xt) < —§xt+1 —xt||2.
Algorithm 1 finds an e-approximate coordinate-wise stationary
point of Problem (1) in at most T iterations in the sense of
expectation, where T < [w} = 0(eh).

(b) For CD-SCA, we have: F(x'+1) — F(xt) < —5|xt*1 — xt|2
with 8 2 min(c) + 20. Algorithm 1 finds an e-approximate critical
point of Problem (1) in at most T iterations in the sense of
expectation, where T < [W} = 0(e7h).



Convergence Rate

Assumption

(Luo-Tseng Error Bound) We define a residual function as

R(x) = L5770  |dist(0, M;(x))| or R(x) = %Zle |dist(0, P;(x))|,

where M;(x) and P;(x) are respectively defined in CD-SNCA and
CD-SCA. For any s > minyg F(x), there exist scalars 6 > 0 and
o > 0 such that:

Vx, dist(x, X) < 0R(x), whenever F(x) < ¢, R(x) < o.

Here, X is the set of stationary points satisfying R(x) = 0.
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Convergence Rate

1
42 F(x) — F(x), 7 2 2| 2
N - P A P N -
C c+ , P mm(E)’ +97w P

Theorem (Convergence Rate for CD-SNCA)

Assume that z(x) = —g(x) is globally p-bounded non-convex.
(a) We have wE;:[ft+1] + 1E;e[§t+)] < wit 4+ 7§t 4 27t — &
(b) If 6 is sufficiently large such that @ > 0, M;¢(xt,n) in (2) is
convex w.r.t. n for all t.

(c) gttt < ("il )t“q0 where o = max(€) 592 and

K1 2 nro(w + E) + 7.
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Convergence Rate

1
32 F(x) = F(R), 7 2 S|x' —x|2 e2c+0,5=—L

Theorem (Convergence Rate for CD-SCA)

Assume that z(x) = —g(x) is globally p-bounded non-convex.

(a) We have E;[Ft+1] + E[qf+1] <F o+ Byt Lyt ot

(b) It holds that: g+t < (= )t+1q0, where ko = max(c) 92 and
Ko = nko(l + §) + 1.

Conclusions:

@ Q-linearly convergence rate for CD-SNCA and CD-SCA

@ When n is large and we choose 0 < w < 1, CD-SNCA is

much faster than CD-SCA.



A Breakpoint Searching Method



A Breakpoint Searching Method

Two steps:
@ identifies all the possible critical points / breakpoints © for
min,er p(7)

@ picks the solution that leads to the lowest value as the

optimal solution.
Examples:
@ 2(y) = [|Ay|loc and hi(-) £ 0
g(y) = [|Ay|l2 and hi(-) =0
@ g(y) = 271 lygl and hi(y) = lyil
g(y) £ [|Ay[1 and hi(-) £ 0
g(y) = || max(0, Ay)|l1 and h;(:) £ 0



Example 1: g(y) = ||Ay|» and hi(-) =0

Consider the problem:

min 17+ by — [ A +7ei)
. a
& minZn® + bn— [lgn +d|lo

. a 2 _ -
& minp(n) £ Zn® + by + max(gin + di)
=

with § = [g1,82, ..., m, —81, —82, -, —&m| and
d=[di,ds,....,dp, —d1, —do, ..., —d,,].

Letting 0 € Op(-), we have: an + b+ g; = 0 with
i=1,2,..,(2m). We have n = (—b—g)/a.

This problem contains 2m breakpoints © = {11, m2, ..., M2m}-
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Example 2: g(y) = ||Ay||> and h;(:) £ 0

Consider the problem:

L

. . a
min $17° + by — [|A(x + ;)| < min p(n) = Zn* + bn — [lgn + dll,

We have
0 € dp(n) = an+ b+ |lgn — d|ls " (g, sign(gn +d) © |gn + d|*~).
We only focus on p = 2. We obtain:

,8n+d
0= —an—b=EED o gy d)(an-b) = ggr+

< |lgn —d|5(an + b)*> = ((g, gn + d))?

Solving this quartic equation we obtain all of its real roots

{77177727 "'7nC} with 1 <c< 4.
This problem at most contains 4 breakpoints © = {n1,m2, ..., N }.
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Example 3: g(y) = Y"1, ly| and hi(y) = |yi]

Consider the problem:

s
min gnz + b+ [xi + 1 — 2; |(x + nei)|
i=
Since the variable n only affects the value of x;, we consider two
cases for x; + 7.
(i) x; +n belongs to the top-s subset. It reduces to
min,, 212+ bn. It has 1 breakpoint: {—2}.
(ii) x; + 1 does not belong to the top-s subset. It reduces to
min, 3n%+ bt -+ |x; +n|. It has 3 breakpoints {—x;, —1-b l;ab}

a

This problem contains 4 breakpoints © = {—g, —xj, ==b, 1;313}

i» 3
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Example 4: g(y) = ||Ay||; and h;(:) £ 0

Consider the problem:

min 3% + b — ||A(x + ne;)l|1 < min p(n) = Zn* + by — [|gn + d]

NV

Letting 0 € 9p(n), we have:

0 € an+b— (sign(ng +d),g) = an+ b — (sign(n +d + [g]), [g]).
We define z £ H‘%’ —%, s —1—2—2, —g—:} e R?m*1 and

z; < zp < ... < 2z3,. The domain p(n) can be divided into 2m + 1

intervals: (—o0,21), (21,22),..., and (zom, +00). There are 2m +1

breakpoints 17 € R™+D*1 " |n each interval, the sign of

(n+d - |g|) can be determined. Thus, the i-th breakpoints for the

i-th interval is: n; = ((sign(n + d + |g|),g) — b)/a. It contains

2m + 1 breakpoints © = {11,172, .., N2m+1)}-
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Example 5: g(y) = || max(0, Ay)]||; and h;(-) =0

Consider the problem:
mnin %772 + bn — || max(0, A(x + ne;)) |1

Using the fact that max(0, a) = 3(a+ |al), we have the following

equivalent problem:
a2 1 1
min 317° + b — 5 (1, Aei)n — S| A(x + 7ei)ls

Therefore, the proximal operator of g(x) = || max(0, Ax)||; can be

transformed to the proximal operator of g(x) = ||Ax||1.
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A Breakpoint Searching Method

When the breakpoint set © is found, we pick the solution that

leads to the lowest value as the global optimal solution #:

i = arg min, p(n), s.t. n € ©.

The function h;(-) does not bring much difficulty for solving
the subproblem.
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Experimental Results

We consider the following four types of data sets for the

sensing/channel matrix G € R™*"

@ ‘randn-m-n": G = randn(m, n).

@ 'e2006-m-n": G = &

@ ‘randn-m-n-C': G = N (randn(m, n)).

Q '€2006-m-n-C": G = N (X).
randn(m, n) is a Gaussian random matrix of size m x n. X is
sampled from the data set ‘€2006'. N/ (G) is defined as:

[N(G)]; = 100 - G/, [N(G)]; = Gy, where [ is a random subset of
{1,....mn}, I ={1,...mn}\ [, and |/| = 0.1 - mn.
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¢, Norm Generalized Eigenvalue Problem

We consider the following problem:
T
min §||XH2 — [1Gx|l1

Compared methods

Multi-Stage Convex Relaxation (MSCR)

Toland's dual method (T-DUAL)

Subgradient method (SubGrad)

CD-SCA: x!;"! = x, + arg min,, < G002 4 (Vief(xt) —gh)n
CD-SNCA:

Xt = xf + arg ming “300% + Ve f (x)n — | G(x +ne;) 1

© ©6 06 ©0 O
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Experimental Results

MSCR PDCA T-DUAL CD-SCA CD-SNCA
randn-256-1024 -1.329 + 0.038 -1.329 + 0.038 -1.329 + 0.038 -1.426 + 0.056 -1.447 + 0.053
randn-256-2048 -1.132 £ 0.021 -1.132 £ 0.021 -1.132 4 0.021 -1.192 £ 0.019 -1.202 + 0.016

randn-1024-256 5751 + 0.163 5751+ 0.163 | -5.664 + 0.173 5755+ 0.108 | -5.817 + 0.129

randn-2048-256 | -9.364 + 0.183 | -9.364 + 0.183 | -9.161 +0.101 | -9.405+ 0.182 | -9.408 + 0.164

€2006-256-1024 | -28.031 + 37.894 | -28.031 + 37.894 | -27.996 + 37.012 | -27.880 + 37.980 | -28.167 -+ 37.826
€2006-256-2048 | -22.282 + 24.007 | -22.282 + 24.007 | -22.282 + 24.007 | -22.113 + 23.941 | -22.448 + 23.908
€2006-1024-256 | -43.516 + 77.232 | -43.516 + 77.232 | -43.364 + 77.265 | -43.283 + 77.297 | -44.269 + 76.977
€2006-2048-256 | -44.705 + 47.806 | -44.705 + 47.806 | -44.705 + 47.806 | -44.633 + 47.789 | -45.176 + 47.493
randn-256-1024-C | -1.332 +0.019 | -1.332 4 0.019 | -1.3324+0.019 | -1.417 +0.027 | -1.444 + 0.029

randn-256-2048-C | -1.161 + 0.024 | -1.161 + 0.024 | -1.161 + 0.024 | -1.212+0.022 | -1.219 + 0.023

randn-1024-256-C | -5.650 = 0.141 | -5650 + 0.141 | -5501 4+ 0.145 | -5716 +0.159 | -5.808 + 0.134

randn-2048-256-C | -9.236 + 0.125 0236 + 0125 | -9.067 + 0.137 0243 +0.145 | -9.377 + 0.233
€2006-256-1024-C | -4.841 + 6.410 | -4.841 + 6410 | -4.840 + 6.410 | -4.837 +6.411 | -5.027 + 6.363
€2006-256-2048-C | -4.207 + 2.825 | -4207 + 2825 | -4.297 +2.823 | -4.259 + 2827 | -4.394 + 2.814
€2006-1024-256-C | -6.469 + 3.663 | -6.460 + 3.663 | -6.469 +3.663 | -6.470 +3.663 | -6.881 + 3.987
€2006-2048-256-C | -31.291 + 60.507 | -31.291 + 60.597 | -31.291 + 60.597 | -31.284 + 60.599 | -32.026 + 60.393
Comparisons of objective values of all the methods for solving the ¢; norm PCA problem.

Conclusions: CD-SNCA consistently gives the best performance.



Approximate Sparse Optimization

We consider the following problem:
1 2 . t
S1Gx =yl + P Ixfyl
i=1
Compared methods
@ Multi-Stage Convex Relaxation (MSCR)
@ Proximal DC algorithm (PDCA)
© Subgradient method (SubGrad)
Q CD-SCA:
xH = xt +arg min,, 0.5(cje+0)n?+p|xt+n|+[VF(xt)—glien
© CD-SNCA: xffrl = x}, + argmin,, #7]2 + Vief(xH)n +
pIxE+nl —pd i [(xF+ neiiil



Experimental Results

MSCR PDCA SubGrad CD-SCA CD-SNCA
randn-256-1024 0.090 + 0.017 | 0.090 + 0.016 | 0.775 + 0.040 | 0.092 + 0.018 | 0.034 + 0.004
randn-256-2048 0.052 + 0.009 | 0.052 + 0.010 | 1.485 + 0.030 | 0.061 + 0.012 | 0.027 + 0.002
randn-1024-256 1.887 + 0.353 | 1.884 + 0.352 | 2.215 4+ 0.379 | 1.881 + 0.337 | 1.681 + 0.346
randn-2048-256 3.795 + 0.518 | 3.794 + 0.518 | 4.127 + 0.525 | 3.772 + 0.522 | 3.578 + 0.484
€2006-256-1024 | 0.217 + 0.553 | 0.217 + 0.553 | 0.597 4 0.391 | 0.218 + 0.556 | 0.087 + 0.212
€2006-256-2048 0.050 + 0.068 | 0.050 + 0.068 | 0.837 + 0.209 | 0.050 + 0.068 | 0.025 + 0.032
€2006-1024-256 3.078 +2.928 | 3.078 + 2.928 | 3.112 + 2.844 | 3.097 + 2.960 | 2.697 + 2.545
€2006-2048-256 1.799 + 1.453 | 1.799 + 1.453 | 1.918 4+ 1.518 | 1.805 + 1.456 | 1.688 + 1.398

randn-256-1024-C | 0.086 + 0.012 | 0.087 + 0.012 | 0.775 4 0.038 | 0.083 + 0.011 | 0.033 + 0.002

randn-256-2048-C | 0.043 + 0.006 | 0.044 + 0.006 | 1.472 4+ 0.027 | 0.051 + 0.009 | 0.026 + 0.001

randn-1024-256-C | 1.997 £ 0.250 | 1.998 + 0.250 | 2.351 + 0.297 | 1.979 + 0.265 | 1.781 + 0.244

randn-2048-256-C | 3.618 + 0.681 | 3.617 + 0.682 | 3.965 + 0.717 | 3.619 + 0.679 | 3.420 + 0.673

€2006-256-1024-C | 0.031 + 0.031 | 0.031 + 0.031 | 0.339 £ 0.073 | 0.030 + 0.028 | 0.015 + 0.014

€2006-256-2048-C | 0.217 + 0.575 | 0.217 + 0.575 | 0.596 + 0.418 | 0.215 + 0.568 | 0.071 + 0.176

€2006-1024-256-C | 3.789 + 4.206 | 3.798 + 4.213 | 3.955 + 4.363 | 3.851 + 4.339 | 3.398 + 3.855

€2006-2048-256-C | 4.480 + 6.916 | 4.482 + 6.918 | 4.710 £ 7.292 | 4.461 + 6.844 | 4.200 + 6.608

Comparisons of objective values of all the methods for solving the approximate sparse optimization problem.

Conclusions: CD-SNCA consistently gives the best performance.




Computational Efficiency

== \|SCR ===MSCR
\ e . Ghor
210°f \ —oae 21 G
8 o e e B -
s -
o )
10°
10 10° 10 10°
Time (seconds) Time (seconds)
(a) randn-256-1024 (b) randn-256-2048
Conclusions:

CD-SNCA generally takes a little more time to converge.
CD-SNCA generally achieves higher accuracy.
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Discussions and Extensions:
Equivalent Reformulations for the 7,

Norm Generalized Eigenvalue
Problem



Equivalent Reformulations

We consider the following problems with Q >~ 0:

min Fi(x) £ 9x7Qx — |Ax], )
min F(x) £ —||Ax||,, s.t. x"Qx < 1 (3)
X
min F3(x) £ Ix"Qx, s.t. |Ax|, > 1 (4)
X

We have the following results.

(a) If x is an optimal solution to (2), then :l:)'(()‘(TQ)'()fé and 32X

[AX[l»
are respectively optimal solutions to (3) and (4).
Vi ; i £[AYllpy £y
(b) If ¥ is an optimal solution to (3), then o57Q5 2Nd [ayT; are

respectively optimal solutions to (2) and (4).

+2| Az,

) oz’ Qz
+7(27Qz) 2 are respectively optimal solutions to (2) and (3).

(c) If Z is an optimal solution to (4), then and



Discussions and Extensions: A Local

Analysis for the PCA Problem



A Local Analysis for the PCA Problem

The PCA problem:
max v’ Cv, s.t. |v] =1

where C = 0 is given.

Equivalent problem:
min F(x) = %Hx”% — vVxTCx. (5)

for any given constant a > 0.
We assume
C-= 27:1 )\,-u,-u,-T = UTdiag()\)U, A1 > X > .. >, >0.

46 /57



A Local Analysis for the PCA Problem

Theorem

We have the following results:

(a) The set of critical points of Problem (5) are

{0} U {+Lkyy : k=1,...,n}}.

(b) The PCA Problem in (5) has at most two local minima

{i%ul} which are the global optima with F(X) = —3—;,
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A Local Analysis for the PCA Problem

Theorem

We define § 21— 22,6 £ X1 (—1— Fo+ 0+ A2+ 26).
Assume that 0 < § < 1. When x is sufficiently close to the global
optimal solution X such that ||x — X|| < @ with

w<w= m|n{\/71C( 2),&}, we have:

(8) Vi = < [ < VAT + 5.

(b) A1 — @A < HXHC <A1+ @VAL

(c) )\1u1u1 + pl = xxT = )\1u1u1 — pl with p & 3w? + 2w\/7

(d) 71 = V2F(x) = ol Wltha—l———w(1+r) S 2 >0
214 AWV tw)
and T2 1+ /)



A Local Analysis for the PCA Problem

Theorem (Convergence Rate of CD-SNCA for the PCA Problem)

. We assume that the random-coordinate selection rule is used.
Assume that ||x* — X|| < @ that F(-) is o-strongly convex and
T-smooth. Here the parameters @, o and T are define in Theorem
9. We define r? & @Hx —x||3 and B £ ffg We have:
2 N 0 z
Elr] < (1-2)"" (o + F(x°) - F(%))

Note that the theorem above does not rely on the weak

convexity condition or the sharpness condition of F(-).
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Discussions and Extensions:
Examples for Optimality Hierarchy

between the Optimality Conditions



The First Running Example

e . We consider the following problem:
17
min 5x"Qx+ (x,p) — [|AX]|

with using the following parameters:

0 1 -1
Q= -1 |,p=| 11|, A= 1 0
0 -1 1 1 4 2 -1
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The First Running Example

y x Function Value | Critical Point | CWS Point
111 [1.75:0; —1] -6.625 Yes No
[LL[-1.1] NA NA No No
LL-1] [-0.25;~2; 1] -8.125 No No
[L-1,1:1) NA NA No No
L1, 1 (-1 1)) NA NA No No
[L[-1.1-1] NA NA No No
[L-1:1] [0.25; —2; 3] -4.1250 No No
[L-L[-11] [-0.3333;0.2667; 0.1333] -1.9956 No No
[Li-1-1] [-1.75; ~4; 3] -16.1250 No No
1151 NA NA No No
(-1, 1 [-1,1]) NA NA No No
1,15 -1] [0; -2 2] -6.0000 No No
(11 -1 NA NA No No
(-1 1% (-1, 1) [-1,1]] [0:0;0] 0 Yes No
[I-1,1J; [~1,1]; -1] [0;0;0] 0 Yes No
1.1 -11) NA NA No No
[[-1.1; ~1;[~1,1]) [0:0;0] 0 Yes No
[-1.1;-1;-1] [0;0;0] 0 Yes No
L1 [1.25;0; 3] 76250 Yes No
[FLL[-11] NA NA No No
[-11,-1] [-0.75; —2; -3] -12.1250 No No
-1 [-1,1]1) NA NA No No
[~ [-1,1]; [~1,1]) [0;0;0] 0 Yes No
[~ [-1.1-1] [0:0;0] 0 Yes No
[L-11] [-0.25, -2 5] -6.6250 No No
[-L-L[-1,1]] [0;0;0] 0 Yes No
[-L-1-1] [2.25, 4, 5] -18.625 Yes Yes

Table: Solutions satisfying optimality conditions.




The Second Running Example

e The Second Running Example. We consider the following
example:

1
min =xx — ||Ax||2
x 2

with using the following parameter:

1 -1 1

2 0 2
A=

3 1 0

4 2 -1
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The Second Running Example

(Ais up) x Function Value | Critical Point | CWS Point
(0.5468, [~0.2034,0.8139,0.5015]) | =[—0.2169,0.6019,0.3709] 5.7418 Yes No
(7.8324, [0.1733,-0.4707,0.8651]) | =[0.4850, —1.3172,2.4212] -82.2404 Yes No
(33.6207, [0.9402, —0.3407,0.0030]) | +[-5.4514, ~1.9755,0.0172] | -353.0178 Yes Yes
0,0,0] 0 Yes No

Table: Solutions satisfying optimality conditions.
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The Third Running Example

e The Third Running Example. We consider the following
example:

1
min =x’ x — ||Ax||oo
x 2

with using the following parameter:

1 -1 1

2 0 2
A=

3 1 0

4 2 -1
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The Third Running Example

y X Function Value | Critical Point | CWS Point
[1;0;0;0] | [1;-1;1] ~2.5000 Yes No
[0;1;0; 0] [2:0;2] -4.0000 Yes No
[0;0;1;0] [3:1;0] -9.0000 Yes No
[0;0;0;1] [4;2; —1] -10.5000 Yes Yes

[-1;0;0;0] | [-1;1;—1] -2.5000 Yes No
[0;-1;0;0] | [~2;0; —2] ~4.0000 Yes No
[0;0;—1;0] | [-3;-1;0] -9.0000 Yes No
[0;0;0; 1] | [-4;—2;1] -10.5000 Yes Yes

Table: Solutions satisfying optimality conditions.
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