Coordinate Descent Methods for Fractional Minimization

Ganzhao Yuan

Peng Cheng Laboratory, Shenzhen, China

Outline of This Talk

Introduction

- 2 Coordinate Descent Methods
- Theoretical Analysis
 - Convex-Convex FMP
 - Convex-Concave FMP
- A Breakpoint Searching Method
- Second Second

2 / 50

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

The Fractional Minimization Problem (FMP):

$$ar{\mathbf{x}} \in \arg\min_{\mathbf{x}\in\mathbb{R}^n} F(\mathbf{x}) \triangleq rac{f(\mathbf{x}) + h(\mathbf{x})}{g(\mathbf{x})}$$
 (1)

Assumptions

1 $f(\mathbf{x}) + h(\mathbf{x}) \ge 0$ and $g(\mathbf{x}) > 0$ for all \mathbf{x} .

2 $f(\cdot)$ is convex and continuously differentiable:

$$\forall \mathbf{x}, \eta, \ f(\mathbf{x} + \eta e_i) \leq f(\mathbf{x}) + \langle \nabla_i f(\mathbf{x}), \ \eta e_i \rangle + \frac{\mathbf{c}_i}{2} \| \eta e_i \|_2^2$$

 $e_i \in \mathbb{R}^n$ is an indicator vector with one on the *i*-th entry and zero everywhere else.

- **3** Two Cases for $g(\cdot)$:
 - **0** Convex-Convex FMP: $g(\cdot)$ is cvx, not necessarily differentiable

æ

2 Convex-Concave FMP: $g(\cdot)$ is concave and differentiable

Introduction

The Fractional Minimization Problem (FMP):

$$ar{\mathbf{x}} \in rg\min_{\mathbf{x} \in \mathbb{R}^n} \ F(\mathbf{x}) riangleq rac{f(\mathbf{x}) + h(\mathbf{x})}{g(\mathbf{x})}$$

Assumptions

• $h(\cdot) = \sum_{i=1}^{n} h_i(\mathbf{x}_i)$ is convex and coordinate-wise separable.

One of the following subproblem can be solved exactly:

$$\begin{split} \min_{\eta \in \mathbb{R}} p(\eta) &\triangleq \frac{\frac{a}{2}\eta^2 + b\eta + c + h_i(\mathbf{x} + \eta e_i)}{g(\mathbf{x} + \eta e_i)} \\ \min_{\eta \in \mathbb{R}} p(\eta) &\triangleq \frac{a}{2}\eta^2 + b\eta + h_i(\mathbf{x} + \eta e_i) - \lambda g(\mathbf{x} + \eta e_i) \end{split}$$

Remarks. $\arg \min_{\mathbf{x}} \frac{f(\mathbf{x})+h(\mathbf{x})}{g(\mathbf{x})} \Leftrightarrow \arg \max_{\mathbf{x}} \frac{g(\mathbf{x})}{f(\mathbf{x})+h(\mathbf{x})} \Leftrightarrow$ $\arg \max_{\mathbf{x}} \frac{g(\mathbf{x})+\lambda(f(\mathbf{x})+h(\mathbf{x}))}{f(\mathbf{x})+h(\mathbf{x})} \Leftrightarrow \arg \min_{\mathbf{x}} \frac{f(\mathbf{x})+h(\mathbf{x})}{g(\mathbf{x})+\lambda(f(\mathbf{x})+h(\mathbf{x}))}.$

Examples

• ℓ_p Norm PCA Problem

$$\begin{array}{l} \max_{\mathbf{x}} \|\mathbf{G}\mathbf{x}\|_{\rho}, \ s.t. \ \|\mathbf{x}\| = 1\\ \min_{\mathbf{x}} \ \frac{\|\mathbf{x}\|_{2}^{2}}{\|\mathbf{G}\mathbf{x}\|_{\rho}^{2}} \Leftrightarrow \ \min_{\mathbf{x}} \ \frac{\|\mathbf{x}\|_{2}^{2+1}}{\|\mathbf{G}\mathbf{x}\|_{\rho}} \end{array}$$

Sparse Recovery

$$\min_{\mathbf{x}} \ \frac{\frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \gamma \|\mathbf{x}\|_{1}}{\gamma \sum_{j=1}^{k} |\mathbf{x}_{ij}|}, s.t. \|\mathbf{x}\|_{\infty} \leq \vartheta$$

Independent Component Analysis (ICA)

$$\begin{split} \bar{\mathbf{v}} \in \mathbb{R}^{n} &= \arg\max_{\mathbf{v}} \|\mathbf{G}\mathbf{v}\|_{4}^{4}, \ s.t. \ \|\mathbf{v}\| = 1\\ \bar{\mathbf{x}} &= \arg\min_{\mathbf{x}} \ \frac{\mathbf{x}^{T}\mathbf{x}}{\|\mathbf{G}\mathbf{x}\|_{4}^{2}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Note that $\bar{\mathbf{v}} = \frac{\bar{\mathbf{x}}}{\|\bar{\mathbf{x}}\|}$.

Examples

Regularized Total Least Squares problem

$$\min_{\mathbf{E},\mathbf{x},\mathbf{r}} \|\mathbf{E}\|_{F}^{2} + \|\mathbf{r}\|_{2}^{2}, \ s.t. \ (\mathbf{A} + \mathbf{E})\mathbf{x} \le \mathbf{b} - \mathbf{r}$$

It is shown that it is equivalent to the following problem:

$$\min_{\mathbf{x}} \ \frac{\|\max(0, \mathbf{A}\mathbf{x} - \mathbf{b})\|_2^2}{\|\mathbf{x}\|_2^2 + 1}$$

Iransmit Beamforming

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{x}\|_2^2, \ s.t. \ |\mathbf{A}\mathbf{x}| \ge \mathbf{1}$$

It is equivalent to the following problem:

$$\min_{\mathbf{x}} \frac{\|\mathbf{x}\|_{2}^{2}}{\lambda \|\mathbf{x}\|_{2}^{2} + \min(|\mathbf{A}\mathbf{x}|)^{2}}$$

Related Fractional Minimization Algorithms (i)

Dinkelbach's Parametric Algorithm
 min_x f(x) + h(x) - \overline{\lambda}g(x), where \overline{\lambda} = \frac{f(\overline{x}) + h(\overline{x})}{g(\overline{x})}.
 Since \overline{\lambda} is unknown, iterative procedures are needed.

$$\begin{split} \mathbf{x}^{t+1} &= \arg\min_{\mathbf{x}} \ f(\mathbf{x}) + h(\mathbf{x}) - \lambda^t g(\mathbf{x}) \\ \lambda^t &= \frac{f(\mathbf{x}^t) + h(\mathbf{x}^t)}{g(\mathbf{x}^t)} \end{split}$$

2 Proximal Gradient Algorithm: $g(\mathbf{x}^t)$ is differentiable

$$\begin{split} \mathbf{x}^{t+1} &= \arg\min_{\mathbf{x}} f(\mathbf{x}) + h(\mathbf{x}) - \lambda^t \langle \nabla g(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{1}{2\eta^t} \|\mathbf{x} - \mathbf{x}^t\|_2^2 \\ \lambda^t &= F(\mathbf{x}^t) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Here $\eta^t > 0$ is a stepsize.

Related Fractional Minimization Algorithms (ii)

• Proximal Gradient-Subgradient Algorithm

We assume that $\nabla f(\cdot)$ is *L*-Lipschitz continuous:

$$f(\mathbf{x}) \leq \mathcal{U}(\mathbf{x};\mathbf{y}) \triangleq f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2.$$

The algorithm:

$$egin{aligned} \mathbf{x}^{t+1} &= rg\min_{\mathbf{x}} \ h(\mathbf{x}) + \mathcal{U}(\mathbf{x};\mathbf{x}^t) - \lambda^t \langle \mathbf{g}^t, \mathbf{x} - \mathbf{x}^t
angle, \ \mathbf{g}^t \in \partial g(\mathbf{x}^t) \ \lambda^t &= F(\mathbf{x}^t). \end{aligned}$$

 Quadratic Transform Parametric Algorithm: originally designed for solving multiple-ratio FMPs.

$$\min_{\mathbf{x}} \frac{-g(\mathbf{x})}{f(\mathbf{x}) + h(\mathbf{x})} \Leftrightarrow \min_{\mathbf{x},\beta} \beta^2 (f(\mathbf{x}) + h(\mathbf{x})) - 2\beta \sqrt{g(\mathbf{x})}$$
$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} (\beta^t)^2 (f(\mathbf{x}) + h(\mathbf{x})) - 2\beta^t \sqrt{g(\mathbf{x})}$$
$$\beta^t = \sqrt{g(\mathbf{x}^t)} / (f(\mathbf{x}^t) + h(\mathbf{x}^t)) = \varphi = \varphi = \varphi$$

Related Fractional Minimization Algorithms (iii)

Charnes-Cooper Transform Algorithm.
 Using the transformation

$$\mathbf{y} = \frac{\mathbf{x}}{g(\mathbf{x})}, t = \frac{1}{g(\mathbf{x})}$$

Equivalent Problem:

$$\min_{t,\mathbf{y}} tf(\mathbf{y}/t) + th(\mathbf{y}/t), \ s.t. \ tg(\mathbf{y}/t) = 1$$

Remarks. (i) $tf(\mathbf{y}/t)$ is convex jointly w.r.t. \mathbf{y} and t if $f(\cdot)$ is convex. (ii) Perspective operation preserves convexity.

Other fractional optimization algorithms: PGSA with line search, extrapolated PGSA

Related Work on CD Methods

Convex Problems

- A popular method for solving large-scale problems
- Enjoys faster convergence, avoids tricky parameters tuning, allows for easy parallelization
- Well studied for convex problems (Lasso,SVM,NMF,PageRank)
- Nonconvex Problems
 - Strong optimality guarantees and superior empirical performance
 - Its popularity continues to grow: l₀ norm minimization,
 Eigenvalue complementarity problem, K-means clustering,
 Sparse phase retrieval, Penalized regression, Resource
 allocation problem, Leading eigenvector computation ...

Theory in Nonconvex Optimization

Optimality analysis: Finding stronger stationary points

- \bullet second-order stationary point \in first-order stationary point
- block-k stationary point ∈ coordinate-wise stationary point ∈
 Lipschitz stationary point

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Onvergence analysis
 - weakly convex / bounded nonconvex
 - Luo-Tseng error bound assumption
 - Kurdyka-Łojasiewicz inequality
 - sharpness condition

- Two new CD methods based on sequential nonconvex approximation: Fractional CD, Parametric CD
- Optimality Analysis: FCD-point and PCD-point are equivalent, they are stronger than the critical/directional point
- Onvergence Analysis:
 - Convex-Convex: Q-linearly convergence rate under *Luo-Tseng Error bound* condition or *Sharpness* condition
 - Onvex-Concave: Sublinear convergence rate
- Breakpoint searching methods for computing the proximal operators, Extensive experiments on many applications

Coordinate Descent Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Coordinate Descent Methods

The Raw CD Method:

$$\bar{\eta}^t \in \arg\min_{\eta \in \mathbb{R}} \frac{f(\mathbf{x}^t + \eta e_i) + h(\mathbf{x}^t + \eta e_i)}{g(\mathbf{x}^t + \eta e_i)}, \ \mathbf{x}^{t+1} = \mathbf{x}^t + \bar{\eta}^t e_i$$

The Fractional CD Method (The Proposed Method):

$$\bar{\eta}^t = \arg\min_{\eta} \frac{\mathbf{Q}_i(\mathbf{x}, \eta) + h(\mathbf{x} + \eta e_i)}{g(\mathbf{x}^t + \eta e_i)}, \ \mathbf{x}^{t+1} = \mathbf{x}^t + \bar{\eta}^t e_i$$

The Parametric CD Method (The Proposed Method):

$$\bar{\eta}^{t} = \arg\min_{\eta} \mathbf{Q}_{i}(\mathbf{x}, \eta) + h(\mathbf{x} + \eta e_{i}) - \lambda^{t} g(\mathbf{x}^{t} + \eta e_{i}), \ \mathbf{x}^{t+1} = \mathbf{x}^{t} + \bar{\eta}^{t} e_{i}$$
The Proximal Gradient-Subgradient CD Method:

The Proximal Gradient-Subgradient CD Method:

CD Methods for Fractional Minimization

Input: an initial feasible solution \mathbf{x}^0 , $\theta > 0$. Set t = 0.

while not converge do

S1 Use some strategy to find a coordinate $i^t \in \{1, ..., n\}$.

S2 Define

$$\mathcal{J}_i(\mathbf{x},\eta,\theta) \triangleq f(\mathbf{x}) + \nabla_i f(\mathbf{x})\eta + \frac{\mathbf{c}_i + \theta}{2}\eta^2 + h(\mathbf{x} + \eta \mathbf{e}_i)$$

Solve one of the following subproblems globally.

- Option I: Fractional Coordinate Descent (FCD): $\bar{\eta}^{t} = \mathcal{P}_{i^{t}}(\mathbf{x}^{t}) \triangleq \arg\min_{\eta} \frac{\mathcal{J}_{i^{t}}(\mathbf{x}^{t}, \eta, \theta)}{g(\mathbf{x}^{t} + \eta e_{i^{t}})}$ (2)
- Option II: Parametric Coordinate Descent (PCD):

$$\bar{\eta}^{t} = \mathcal{P}_{i^{t}}(\mathbf{x}^{t}) \triangleq \arg\min_{\eta} \mathcal{J}_{i^{t}}(\mathbf{x}^{t}, \eta, \theta) - \mathcal{F}(\mathbf{x}^{t})g(\mathbf{x}^{t} + \eta e_{i^{t}}) \quad (3)$$

S3
$$\mathbf{x}^{t+1} = \mathbf{x}^t + \bar{\eta}^t \cdot e_{jt} \quad (\Leftrightarrow \mathbf{x}_{jt}^{t+1} = \mathbf{x}_{jt}^t + \bar{\eta}^t)$$

S4 Increment *t* by 1

end

One-dimensional example

We consider the following simple one-dimensional example:

$$\min_{x} F(\mathbf{x}) \triangleq \frac{(x+2)^2}{|3x+2|+1}$$

The following table shows the points satisfying different optimality conditions.

x	F(x)	C-point	D-point	FCW-point	PCW-point
-2	0	Yes	Yes	Yes	Yes
$-\frac{2}{3}$	$(\frac{4}{3})^2$	Yes	No	No	No
0	4 3	Yes	Yes	No	No

$$\max_{\mathbf{x}} g(\mathbf{x}) \triangleq \|\mathbf{A}\mathbf{x}\|_{1}, \ s.t. \ \|\mathbf{x}\| = 1$$

$$g(\mathbf{x})$$
 is convex: $-g(\mathbf{x}) \leq -g(\mathbf{x}^t) - \langle \partial g(\mathbf{x}^t), \ \mathbf{x} - \mathbf{x}^t
angle$

Power Method / Sub-gradient Method:

$$\begin{aligned} \mathbf{x}^{t+1} &= \arg\min_{\|\mathbf{x}\|=1} -g(\mathbf{x}^t) - \langle \partial g(\mathbf{x}^t), \ \mathbf{x} - \mathbf{x}^t \rangle, \ \partial g(\mathbf{x}^t) = \mathbf{A}^T \operatorname{sign}(\mathbf{A}\mathbf{x}^t) \\ &= \frac{\mathbf{A}^T \operatorname{sign}(\mathbf{A}\mathbf{x}^t)}{\|\mathbf{A}^T \operatorname{sign}(\mathbf{A}\mathbf{x}^t)\|} \end{aligned}$$

Equivalent fractional minimization problems:

$$\min_{\mathbf{x}} \frac{\|\mathbf{x}\|_{2}^{2}}{\|\mathbf{A}\mathbf{x}\|_{1}^{2}}, \text{ or } \min_{\mathbf{x}} \frac{\|\mathbf{x}\|_{2}^{2}+1}{\|\mathbf{A}\mathbf{x}\|_{1}}.$$

We consider **PCD** to solve the min_x $\frac{\|\mathbf{x}\|_2^2 + 1}{\|\mathbf{A}\mathbf{x}\|_1}$. The resulting univariate subproblem is:

$$\begin{split} \min_{\eta} \|\mathbf{x}^{t} + \eta e_{it}\|_{2}^{2} + \frac{\theta}{2}\eta^{2} - F(\mathbf{x}^{t})g(\mathbf{x}^{t} + \eta e_{it}) \\ \min_{\eta} \|\mathbf{x}^{t} + \eta e_{it}\|_{2}^{2} + \frac{\theta}{2}\eta^{2} - F(\mathbf{x}^{t})\left(\|\mathbf{A}(\mathbf{x}^{t} + \eta e_{it})\|_{1}\right) \\ \min_{\eta} p(\eta) &\triangleq \frac{a}{2}\eta^{2} + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_{1} \end{split}$$

We use breakpoint search method to solve the following problem:

$$\min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^2 + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_1$$
(4)

Letting $0 \in \partial p(\eta)$, we have: $0 \in a\eta + b - \langle \operatorname{sign}(\eta \mathbf{g} + \mathbf{d}), \mathbf{g} \rangle = a\eta + b - \langle \operatorname{sign}(\eta + \mathbf{d} \div |\mathbf{g}|), |\mathbf{g}| \rangle.$ We define $\mathbf{z} \triangleq \{+\frac{\mathbf{d}_1}{\mathbf{\sigma}_1}, -\frac{\mathbf{d}_1}{\mathbf{\sigma}_1}, ..., +\frac{\mathbf{d}_m}{\mathbf{\sigma}_m}, -\frac{\mathbf{d}_m}{\mathbf{\sigma}_m}\} \in \mathbb{R}^{2m \times 1}$, and $\mathbf{z}_1 \leq \mathbf{z}_2 \leq ... \leq \mathbf{z}_{2m}$. The domain $p(\eta)$ can be divided into 2m + 1intervals: $(-\infty, \mathbf{z}_1)$, $(\mathbf{z}_1, \mathbf{z}_2)$,..., and $(\mathbf{z}_{2m}, +\infty)$. There are 2m + 1breakpoints $\eta \in \mathbb{R}^{(2m+1) \times 1}$. In each interval, the sign of $(\eta + \mathbf{d} \div |\mathbf{g}|)$ can be determined. Thus, the *i*-th breakpoints for the *i*-th interval is: $\eta_i = (\langle sign(\eta + \mathbf{d} \div |\mathbf{g}|), \mathbf{g} \rangle - b)/a$. It contains 2m+1 breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_{(2m+1)}\}_{i=1}$

Theoretical Analysis for Convex-Convex FMP

(日) (문) (문) (문) (문)

Optimality Definition

Definition (Critical Point)

(Critical Point, or C-Point for short) A solution $\check{\mathbf{x}}$ is called a C-point if: $0 \in \partial F(\check{\mathbf{x}}) \triangleq \nabla f(\check{\mathbf{x}}) + \partial h(\check{\mathbf{x}}) - F(\check{\mathbf{x}}) \cdot \partial g(\check{\mathbf{x}})$.

Definition (Directional Point)

wit

(Directional Point, or *D*-Point for short) A solution $\dot{\mathbf{x}}$ is called a *D*-point if the following holds:

$$\mathcal{F}'(\dot{\mathbf{x}}; \mathbf{y} - \dot{\mathbf{x}}) \triangleq \lim_{t \downarrow 0} \frac{\mathcal{F}(\dot{\mathbf{x}} + t(\mathbf{y} - \dot{\mathbf{x}})) - \mathcal{F}(\dot{\mathbf{x}})}{t} \ge 0, \,\,\forall \mathbf{y}$$

th $\mathbf{y} \in \operatorname{dom}(\mathcal{F}) \triangleq \{\mathbf{x} : |\mathcal{F}(\mathbf{x})| < +\infty\}.$

Definition (Fractional Coordinate-Wise Point)

(Fractional Coordinate-Wise Point, or *FCW*-Point for short) Given a constant $\theta \ge 0$. Define $\mathcal{K}_i(\mathbf{x}, \eta) \triangleq \frac{\mathcal{J}_i(\mathbf{x}, \eta, \theta)}{g(\mathbf{x}+\eta e_i)}$. A solution $\ddot{\mathbf{x}}$ is called a *FCW*-point if: $\mathcal{K}_i(\ddot{\mathbf{x}}, 0) = \min_{\eta_i} \mathcal{K}_i(\ddot{\mathbf{x}}, \eta_i), \ \forall i = 1, ..., n$.

Definition (Parametric Coordinate-Wise Point)

(Parametric Coordinate-Wise Point, or *PCW*-Point for short) Given a constant $\theta \ge 0$. Define $\mathcal{M}_i(\mathbf{x}, \eta) \triangleq \mathcal{J}_i(\mathbf{x}, \eta, \theta) - F(\mathbf{x})g(\mathbf{x} + \eta e_i)$. A solution $\dot{\mathbf{x}}$ is called a *PCW*-point if: $\mathcal{M}_i(\dot{\mathbf{x}}, 0) = \min_{\eta_i} \mathcal{M}_i(\dot{\mathbf{x}}, \eta_i), \ \forall i = 1, ..., n$.

Theoretical Analysis

Assumption

(Boundedness of the Denominator) There exists a constant $\bar{g} > 0$ such that $\forall \mathbf{x} \in {\mathbf{z} \mid F(\mathbf{z}) \leq F(\mathbf{x}^0)}, \ g(\mathbf{x}) \leq \bar{g}.$

Definition

(Globally/Locally ρ -Bounded Non-Convexity) A function $\tilde{g}(\mathbf{x}) = -g(\mathbf{x})$ is globally ρ -bounded non-convex if it holds that $\tilde{g}(\mathbf{x}) \leq \tilde{g}(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \partial \tilde{g}(\mathbf{x}) \rangle + \frac{\rho}{2} ||\mathbf{x} - \mathbf{y}||_2^2$ for all \mathbf{x} and \mathbf{y} with a constant $\rho < +\infty$. In particular, $\tilde{g}(\mathbf{x})$ is locally ρ -bounded non-convex if \mathbf{x} is restricted to some point \mathbf{x} with $\mathbf{x} = \check{\mathbf{x}}$.

Lemma (Properties of FCW-point and PCW-point.)

For any FCW-point $\ddot{\mathbf{x}}$ and any PCW-point $\dot{\mathbf{x}}$, assume that $\tilde{g}(\mathbf{x}) = -g(\mathbf{x})$ is locally ρ -bounded non-convex at the point $\ddot{\mathbf{x}}$ (or $\dot{\mathbf{x}}$) with $\rho < +\infty$. We define $C(\mathbf{x}, \eta) \triangleq \frac{1}{2} \|\eta\|_{\mathbf{c}+\theta}^2 + \frac{\rho}{2} \|\eta\|_2^2 F(\mathbf{x})$. We have:

(i) $\forall \eta, F(\ddot{\mathbf{x}}) - F(\ddot{\mathbf{x}} + \eta) \leq \frac{C(\ddot{\mathbf{x}},\eta)}{g(\ddot{\mathbf{x}}+\eta)}.$ (ii) $\forall \eta, F(\dot{\mathbf{x}}) - F(\dot{\mathbf{x}} + \eta) \leq \frac{C(\dot{\mathbf{x}},\eta)}{g(\dot{\mathbf{x}}+\eta)}.$

Optimality Hierarchy (ii)

We use $\check{\mathbf{x}}$, $\dot{\mathbf{x}}$, $\dot{\mathbf{x}}$, $\ddot{\mathbf{x}}$, and $\bar{\mathbf{x}}$ to denote a *C*-point, a *D*-point, a *FCW*-point, a *PCW*-point, and an optimal point, respectively. Based on the the assumption made in the previous lemma. The following relation holds:

$$\{\bar{\mathbf{x}}\} \stackrel{(a)}{\subseteq} \{\bar{\mathbf{x}}\} \stackrel{(b)}{\Leftrightarrow} \{\dot{\mathbf{x}}\} \stackrel{(c)}{\subseteq} \{\bar{\mathbf{x}}\} \stackrel{(d)}{\subseteq} \{\check{\mathbf{x}}\}$$

How is FCW/PCW-point compared with local minimum point?

• FCW-point

$$\forall \boldsymbol{\eta}, \ F(\ddot{\mathbf{x}}) \leq F(\ddot{\mathbf{x}} + \boldsymbol{\eta}) + \frac{\frac{1}{2} \|\boldsymbol{\eta}\|_{\mathbf{z}}^2}{g(\ddot{\mathbf{x}} + \boldsymbol{\eta})}, \ \mathbf{z} = \mathbf{c} + \theta \mathbf{1} + \rho F(\ddot{\mathbf{x}}) \mathbf{1}$$

local minimum point

$$\forall \boldsymbol{\eta}, \ F(\ddot{\mathbf{x}}) \leq F(\ddot{\mathbf{x}} + \boldsymbol{\eta}), \|\boldsymbol{\eta}\| \leq \epsilon$$

where $\epsilon > 0$ is sufficiently small.

Conclusion: Neither condition is stronger than the other.

Global Convergence

Definition

Given $\epsilon > 0$, the solution **x** is said to be an ϵ -approximate

FCD/PCD point if it holds that:

 $\frac{1}{n}\sum_{i=1}^{n}|\mathcal{P}_{i}(\mathbf{x})|^{2}\triangleq Z(\mathbf{x})\leq\epsilon.$

Theorem (Global Convergence)

(a) (Sufficient Decrease Condition)
F(x^{t+1}) - F(x^t) ≤ -θ/2g(x^{t+1}) ||x^{t+1} - x^t||₂².
(b) FCD/PCD find an ε-approximate FCD-point/PCD-point in at most T iterations in expectation, where

$$T \leq \lceil rac{nar{g}[F(\mathbf{x}^0) - F(ar{\mathbf{x}})]}{ heta\epsilon}
ceil = \mathcal{O}(\epsilon^{-1})$$

Assumption

(Luo-Tseng Error Bound) We define a residual function as $\mathcal{R}(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^{n} |\mathcal{P}_i(\mathbf{x})|$, where $\mathcal{P}_i(\mathbf{x})$ is defined in (2) (or (3)). For any $\zeta \ge \min_{\mathbf{x}} F(\mathbf{x})$, there exist scalars $\delta > 0$ and $\varrho > 0$ such that:

$$dist(\mathbf{x}, \mathcal{X}) \leq \delta \cdot \mathcal{R}(\mathbf{x}), \text{ whenever } F(\mathbf{x}) \leq \zeta, \ \mathcal{R}(\mathbf{x}) \leq \varrho.$$
 (5)

Here, $dist(\mathbf{x}, \mathcal{X}) = \inf_{\mathbf{z} \in \mathcal{X}} \|\mathbf{z} - \mathbf{x}\|$, \mathcal{X} is the set of the FCW-point (or the PCW-point).

Necessary first-order optimality conditions:

$$\alpha^{t}\partial_{i^{t}}g(\mathbf{x}^{t}+\bar{\eta}^{t}e_{i^{t}})\in\partial\mathcal{J}_{i^{t}}(\mathbf{x}^{t},\bar{\eta}^{t},\theta), \ \alpha^{t}\triangleq\frac{\mathcal{J}_{i^{t}}(\mathbf{x}^{t},\bar{\eta}^{t},\theta)}{g(\mathbf{x}^{t+1})}.$$
$$F(\mathbf{x}^{t})\cdot\partial_{i^{t}}g(\mathbf{x}^{t}+\bar{\eta}^{t}e_{i^{t}})\in\partial\mathcal{J}_{i^{t}}(\mathbf{x}^{t},\bar{\eta}^{t},\theta).$$
(6)

Lemma

(Property of FCD) The value of the parameter α^{t} defined in (6) is sandwiched as $F(\mathbf{x}^{t+1}) \leq \alpha^{t} \leq F(\mathbf{x}^{t+1}) + \sigma(F(\mathbf{x}^{t}) - F(\mathbf{x}^{t+1})) \leq \sigma F(\mathbf{x}^{0})$ with $\sigma \triangleq \frac{\max(\mathbf{c}) + \theta}{\theta}$.

Convergence Rate

Theorem

(Convergence Rate of FCD). For any FCW-point x, we define $q^t \triangleq F(\mathbf{x}^t) - F(\ddot{\mathbf{x}}), \ r^t \triangleq \frac{1}{2} \|\mathbf{x}^t - \ddot{\mathbf{x}}\|_{\mathbf{c}}^2, \ \mathbf{\bar{c}} \triangleq \mathbf{c} + \theta.$ Assume that $\tilde{g}(\mathbf{x}) = -g(\mathbf{x})$ is globally ρ -bounded non-convex, and $F(\cdot)$ satisfies Assumption 2. We define: $\varpi \triangleq \frac{\max(\bar{\mathbf{c}})}{\min(\bar{\mathbf{c}})} \cdot \frac{\rho}{\theta} \cdot F(\mathbf{x}^0)$. We have the following inequality: $(1-\varpi)\mathbb{E}_{i^t}[r^{t+1}] + \frac{g(\bar{\mathbf{x}})}{2}q^{t+1} < (1-\varpi)r^t + \frac{\varpi}{2}r^t$. When the proximal parameter θ is sufficiently large such that $\varpi \leq 1$, we obtain: $q^{t+1} \leq (\frac{\kappa_1}{\kappa_1 + \kappa_0})^{t+1} q^0$, where $\kappa_0 \triangleq \frac{g(\bar{\mathbf{x}})}{\bar{\sigma}}$ and $\kappa_1 \triangleq (n+1) \max(\bar{\mathbf{c}}) \delta^2 / \theta$.

Convergence Rate

Theorem

(Convergence Rate of **PCD**). For any PCW-point $\dot{\mathbf{x}}$, we define $q^{t} \triangleq F(\mathbf{x}^{t}) - F(\dot{\mathbf{x}}), \ r^{t} \triangleq \frac{1}{2} \|\mathbf{x}^{t} - \dot{\mathbf{x}}\|_{\overline{\mathbf{c}}}^{2}, \ \overline{\mathbf{c}} \triangleq \mathbf{c} + \theta.$ Assume that $\tilde{g}(\mathbf{x}) = -g(\mathbf{x})$ is globally ρ -bounded non-convex, and $F(\cdot)$ satisfies Assumption 2. We define: $\varpi \triangleq \frac{\rho}{\min(\bar{\epsilon})} F(\mathbf{x}^0)$. We have the following inequality: $\mathbb{E}_{i^t}[(1-\varpi)r^{t+1}] + \frac{\overline{g}}{r}q^{t+1} \leq (1-\varpi)r^t + \frac{\varpi}{r}r^t - \frac{g(\overline{x})}{r}q^t + \frac{\overline{g}}{r}q^t.$ When the proximal parameter θ is sufficiently large such that $\varpi \leq 1$, we obtain: $q^{t+1} \leq (\frac{\kappa_1+1-\kappa_0}{\kappa_1+1})^{t+1}q^0$, where $\kappa_0 \triangleq \frac{g(\bar{\mathbf{x}})}{\bar{\alpha}}$ and $\kappa_1 \triangleq (n+1) \max(\bar{\mathbf{c}}) \delta^2 / \theta$.

Convergence Rate

Remarks

- Algorithm 1 converges to the FCW-point (or the PCW-point) with a Q-linear convergence rate.
- We compare the convergence rate of **FCD** and **PCD** which depend on κ_0 and κ_1 : $\left(\frac{\kappa_1+1-\kappa_0}{\kappa_1+1}\right) - \left(\frac{\kappa_1}{\kappa_1+\kappa_0}\right) = \frac{1}{(\kappa_1+\kappa_0)(\kappa_1+1)} [\kappa_1(\kappa_1+\kappa_0) + (\kappa_1+\kappa_1+1)] = \frac{\kappa_0(1-\kappa_0)}{(\kappa_1+\kappa_0)(\kappa_1+1)} \ge 0.$

Thus, FCD is faster than PCD.

Theoretical Analysis for Convex-Concave FMP

(日) (문) (문) (문) (문)

Theoretical Analysis

Proposition

(i) $F(\cdot)$ is quasiconvex that: $F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \max(F(\mathbf{x}), F(\mathbf{y})), \forall \alpha \in [0, 1], \mathbf{x}, \mathbf{y}.$ (ii) Any critical point of Problem (2) is a global minimum.

Theorem (Convergence Rate.)

For any global optimal solution $\bar{\mathbf{x}}$ -point of Problem (2), we define $q^t \triangleq F(\mathbf{x}^t) - F(\bar{\mathbf{x}}), \ r^t \triangleq \frac{1}{2} \|\mathbf{x}^t - \bar{\mathbf{x}}\|_{\bar{\mathbf{c}}}^2, \ \bar{\mathbf{c}} \triangleq \mathbf{c} + \theta.$ For **FCD**, we have: $\mathbb{E}_{\xi^{t-1}}[q^t] \leq \frac{n(\bar{g}\sigma q^0 + r^0)}{g(\bar{\mathbf{x}})t}$, where σ is defined in Lemma 9. For **PCD**, we have: $\mathbb{E}_{\xi^{t-1}}[q^t] \leq \frac{n(\bar{g}q^0 + r^0)}{g(\bar{\mathbf{x}})(t+1)}$.

A Breakpoint Searching Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A Breakpoint Searching Method

Two steps:

- $\textbf{0} \ \text{identifies all the possible critical points / breakpoints } \Theta$
- e picks the solution from Θ that leads to the lowest value as the optimal solution.

Examples:

- ℓ_{∞} Norm PCA Problem: $F(\mathbf{x}) \triangleq \frac{\|\mathbf{x}\|_2^2 + 1}{\|\mathbf{A}\mathbf{x}\|_{\infty}}$.
- Sparse Recovery Problem: $F(\mathbf{x}) \triangleq \frac{\frac{1}{2} \|\mathbf{G}\mathbf{x} \mathbf{y}\|_2^2 + \gamma \|\mathbf{x}\|_1}{\gamma \sum_{i=1}^k |\mathbf{x}_{i,i}|}$.
- **3** ICA Problem: $F(\mathbf{x}) \triangleq \frac{\mathbf{x}^T \mathbf{x}}{\|\mathbf{G}\mathbf{x}\|_4^2}$.

• RTLS Problem: $F(\mathbf{x}) \triangleq \min_{\mathbf{x}} \frac{\|\max(0, \mathbf{A}\mathbf{x} - \mathbf{b})\|_2^2}{\|\mathbf{x}\|_2^2 + 1}$.

5 Transmit Beamforming Problem: $\frac{\|\mathbf{x}\|_2^2}{\lambda \|\mathbf{x}\|_2^2 + \min(|\mathbf{A}\mathbf{x}|)^2}$

We consider Parametric CD to solve the ℓ_∞ Norm PCA Problem. The reduced univariate subproblem is

$$\begin{split} \min_{\eta} \frac{a}{2}\eta^{2} + b\eta - \lambda \|\mathbf{A}(\mathbf{x} + \eta e_{i})\|_{\infty} \\ \Leftrightarrow \quad \min_{\eta} \frac{a}{2}\eta^{2} + b\eta - \|\mathbf{g}\eta + \mathbf{d}\|_{\infty} \\ \Leftrightarrow \quad \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^{2} + b\eta - \max_{i=1}^{2m}(\bar{\mathbf{g}}_{i}\eta + \bar{\mathbf{d}}_{i}) \end{split}$$
with $\bar{\mathbf{g}} = [\mathbf{g}_{1}, \mathbf{g}_{2}, ..., \mathbf{g}_{m}, -\mathbf{g}_{1}, -\mathbf{g}_{2}, ..., -\mathbf{g}_{m}]$ and $\bar{\mathbf{d}} = [\mathbf{d}_{1}, \mathbf{d}_{2}, ..., \mathbf{d}_{m}, -\mathbf{d}_{1}, -\mathbf{d}_{2}, ..., -\mathbf{d}_{m}].$
Letting $0 \in \partial p(\cdot)$, we have: $a\eta + b + \bar{\mathbf{g}}_{i} = 0$ with $i = 1, 2, ..., (2m)$. We have $\eta = (-b - \bar{\mathbf{g}})/a$.
This problem contains $2m$ breakpoints $\Theta = \{\eta_{1}, \eta_{2}, ..., \eta_{2m}\}$

i

Example 2. Sparse Recovery: $F(\mathbf{x}) \triangleq \frac{\frac{1}{2} \|\mathbf{G}\mathbf{x} - \mathbf{y}\|_2^2 + \gamma \|\mathbf{x}\|_1}{\gamma \sum_{j=1}^k |\mathbf{x}_{[j]}|}$

We consider Parametric CD to solve this problem. The reduced univariate subproblem is

$$\min_{\eta} \frac{a}{2}\eta^2 + b\eta + |\mathbf{x}_i + \eta| - \sum_{i=1}^{s} |(\mathbf{x} + \eta e_i)_{[i]}|$$

Since the variable η only affects the value of \mathbf{x}_i , we consider two cases for $\mathbf{x}_i + \eta$.

(i) $\mathbf{x}_i + \eta$ belongs to the top-*s* subset. It reduces to $\min_{\eta} \frac{a}{2}\eta^2 + b\eta$. It has 1 breakpoint: $\{-\frac{b}{a}\}$. (ii) $\mathbf{x}_i + \eta$ does not belong to the top-*s* subset. It reduces to $\min_{\eta} \frac{a}{2}\eta^2 + bt + |\mathbf{x}_i + \eta|$. It has 3 breakpoints $\{-\mathbf{x}_i, \frac{-1-b}{a}, \frac{1-b}{a}\}$. This problem contains 4 breakpoints $\Theta = \{-\frac{b}{a}, -\mathbf{x}_i, \frac{-1-b}{a}, \frac{1-b}{a}\}$. We consider Fractional CD to solve the ICA Problem. The reduced univariate subproblem is $\min_{\eta} \frac{\|\mathbf{x}^t\|_2^2 + 2\mathbf{x}_i \eta + \frac{2+\theta}{2}\eta^2}{\sqrt{\|\mathbf{G}(\mathbf{x}^t + \eta \mathbf{e}_i t)\|_4^4}}$

$$\min_{\eta} p(\eta) \triangleq \frac{a_2 \eta^2 + a_1 \eta + a_0}{\sqrt{b_4 \eta^4 + b_3 \eta^3 + b_2 \eta^2 + b_1 \eta + b_0}}$$

Setting the gradient of $p(\cdot)$ to zero yields: $2a_2\eta + a_1 = p(\eta)\frac{1}{2}(b_4\eta^4 + b_3\eta^3 + b_2\eta^2 + b_1\eta + b_0)^{-\frac{1}{2}} \cdot (4b_4\eta^3 + 3b_3\eta^2 + 2b_2\eta + b_1).$ It reduces to a quartic equation which can be solved analytically by Lodovico Ferrari's method: $c_4\eta^4 + c_3\eta^3 + c_2\eta^2 + c_1\eta + c_0 = 0.$ This problem contains 4 breakpoints $\Theta = \{\bar{\eta}_1, \bar{\eta}_2, \bar{\eta}_3, \bar{\eta}_4\}.$

Example 4. RTLS: $F(\mathbf{x}) \triangleq \min_{\mathbf{x}} \frac{\|\max(0, \mathbf{A}\mathbf{x} - \mathbf{b})\|_2^2}{\|\mathbf{x}\|_2^2 + 1}$

We consider Parametric CD to solve the RTLS Problem.

The reduced univariate subproblem is

$$\begin{split} \min_{\eta} \frac{a}{2}\eta^{2} + b\eta - \|\mathbf{A}(\mathbf{x} + \eta e_{i})\|_{p} \Leftrightarrow \min_{\eta} p(\eta) &\triangleq \frac{a}{2}\eta^{2} + b\eta + \|\mathbf{g}\eta + \mathbf{d}\|_{p} \\ \text{Letting } p = 2, \text{ we have} \\ 0 \in \partial p(\eta) &= a\eta + b + \|\mathbf{g}\eta - \mathbf{d}\|_{p}^{1-p} \langle \mathbf{g}, \text{sign}(\mathbf{g}\eta + \mathbf{d}) \odot |\mathbf{g}\eta + \mathbf{d}|^{p-1} \rangle. \\ \text{We only focus on } p = 2. \text{ We obtain:} \\ 0 &= -a\eta - b = \frac{\langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle}{\|\mathbf{g}\eta - \mathbf{d}\|} \iff \|\mathbf{g}\eta - \mathbf{d}\|(-a\eta - b) = \langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle \\ \Leftrightarrow \|\mathbf{g}\eta - \mathbf{d}\|_{2}^{2} (a\eta + b)^{2} = (\langle \mathbf{g}, \mathbf{g}\eta + \mathbf{d} \rangle)^{2} \end{split}$$

Solving this quartic equation we obtain all of its real roots $\{\eta_1, \eta_2, ..., \eta_c\}$ with $1 \le c \le 4$. This problem at most contains 4 breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_c\}$ We consider Parametric CD to solve the beamforming Problem. The reduced univariate subproblem is

$$\min_{\eta} \frac{a}{2}\eta^{2} + b\eta - \lambda \min(|\mathbf{A}(\mathbf{x} + \eta e_{i})|)^{2}$$

$$\Leftrightarrow \quad \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^{2} + b\eta - \frac{1}{2}\min(\mathbf{g}\eta + \mathbf{d})^{2}$$

$$\Leftrightarrow \quad \min_{\eta} p(\eta) \triangleq \frac{a}{2}\eta^{2} + b\eta - \frac{1}{2}\min_{i=1}^{m}[(\mathbf{g}_{i}\eta + \mathbf{d}_{i})^{2}]$$

Letting $0 \in \partial p(\cdot)$, we have: $a\eta - \mathbf{g}_i^2 \eta = \mathbf{d}_i \mathbf{g}_i - b$ with i = 1, 2, ..., m. We have $\eta_i = (\mathbf{d}_i \mathbf{g}_i - b)/(a - \mathbf{g}_i^2)$. This problem contains m breakpoints $\Theta = \{\eta_1, \eta_2, ..., \eta_m\}$.

 $\|\mathbf{x}\|_{2}^{2}$

 $\lambda \|\mathbf{x}\|_{2}^{2} + \min(|\mathbf{A}\mathbf{x}|)^{2}$

When the breakpoint set Θ is found, we pick the solution that leads to the lowest value as the global optimal solution $\overline{\eta}$:

$$\bar{\eta} = \arg \min_{\eta} p(\eta), \ s.t. \ \eta \in \Theta.$$

The function $h(\cdot)$ does not bring much difficulty for solving the subproblem since it is separable.

Experimental Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We consider four publicly available real-world data sets: 'e2006tfidf', 'news20', 'sector', and 'TDT2' for the sensing/channel matrix $\mathbf{G} \in \mathbb{R}^{m \times n}$

The size of $\mathbf{G} \in \mathbb{R}^{m \times n}$ are chosen from the following set $(m, n) \in \{(1000, 1024), (1000, 2048), (1024, 1000), (2048, 1000)\}$. To generate the original *k*-sparse signal $\bar{\mathbf{x}}$ for the sparse recovery problem, we randomly select a support set *S* of size 100 and set $\bar{\mathbf{x}}_{\{1,\dots,n\}\setminus S} = \mathbf{0}$, $\bar{\mathbf{x}}_S = \operatorname{randn}(|S|, 1)$. We generate the observation vector via $\mathbf{y} = \mathbf{G}\bar{\mathbf{x}} + 0.1 \|\mathbf{G}\bar{\mathbf{x}}\| \cdot \operatorname{randn}(m, 1)$.

Sparse Recovery Problem

	DPA	PGSA	QTPA	PCD
e2006-1000-1024	1.874 ± 0.315	1.929 ± 0.278	1.923 ± 0.279	$\textbf{1.530} \pm \textbf{0.184}$
e2006-1000-2048	1.640 ± 0.118	1.663 ± 0.172	1.660 ± 0.177	$\textbf{1.312} \pm \textbf{0.061}$
e2006-1024-1000	2.610 ± 0.796	2.362 ± 0.533	2.362 ± 0.530	$\textbf{1.882} \pm \textbf{0.418}$
e2006-2048-1000	5.623 ± 4.005	6.576 ± 4.966	6.593 ± 4.989	$\textbf{3.068} \pm \textbf{1.282}$
news20-1000-1024	1.750 ± 0.247	1.403 ± 0.128	1.402 ± 0.130	$\textbf{1.168} \pm \textbf{0.023}$
news20-1000-2048	2.043 ± 0.429	1.424 ± 0.181	1.426 ± 0.180	$\textbf{1.207} \pm \textbf{0.065}$
news20-1024-1000	1.856 ± 0.353	1.488 ± 0.317	1.487 ± 0.318	$\textbf{1.195} \pm \textbf{0.045}$
news20-2048-1000	4.997 ± 0.269	2.664 ± 0.604	2.559 ± 0.745	$\textbf{1.394} \pm \textbf{0.115}$
sector-1000-1024	1.864 ± 0.162	1.337 ± 0.105	1.337 ± 0.104	$\textbf{1.160} \pm \textbf{0.016}$
sector-1000-2048	1.780 ± 0.040	1.293 ± 0.033	1.293 ± 0.026	$\textbf{1.148} \pm \textbf{0.010}$
sector-1024-1000	2.039 ± 0.016	1.485 ± 0.194	1.486 ± 0.195	$\textbf{1.193} \pm \textbf{0.015}$
sector-2048-1000	5.041 ± 1.714	2.477 ± 1.048	2.475 ± 1.046	$\textbf{1.409} \pm \textbf{0.108}$
TDT2-1000-1024	1.778 ± 0.303	1.646 ± 0.035	1.644 ± 0.032	$\textbf{1.215} \pm \textbf{0.047}$
TDT2-1000-2048	1.710 ± 0.045	1.398 ± 0.029	1.398 ± 0.028	$\textbf{1.127} \pm \textbf{0.016}$
TDT2-1024-1000	1.984 ± 0.284	1.555 ± 0.058	1.552 ± 0.050	$\textbf{1.206} \pm \textbf{0.067}$
TDT2-2048-1000	4.696 ± 1.980	3.846 ± 0.901	3.789 ± 0.800	1.338 ± 0.038

Table: Comparisons of objective values for solving the spare recovery problem.

Sparse Recovery Problem

Figure: The convergence curve for solving the sparse recovery problem.

ICA Problem

	PGSA	Power Method	FCD
e2006-1000-1024	12.254 ± 14.922	12.254 ± 14.922	6.686 ± 4.956
e2006-1000-2048	16.896 ± 14.521	16.896 ± 14.521	$\textbf{9.436} \pm \textbf{6.359}$
e2006-1024-1000	5.923 ± 4.485	5.923 ± 4.485	$\textbf{4.948} \pm \textbf{2.631}$
e2006-2048-1000	16.846 ± 13.916	16.846 ± 13.916	$\textbf{11.360} \pm \textbf{8.225}$
news20-1000-1024	112.805 ± 58.995	112.805 ± 58.995	$\textbf{78.183} \pm \textbf{22.830}$
news20-1000-2048	125.440 ± 43.203	125.440 ± 43.203	120.046 ± 41.353
news20-1024-1000	99.211 ± 35.338	99.211 ± 35.338	$\textbf{80.244} \pm \textbf{22.771}$
news20-2048-1000	138.909 ± 49.626	138.909 ± 49.626	108.080 ± 37.811
sector-1000-1024	60.813 ± 24.018	60.813 ± 24.018	50.551 ± 18.675
sector-1000-2048	139.459 ± 51.094	139.459 ± 51.094	96.301 ± 42.115
sector-1024-1000	83.176 ± 38.697	83.176 ± 38.697	48.559 ± 19.163
sector-2048-1000	104.654 ± 63.318	104.654 ± 63.318	$\textbf{78.110} \pm \textbf{28.532}$
TDT2-1000-1024	27.167 ± 12.705	27.167 ± 12.705	$\textbf{22.308} \pm \textbf{8.171}$
TDT2-1000-2048	27.480 ± 15.468	27.480 ± 15.468	$\textbf{23.225} \pm \textbf{12.614}$
TDT2-1024-1000	32.334 ± 18.178	32.334 ± 18.178	$\bf 21.143 \pm 12.143$
TDT2-2048-1000	44.659 ± 19.775	44.659 ± 19.775	$\textbf{36.517} \pm \textbf{12.689}$

Table: Comparisons of objective values for solving the ICA problem.

ICA Problem

Figure: The convergence curve for solving the ICA problem.

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?