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Introduction



Introduction

The Fractional Minimization Problem (FMP):

f h
X € arg Xng]erL F(x) = (x?g?;) (x) (1)
Assumptions
@ f(x)+ h(x) > 0 and g(x) > 0 for all x.

@ f(-) is convex and continuously differentiable:
C;
W1, f(x+nei) < F(x) + (Vif(x), nei) + = [Ineill3

e; € R" is an indicator vector with one on the i-th entry and
zero everywhere else.

© Two Cases for g(+):
® Convex-Convex FMP: g(+) is cvx, not necessarily differentiable

@ Convex-Concave FMP: g(-) is concave and differentiable



Introduction

The Fractional Minimization Problem (FMP):

x € arg;g]iR?n F(x) = f(x)g?—x)h(x)
Assumptions
@ h(-) =>_7_1 hi(x/) is convex and coordinate-wise separable.
@ One of the following subproblem can be solved exactly:

22 + by + ¢ + hi(x + ney)
min p()
neR g(x +ne;)

[I>

a
min p(n) £ S1° + by + hi(x + ne;) — Ag(x + ne;)
neR 2

Remarks. arg miny (X)+h(x)

& arg maXy W <~
g(X)+>\(f(X)+h(X)) f(x)+h(x)

Arg MaxXx ==L hGg < A8 MiNx S5 (760 + ()



@ /7, Norm PCA Problem

maxx ||Gx||p, s.t. ||x|| =1
T 3
mine ez < Minx ey,

@ Sparse Recovery

1
311Gx—y[3+~Ix]lx

.t <4
A s <

miny
@ Independent Component Analysis (ICA)

V € R" = argmax ||Gv||3, s.t. |[v] =1
v

XTX

X =argmin ———
x| Gx|I3

[

Note that v = |

X



© Regularized Total Least Squares problem
IrEnin IE||Z + |Irll3, s.t. (A+Ex<b-—r
X,

It is shown that it is equivalent to the following problem:

- [Imax(0, Ax — b)]|3
x Iz + 1

@ Transmit Beamforming
1,
min —||x||5, s.t. |[Ax| >1
x 2
It is equivalent to the following problem:

2
i B
<" Nx[3 + min(Ax])




Related Fractional Minimization Algorithms (i)

@ Dinkelbach’s Parametric Algorithm
miny £(x) + h(x) — Ag(x), where X = TELHE).
Since A is unknown, iterative procedures are needed.
x! = arg mxin f(x) + h(x) — \g(x)
f(xt) + h(x")
g(x")

@ Proximal Gradient Algorithm: g(x*) is differentiable

AT =

X"t = argmin £(x) + h(x) — X(Vg(x),x —x) + 5 x — x5
X

¢
Af = F(x')

Here n* > 0 is a stepsize.



Related Fractional Minimization Algorithms (ii)

@ Proximal Gradient-Subgradient Algorithm
We assume that V£(+) is L-Lipschitz continuous:

F(x) SU(Xy) £ (y) + (VF(y).x—y) + 5lly — x|
The algorithm:

x™ = argmin h(x) +U(x;x) — X{g’, x — x!), g’ € Og(x")
AE = F(xh).

@ Quadratic Transform Parametric Algorithm: originally
designed for solving multiple-ratio FMPs.

. —&(x) .
min 760 + h() & r;r(uﬁn B2(f(x) + h(x)) — 28/ g(x)

xT1 = argmin(8°)*((x) + h(x)) - 26°/g(x)
Bt = +/g(xt)/(f(x") + h(x!))



Related Fractional Minimization Algorithms (iii)

@ Charnes-Cooper Transform Algorithm.

Using the transformation

Equivalent Problem:

n;iyn tf(y/t) + th(y/t), s.t. tg(y/t) =1

Remarks. (i) tf(y/t) is convex jointly w.r.t. y and ¢ if f(-) is

convex. (ii) Perspective operation preserves convexity.

@ Other fractional optimization algorithms: PGSA with line
search, extrapolated PGSA



Related Work on CD Methods

@ Convex Problems

@ A popular method for solving large-scale problems

@ Enjoys faster convergence, avoids tricky parameters tuning,
allows for easy parallelization

© Well studied for convex problems (Lasso,SVM,NMF,PageRank)

@ Nonconvex Problems

@ Strong optimality guarantees and superior empirical
performance

@ lts popularity continues to grow: fo norm minimization,
Eigenvalue complementarity problem, K-means clustering,
Sparse phase retrieval, Penalized regression, Resource

allocation problem, Leading eigenvector computation ...



Theory in Nonconvex Optimization

© Optimality analysis: Finding stronger stationary points

e second-order stationary point € first-order stationary point
e block-k stationary point € coordinate-wise stationary point €

Lipschitz stationary point

@ Convergence analysis

o weakly convex / bounded nonconvex
o Luo-Tseng error bound assumption
e Kurdyka-tojasiewicz inequality

e sharpness condition



Contributions

@ Two new CD methods based on sequential nonconvex
approximation: Fractional CD, Parametric CD
@ Optimality Analysis: FCD-point and PCD-point are
equivalent, they are stronger than the critical /directional point
© Convergence Analysis:
@ Convex-Convex: Q-linearly convergence rate under Luo-Tseng
Error bound condition or Sharpness condition
@ Convex-Concave: Sublinear convergence rate
@ Breakpoint searching methods for computing the proximal

operators, Extensive experiments on many applications



Coordinate Descent Methods



Coordinate Descent Methods

The Raw CD Method:
f(xt + nei) + h(xt + nei)’ Xt+1 —xt + 'F]tei
g(x* +nej)
The Fractional CD Method (& The Proposed Method):
Qi(x,n) + h(x + nef)7 xttl = xt 4 ite:
g(xt + nei)
The Parametric CD Method (# The Proposed Method):

_t .
€ arg min
n gneR

it = arg min
n

it = arg mnin Qi(x,n) + h(x +ne;) — Xg(x! + ne), x' =xt 4 ijle
The Proximal Gradient-Subgradient CD Method:

7' = arg mnin Qi(x,n) + h(x + nej) — A'9;g(x )y, x =x" + ij'e;
Recall that:  f(x + ne;) < Qi(x,n) £ f(x) + Vif(x)n + $n?

if g(+) is cvx: — g(x' +ne) < —g(x') — (9g(x"), (X" + ner).— xF)



CD Methods for Fractional Minimization

Input: an initial feasible solution x°, § > 0. Set t = 0.

while not converge do
S1 Use some strategy to find a coordinate it € {1,..., n}.

S2 Define
Ji(x,n,0) & f(x) + Vif(x)n + #7}2 + h(x + ne;)

Solve one of the following subproblems globally.

e Option |: Fractional Coordinate Descent (FCD):
xjif(xta B 0)
g(xt +nejt)

it = Pie(x') £ argmin
7

e Option Il: Parametric Coordinate Descent (PCD):
7' = Piu(x) = argmin Jiu(x", 1, 0) — F(x)g(x" +ner)  (3)

S3xtHl =xt 4+t g (& x4 =xb +7)

S4 Increment t by 1
end

16 /50



One-dimensional example

We consider the following simple one-dimensional example:

2
. X+ 2
X 3x + 2|+ 1
The following table shows the points satisfying different optimality
conditions.
x | F(x) | C-point | D-point | FCW-point | PCW-point
-2 0 Yes Yes Yes Yes
—% (%)2 Yes No No No
0 % Yes Yes No No
=(—3 16
~ 37_9—
2,2 1
SN— Ju— 4
=3 (¢4
Il
mO,S 3
7y):( _270
[-:4 2 Q 2 4
T



Implementation for the ¢; Norm PCA Problem (i)

max g(x) < [|Ax[ly, s.t. || =1

£(x) is comvex: — g(x) < —g(x) — (9g(x’). x — x')
Power Method / Sub-gradient Method:
x' = arg ||n‘m‘in1 —g(xt) — (9g(x), x — x?), dg(x*) = AT sign(Ax?)
x||=
_ ATsign(Ax?)
~ [|ATsign(Axt)]|
Equivalent fractional minimization problems:

2 2 1
min NI BT
x [|Ax|{ x| Ax[1

18 /50




Implementation for the ¢/; Norm PCA Problem (ii)

[x][3-+1
A1 -

The resulting univariate subproblem is:

We consider PCD to solve the miny

. 0
min X" + nepe||3 + 5772 — F(x")g(x" + ney)

. 0
min [[x* + neie|3 + 517 = F(x) (JA(" +ne)]1)

s 4

2772 + bn — [lgn +d||1

min p(n)

19 /50



Implementation for the ¢/; Norm PCA Problem (iii)

We use breakpoint search method to solve the following problem:

. a
min p(1) £ §n2+bn— lgn +dl1 (4)

Letting 0 € 9p(n), we have:

0 € an+b— (sign(ng +d),g) = an+ b — (sign(n +d + [g]), [g]).
We define z £ {—i—g—i, —%, s —|—°g'—z, —g—:} € R?™*1 and

z; < zp < ... < 2z3,. The domain p(n) can be divided into 2m + 1
intervals: (—o0,21), (21,22),..., and (zom, +00). There are 2m +1
breakpoints 17 € R™+D*1 " |n each interval, the sign of

(n+d - |g|) can be determined. Thus, the i-th breakpoints for the
i-th interval is: n; = ((sign(n + d + |g|),g) — b)/a. It contains

2m + 1 breakpoints © = {11,172, .., N2m+1)}-

20 /50



Theoretical Analysis for
Convex-Convex FMP



Optimality Definition

Definition (Critical Point)

(Critical Point, or C-Point for short) A solution X is called a
C-point if: 0 € OF (%) = Vf(X) + 0h(X) — F(X) - 9g(x).

Definition (Directional Point)

(Directional Point, or D-Point for short) A solution X is called a

D-point if the following holds:

F(x+t(y — x)) — F(x)
t

13y 3 él >0 \V/
F/(y =) 2 lim >0, vy

with y € dom(F) £ {x : |F(x)| < +oo}.



Optimality Definition

Definition (Fractional Coordinate-Wise Point)

(Fractional Coordinate-Wise Point, or FCW-Point for short) Given

a constant 6 > 0. Define KC;(x,7) = %. A solution X is called

a FCW-point if: IC;(x,0) = min,, Ki(x,n;i), Vi=1,...,n.

Definition (Parametric Coordinate-Wise Point)

(Parametric Coordinate-Wise Point, or PCW-Point for short)

Given a constant 6 > 0. Define
Mi(x,m) £ Ti(x,n,0) — F(x)g(x + ne;). A solution x is called a
PCW-point if: M;(x,0) = miny, M;(x,n;), Vi=1,...,n.

23/50



Theoretical Analysis

(Boundedness of the Denominator) There exists a constant
g > 0 such that ¥x € {z | F(z) < F(x%)}, g(x) < &.

(Globally/Locally p-Bounded Non-Convexity) A function

g(x) = —g(x) is globally p-bounded non-convex if it holds that
E(x) < E(y) + (x—y, 0&(x)) + 5|x — y||3 for all x and y with a
constant p < +oo. In particular, g(x) is locally p-bounded

non-convex if x is restricted to some point x with x = X.



Optimality Hierarchy (i)

Lemma (Properties of FCW-point and PCW-point.)

For any FCW-point x and any PCW-point x, assume that

g(x) = —g(x) is locally p-bounded non-convex at the point X (or
x) with p < 4+00. We define C(x,m) £ 1|02, + §lnl3F(x). We
have:

(i) ¥n, F(%) = F(k+m) < S0

(ii) ¥n, F(%) = F(x+n) < o221

LA



Optimality Hierarchy (ii)

We use X, X, X, X, and X to denote a C-point, a D-point, a
FCW-point, a PCW-point, and an optimal point, respectively.
Based on the the assumption made in the previous lemma. The

following relation holds:

B 26w x

26 /50



Optimality Hierarchy (iii)

How is FCW /PCW-point compared with local minimum point?

e FCW-point

3lnli3

,z=c+ 01+ pF(x)1
@ local minimum point
v, F(X) < F(x+n),[Inll <€

where € > 0 is sufficiently small.

Conclusion: Neither condition is stronger than the other.

27 /50



Global Convergence

Given € > 0, the solution x is said to be an e-approximate
FCD/PCD point if it holds that:

LS IPi(x)2 2 Z(x) < e.

Theorem (Global Convergence)

(a) (Sufficient Decrease Condition)
F(x+1) = F(xt) < — oo Ix
(b) FCD/PCD find an e-approximate FCD-point/PCD-point in at
most T iterations in expectation, where
— F 0\ F —
T < [ng[ (X ) (X)]_| _ O(Eil)

Oe

t+1 _XtH%-




Convergence Rate

Assumption

(Luo-Tseng Error Bound) We define a residual function as
R(x) £ 137 |Pi(x)|, where Pi(x) is defined in (2) (or (3)). For
any ¢ > miny F(x), there exist scalars 6 > 0 and p > 0 such that:

dist(x, X') < 0 - R(x), whenever F(x) < (, R(x) < o. (5)

Here, dist(x, X) = infzex ||z — x
(or the PCW-point).

, X is the set of the FCW-point

29/50



Convergence Rate

Necessary first-order optimality conditions:

at0pg(xt + 7'er) € OTn(x, 711, 6), af & LLAL).

F(x*) - Ojeg(x* + 1" er) € 0T (X", 7", 0). (6)

Lemma

(Property of FCD) The value of the parameter o defined in (6)

is sandwiched as
F(x1) < af < F(x+) 4 o(F(xf) — F(xt1)) < oF(x°) with

g2 ma><(5:)+9 '

30/50



Convergence Rate

Theorem

(Convergence Rate of FCD). For any FCW-point X, we define
qt £ F(xt) — F(x), rt £ 3||Ixt —x||Z, € £ c+ 0. Assume that
g(x) = —g(x) is globally p-bounded non-convex, and F(-) satisfies
Assumption 2. We define: @ & ™2@) . 2. £+ F(x%). We have the

min(c)

following inequality:

(1 — @)Eie[rtT] + @q”l < (1—w)rt + Zrt. When the

proximal parameter 0 is sufficiently large such that w <1, we
1 2 g(%)

obtain: qt+ = (erNo g?

k1 = (n+ 1) max(€)d2/6.

)i+1g0, where ko = and



Convergence Rate

Theorem

(Convergence Rate of PCD). For any PCW-point x, we define
qt £ F(xt) — F(x), rt £ 3||Ixt — x||Z, € £ c + 0. Assume that
g(x) = —g(x) is globally p—bounded non-convex, and F(-) satisfies

Assumption 2. We define: w = F(x%). We have the

mln(c

following inequality:

Epe[(1 - @)t + Eqt+l < (1—w)rt + 2rt — E8lgt 1 &

When the proximal parameter 0 is sufficiently /arge such that

@ < 1, we obtain: gt < (LJF"O)t“q0 where kg = % and

w1 = (n+ 1) max(€)d2/6.



Convergence Rate

Remarks

@ Algorithm 1 converges to the FCW-point (or the PCW-point)

with a Q-linear convergence rate.

@ We compare the convergence rate of FCD and PCD which

depend on kg and k1:

(KI’;]_"':I-K’O) - (/{/1’3}50) = (HI+HO:;(HI+1) [,{’l(K/l + ,{’0) + (K’l +

Ho) — Ho(/ﬂ + Iio) — Hl(lil + 1)] = % > 0.
Thus, FCD is faster than PCD.

© The condition w < 1 essentially implies that the 6 is chosen

to be large enough that the univariate subproblem is convex.

33/50



Theoretical Analysis for
Convex-Concave FMP



Theoretical Analysis

(i) F(-) is quasiconvex that:
F(ax+ (1 — a)y) < max(F(x), F(y)),Va € [0,1],x,y. (i) Any

critical point of Problem (2) is a global minimum.

Theorem (Convergence Rate.)

For any global optimal solution X-point of Problem (2), we define
gt £ F(xt) — F(x), rt £ 3|Ix* —x||2, ct £ c+0.
For FCD, we have: Egc1[q'] < M where o is defined in

g(x)t
Lemma 9.
For PCD, we have: E¢e-1[q"] < #:1))



A Breakpoint Searching Method



A Breakpoint Searching Method

Two steps:
@ identifies all the possible critical points / breakpoints ©
@ picks the solution from © that leads to the lowest value as the
optimal solution.
Examples:
2
@ (o Norm PCA Problem: F(x) £ [
3 11Gx—yl3+|x[lx
Sparse Recovery Problem: F(x) £ 2l&¥latoixl
@ > Y (x) 3 Ixgl
@ ICA Problem: F(x) £ 2%
IGx|I3
_ 2
© RTLS Problem: F(x) 2 min, [m2<(@Axb)l>
lIx[l2+1
2
© Transmit Beamforming Problem: (L

Nx[Z+min(JAx])2

37/50



Example 1. /o, Norm PCA Problem: F(x)

We consider Parametric CD to solve the £ Norm PCA Problem.

The reduced univariate subproblem is

min, 312 + by — Al|A(x + nei)|lo
& ming $7° + by — [lgn + d|lw
& min, p(n) £ 30 + by — max?™ (g + d)

with g = [g1,82, -, 8m, — 81, —82, ..., —8m] and
d = [d1,d2,...,dp, —d1, —da, ..., —d,].

Letting 0 € Op(-), we have: an + b+ g; = 0 with
i=1,2,...,(2m). We have n = (—b —g)/a.

This problem contains 2m breakpoints © = {1, m2, ..., N2m }

38 /50



|Gx=yl3+7lIxlx
k
v Zj=1 ‘XU]|

1
Example 2. Sparse Recovery: F(x) = 2

We consider Parametric CD to solve this problem. The reduced

univariate subproblem is

mnln 577 +bn+|x,—|—n| Z| +77€:)[]|
i=1

Since the variable 1 only affects the value of x;, we consider two
cases for x; + 7.

(i) x; + 1 belongs to the top-s subset. It reduces to

min,, 212+ bn. It has 1 breakpoint: {—2}.

(ii) x; + 1 does not belong to the top-s subset. It reduces to
min, 212+ bt + |x; + n|. It has 3 breakpoints {—x;, ==2, 1=b},
This problem contains 4 breakpoints © = {—7 —X;, 1_ ,1;3"}.

a
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Example 3. ICA Problem: F(x) £ IIE;)\(I

We consider Fractional CD to solve the ICA Problem.
|Ix¢]134+2xm+ 252 n?

The reduced univariate subproblem is min,, -
IG(x*+ne;e)ll3

min P(77) 2 a2n2 + aim+ ao
" v ban* + bsn® + bon? + bin + by

Setting the gradient of p(-) to zero yields: 2axn + a1 =
p(n)%(b;m“+b3173+b2772+b177+b0)_% -(4bgn3+3b3n?+2bon+by).
It reduces to a quartic equation which can be solved analytically by
Lodovico Ferrari’'s method: c4n* + c31® + oon?® + cin+ ¢ = 0.
This problem contains 4 breakpoints © = {71, 72,73, 7a }-

40/ 50



Example 4. RTLS: F(x) £ min, |”“’X|()E’|~I+b)5
2

We consider Parametric CD to solve the RTLS Problem.
The reduced univariate subproblem is

L

. . a
min $17° + by — [|A(x + ne;)l|p < min p(n) = Zn* + bn + [|gn + dll,

Letting p = 2, we have
0. dp(n) = an + b+ |gn —d|; " (g.sign(gn +d) © |gn +dP).
We only focus on p = 2. We obtain:

g.gn+d
0=-an—b= <Hgv7—dH> < |lgn—d|[(—an—b) = (g,gn +d)

< |lgn —d|5(an+ b)* = ((g, gn + d))?

Solving this quartic equation we obtain all of its real roots
{77177727 "’JnC} with 1 <c<4

This problem at most contains 4 breakpoints @ = {my. 1, ..51 &




Example 4. Beamforming Problem: \XH2+”;—|'|§(AXI)2
W 2 l

We consider Parametric CD to solve the beamforming Problem.

The reduced univariate subproblem is
min,, gnz + bn — Amin(|A(x + 77e,-)|)2
< miny, p(n) £ %772 + bn — % min(gn + d)2
< miny, p(n) £ %772 + by — % min”, [(gin + d,~)2]
Letting 0 € 9p(+), we have: an — g?n = d;g; — b with

i=1,2,...,m We have n; = (d;g; — b)/(a — g?).
This problem contains m breakpoints © = {n1,n2, ..., Mm}-
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A Breakpoint Searching Method

When the breakpoint set © is found, we pick the solution that

leads to the lowest value as the global optimal solution #:

i = arg min, p(n), s.t. n € ©.

The function h(-) does not bring much difficulty for solving

the subproblem since it is separable.

43 /50



Experimental Results



Experiments for Sparse Recovery and ICA Problem

We consider four publicly available real-world data sets:
‘e2006tfidf’, ‘news20’, ‘sector’, and ‘TDT2’ for the
sensing/channel matrix G € R™*"

The size of G € R™*" are are chosen from the following set
(m, n) € {(1000, 1024), (1000, 2048), (1024, 1000), (2048, 1000)}.

To generate the original k-sparse signal x for the sparse
recovery problem, we randomly select a support set S of size 100
and set X3 op\s = 0, Xs = randn(|S|,1). We generate the

observation vector via y = Gx + 0.1||Gx|| - randn(m, 1).

45 /50



Sparse Recovery Problem

DPA PGSA QTPA PCD

€2006-1000-1024 | 1.874 + 0.315 | 1.929 4 0.278 | 1.923 £ 0.279 | 1.530 + 0.184
€2006-1000-2048 | 1.640 = 0.118 | 1.663 + 0.172 | 1.660 + 0.177 | 1.312 + 0.061
€2006-1024-1000 | 2.610 + 0.796 | 2.362 4 0.533 | 2.362 + 0.530 | 1.882 -+ 0.418
€2006-2048-1000 | 5.623 + 4.005 | 6.576 4 4.966 | 6.593 + 4.989 | 3.068 + 1.282
news20-1000-1024 | 1.750 + 0.247 | 1.403 + 0.128 | 1.402 + 0.130 | 1.168 + 0.023
news20-1000-2048 | 2.043 + 0.429 | 1.424 + 0.181 | 1.426 + 0.180 | 1.207 + 0.065
news20-1024-1000 | 1.856 + 0.353 | 1.488 + 0.317 | 1.487 + 0.318 | 1.195 + 0.045
news20-2048-1000 | 4.997 + 0.269 | 2.664 + 0.604 | 2.559 + 0.745 | 1.394 + 0.115
sector-1000-1024 | 1.864 = 0.162 | 1.337 4 0.105 | 1.337 & 0.104 | 1.160 + 0.016
sector-1000-2048 | 1.780 + 0.040 | 1.293 4 0.033 | 1.293 = 0.026 | 1.148 + 0.010
sector-1024-1000 | 2.039 = 0.016 | 1.485 4 0.194 | 1.486 & 0.195 | 1.193 + 0.015
sector-2048-1000 | 5.041 + 1.714 | 2.477 4 1.048 | 2.475 + 1.046 | 1.409 + 0.108
TDT2-1000-1024 | 1.778 + 0.303 | 1.646 + 0.035 | 1.644 + 0.032 | 1.215 + 0.047
TDT2-1000-2048 | 1.710 + 0.045 | 1.398 + 0.029 | 1.398 + 0.028 | 1.127 + 0.016
TDT2-1024-1000 | 1.984 + 0.284 | 1.555 + 0.058 | 1.552 + 0.050 | 1.206 -+ 0.067
TDT2-2048-1000 | 4.696 + 1.980 | 3.846 + 0.901 | 3.789 + 0.800 | 1.338 + 0.038

Table: Comparisons of objective values for solving the spare recovery
problem.
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Sparse Recovery Problem

10°
2 2
E 10" ‘uo; 10t
=) =)
o o
o 10°
10 —2 0 -2 0
10 10 10 10
Time (seconds) Time (seconds)
(a) e2006-1000-2048 (b) e2006-2048-1000

Figure: The convergence curve for solving the sparse recovery problem.
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|[CA Problem

PGSA Power Method FCD
€2006-1000-1024 | 12.254 + 14.922 | 12.254 + 14.922 6.686 + 4.956
€2006-1000-2048 16.896 + 14.521 16.896 + 14.521 9.436 + 6.359
€2006-1024-1000 5.923 + 4.485 5.923 + 4.485 4.948 + 2.631
€2006-2048-1000 | 16.846 + 13.916 | 16.846 + 13.916 11.360 + 8.225
news20-1000-1024 | 112.805 + 58.995 | 112.805 =+ 58.995 | 78.183 + 22.830
news20-1000-2048 | 125.440 + 43.203 | 125.440 + 43.203 | 120.046 + 41.353
news20-1024-1000 | 99.211 + 35.338 | 99.211 + 35.338 | 80.244 + 22.771
news20-2048-1000 | 138.909 -+ 49.626 | 138.909 - 49.626 | 108.080 + 37.811
sector-1000-1024 | 60.813 + 24.018 | 60.813 + 24.018 | 50.551 + 18.675
sector-1000-2048 | 139.459 + 51.094 | 139.459 + 51.094 | 96.301 + 42.115
sector-1024-1000 | 83.176 + 38.697 | 83.176 + 38.697 | 48.559 + 19.163
sector-2048-1000 | 104.654 + 63.318 | 104.654 + 63.318 | 78.110 + 28.532
TDT2-1000-1024 | 27.167 + 12.705 | 27.167 + 12.705 22.308 + 8.171
TDT2-1000-2048 | 27.480 + 15.468 | 27.480 + 15.468 | 23.225 + 12.614
TDT2-1024-1000 | 32.334 + 18.178 | 32.334 + 18.178 21.143 + 12.143
TDT2-2048-1000 | 44.659 + 19.775 | 44.659 + 19.775 36.517 + 12.689

Table: Comparisons of objective values for solving the ICA problem.
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Figure: The convergence curve for solving the ICA problem.
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