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Abstract
Nonsmooth sparsity constrained optimization en-
compasses a broad spectrum of applications in
machine learning. This problem is generally non-
convex and NP-hard. Existing solutions to this
problem exhibit several notable limitations, in-
cluding their inability to address general nons-
mooth problems, tendency to yield weaker opti-
mality conditions, and lack of comprehensive con-
vergence analysis. This paper considers Smooth-
ing Proximal Gradient Methods (SPGM) as solu-
tions to nonsmooth sparsity constrained optimiza-
tion problems. Two specific variants of SPGM
are explored: one based on Iterative Hard Thresh-
olding (SPGM-IHT) and the other on Block Coor-
dinate Decomposition (SPGM-BCD). It is shown
that the SPGM-BCD algorithm finds stronger sta-
tionary points compared to previous methods. Ad-
ditionally, novel theories for analyzing the con-
vergence rates to approximate global optimal so-
lutions of both the SPGM-IHT and SPGM-BCD
algorithms are developed. Our theoretical bounds,
capitalizing on the intrinsic sparsity of the opti-
mization problem, are on par with the best-known
error bounds available to date. Finally, numeri-
cal experiments reveal that SPGM-IHT performs
comparably to current IHT-style methods, while
SPGM-BCD consistently surpasses them.

1. Introduction
This paper mainly focuses on the following nonsmooth spar-
sity constrained optimization problem (‘≜’ means define):

min
x∈Rn

F (x) ≜ f(x) + h(Ax− b), s. t. ∥x∥0 ≤ s. (1)

Here, A ∈ Rm×n, b ∈ Rm, s ∈ [n] is a positive integer,
f(x) : Rn 7→ R is a smooth convex function, and h(y) :
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Rm 7→ R is a convex but not necessarily smooth function.
For any vector c ∈ Rm and any positive constant µ ∈ R,
we assume that the following proximal operator of h(·) can
be computed efficiently:

Pµ(c) ≜ argminy h(y) +
1
2µ∥c− y∥22. (2)

Problem (1) captures a diverse range of applications in ma-
chine learning. To illustrate, nonsmooth functions includ-
ing h(x) ≜ ∥Ax − b∥1, h(x) ≜ ∥AT(Ax − b)∥∞, and
h(x) ≜ ∥max(0,Ax − b)∥1 have been used in robust re-
gression, Digzig selector computation, and support vector
machines, respectively (Yuan et al., 2020b). Furthermore,
Problem (1) covers a multitude of significant applications,
such as sparse logistic regression (Bahmani et al., 2013),
sparse censored regression (Bian & Chen, 2020), impulse
noise removal (Yuan & Ghanem, 2019), sparse isotonic
regression (Chen & Banerjee, 2018), and sparse quantile
regression (Bian & Chen, 2020), as specific instances.

Solving Problem (1) presents a challenge primarily due to
the combinatorial nature of the cardinality constraint. A
conventional approach involves replacing the non-convex
ℓ0 norm with its convex relaxations, such as the ℓ1 norm
(Candes & Tao, 2005) and top-k norm relaxation. How-
ever, studies have revealed that non-convex approximation
techniques, such as the Schatten ℓp norm (Xu et al., 2012;
Zeng et al., 2016) and reweighted ℓ1 norm (Candes et al.,
2008), often yield superior accuracy compared to their con-
vex counterparts (Zhang, 2010; Yuan & Ghanem, 2019).
Furthermore, alternative strategies like multi-stage convex
relaxation techniques have been introduced (Zhang, 2010;
Bi et al., 2014), aiming to refine solutions obtained through
convex methods. Recent efforts have primarily focused on
directly minimizing the non-convex formulation in Problem
(1). Greedy pursuit methods (Bahmani et al., 2013; Tropp
& Gilbert, 2007) selectively choose a variable coordinate to
update, leading to optimality guarantees in certain scenarios.
Iterative Hard Thresholding (IHT) methods (Bahmani et al.,
2013; Nguyen et al., 2017) maintain sparsity by iteratively
zeroing out small magnitude elements in a gradient descent
fashion. Convergence rates and parameter estimation errors
for IHT-style methods have been rigorously established un-
der restricted smoothness and strong convexity conditions
(Yuan et al., 2017; Jain et al., 2014). The works of (Beck
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Table 1: Comparison among existing nonsmooth sparsity constrained optimization methods. t denotes the iteration counter,
LF is the Lipschitz constant for F (x), and x̄ is the global optimal solution satisfying ∥x̄∥0 ≤ s. The notation Õ(·) hides
polylogarithmic factors, while O(·) hides constants.

General Nonsmooth Optimality Conditions Convergence Rate to Approximate Optimal Solutions
PALM (Bolte et al., 2014) ✘ Critical Point Unknown
GHTP (Yuan et al., 2017) ✘ Lipschitz Stat. Point ∥xt − x̄∥ ≤ O(ϑt) + c0

√
s∥∇F (x̄)∥a∞

PDM (Lu & Zhang, 2013) ✔ Lipschitz Stat. Point Unknown
DIHT (Yuan et al., 2020b) ✘ Lipschitz Stat. Point Unknownb

PSGD (Liu et al., 2019) c Lipschitz Stat. Point [minti=1 F (x
i)]− F (x̄) ≤ O( 1t ) + LF ∥x̄∥

SPGM-IHT [ours] ✔ Lipschitz Stat. Point [minti=1 F (x
i)]− F (x̄) ≤ Õ( 1t ) + LF ∥x̄∥d

SPGM-BCD [ours] ✔ Block-k Stat. Point Eξt [minti=1 F (x
i)]− F (x̄) ≤ Õ( 1t ) + 3LF ∥x̄∥e

Note a: GHTP addresses only the special case of Problem (1) with h(·) = 0. Here, ϑ ∈ (0, 1), and c0 is a constant related to the stepsize.
Note b: DIHT establishes the convergence rate only for the primal-dual gap rate O( 1√

t
), without addressing the primal convergence rate.

Note c: PSGD is less versatile, unable to solve nonsmooth problems when the function h(x) lacks Lipschitz continuity.
Note d: The irreducible estimation error term LF ∥x̄∥ precisely aligns with the PSGD bound. Refer to Theorems 4.6, and 4.7.
Note e: The irreducible estimation error term 3LF ∥x̄∥ is three times that of the PSGD bound. Refer to Theorems 4.13,and 4.14.

& Eldar, 2013; Beck & Vaisbourd, 2016; Beck & Hallak,
2016; 2019) have introduced a novel optimality condition
based on coordinate-wise optimality for sparsity constrained
optimization. This condition is proven to be stronger than
the IHT-based optimality condition. Additionally, a new
block coordinate optimality condition (Yuan et al., 2020a;
2019) is introduced for general sparse optimization, which
is more powerful than the coordinate-wise optimality condi-
tion, encompassing it as a special case.

Another challenge in solving Problem (1) arises from the
nonsmooth nature of the objective function. The Alternat-
ing Direction Method of Multipliers (ADMM) (He & Yuan,
2012) is a versatile tool and effectively handles nonsmooth
and nonseparable problems, such as Problem (1), which
pose challenges for other standard optimization methods
like Proximal Alternating Linearized Minimization (PALM)
(Bolte et al., 2014). ADMM introduces dual variables to
address linear constraints, iteratively optimizing primal vari-
ables while keeping other primal and dual variables static,
and employs a gradient ascent strategy to update the dual
variables. However, it has been noted in (Lu & Zhang, 2013)
that ADMM often yields unsatisfactory solution quality.
This observation has motivated the exploration of Penalty
Decomposition Methods (PDM) for solving generally non-
linear sparsity constrained optimization problems (Lu &
Zhang, 2013). Additionally, Projective Subgradient Descent
(PSGD) methods have been proposed for solving nonsmooth
one-bit compressed sensing problems (Liu et al., 2019),
operating by iteratively projecting the intermediate solu-
tion onto the nonconvex sparsity constraint after each sub-
gradient descent update. Furthermore, Dual Iterative Hard
Thresholding (DIHT) (Yuan et al., 2020b) applies projective
subgradient methods to the dual of sparsity constraint opti-
mization problems, offering proven guarantees on primal-

dual gap convergence and sparsity recovery. Their duality
theory establishes sufficient and necessary conditions for
solving the original non-convex problem equivalently or
approximately through a concave dual approach.

We summarize three main limitations of existing methods
for solving Problem (1). (i) Inability to handle general non-
smooth problems. Proximal Alternating Linearized Mini-
mization (PALM) methods are limited to solving nonconvex
problems that allow for efficient closed-form proximal sub-
problems (Bolte et al., 2014). Block decomposition (Yuan
et al., 2020a) and dual Iterative Hard Thresholding (IHT)
(Yuan et al., 2020b) methods are restricted to smooth spar-
sity constrained problems. In contrast, PSGD methods are
only applicable to objectives that are Lipschitz continuous.
These methods struggle with general nonsmooth, nonsepa-
rable problems, which are better addressed by penalty de-
composition (Lu & Zhang, 2013) or smoothing proximal
gradient methods (Bian & Chen, 2020; Chen, 2012). (ii)
Tendency to yield weaker optimality conditions. PALM
methods primarily focus on identifying critical points of
Problem (1). Additionally, by predominantly relying on
IHT, current methods often result in suboptimal optimality
guarantees of Lipschitz stationary points, leading to subpar
practical accuracy (Beck & Eldar, 2013; Yuan et al., 2020a;
Yuan, 2023a;b). (iii) Lack of comprehensive convergence
analysis. The work in (Bolte et al., 2014) outlines the con-
vergence rates to critical points by employing the Kurdyka-
Łojasiewicz inequality. Although IHT-style methods have
been incorporated into PDM (Lu & Zhang, 2013), it is im-
portant to note that comprehensive convergence analysis
remains absent. Additionally, the duality theory presented
in (Yuan et al., 2020b) is constrained by its assumption of
smooth objective functions, as demonstrated in Theorems
15 and 17 of the same reference.
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To address the aforementioned three limitations, we estab-
lish and achieve the following three goals (details in Table 1).
(i) Toward general nonsmooth optimization algorithms. We
consider Smoothing Proximal Gradient Methods (SPGM)
for nonsmooth sparsity constrained optimization, featuring
two SPGM variants: SPGM based on Iterative Hard Thresh-
olding (SPGM-IHT) and SPGM based on Block Coordinate
Decomposition (SPGM-BCD). These methods, rooted in
smoothing techniques, tackle a wide range of nonsmooth
problems. (ii) Toward a stronger optimality condition. The
proposed SPGM-BCD targets a stronger block-k station-
ary point of Problem (1). It achieves this by employing
a simple and efficient local combinatorial search strategy
(Yuan et al., 2020a; 2019) for the small-sized subproblem.
Specifically, SPGM-BCD first systematically enumerates
the full binary tree and then solves 2k small linear equations
to identify all potential candidates; finally, it selects the one
with the lowest objective value as the optimal solution. (iii)
Toward stronger global convergence. Our research aims to
establish the convergence rate to approximate global opti-
mal solutions. We prove that the degree of approximation is
influenced by the Lipschitz constant of the objective func-
tion LF , and the ℓ2 norm of the global optimal solution
∥x̄∥2. Our theoretical bounds leverage the inherent sparsity
of the optimization problem, matching the best-known error
bounds (Liu et al., 2019) currently available.

Contributions. The contributions of this paper are three-
fold. (i) We explore Smoothing Proximal Gradient Methods
(SPGM) for solving Problem (1), including SPGM-IHT
and SPGM-BCD (see Section 2). We offer smooth and op-
timality analyses for the smoothing reformulation problem,
demonstrating that SPGM-BCD achieves stronger station-
ary points compared to existing solutions (see Section 3). (ii)
We develop novel theories to analyze the convergence rate
of both SPGM-IHT and SPGM-BCD (see Section 4). (iii)
We have conducted experiments on two nonsmooth sparsity
constrained optimization tasks to show the superiority of
our methods (see Section 5).

Notations. All vectors are column vectors, with superscript
T indicating transpose. For a vector x ∈ Rn, xi represents
its i-th component for any i ∈ [n] ≜ {1, 2, ..., n}. The
Euclidean inner product between vectors x and x′ is ex-
pressed as ⟨x,x′⟩ or xT(x′). The identity matrix in Rn×n
is denoted by In. ∥A∥ represents the spectral norm of A.
The notations C ⪰ 0 and C ≻ 0 indicate positive semidefi-
niteness and definiteness of C, respectively. For any C with
C ⪰ 0, we define ∥x∥C ≜

√
xTCx as a generalized vector

norm, and denote λmax(C) and λmin(C) as respectively the
largest and smallest eigenvalue of C. If β is a constant, βt

refers to its t-th power, while if β is an optimization variable,
βt signifies the value in the t-th iteration. The subdiffer-
ential of the function h : Rn 7→ (−∞,+∞] at x, defined
as ∂h(x) ≜ {g : h(y) ≥ h(x) + ⟨g,y − x⟩}, includes all

subgradients of h(x). The squared distance between sets Ξ
and Ξ′ is defined as dist2(Ξ,Ξ′) ≜ infv∈Ξ,v′∈Ξ′ ∥v−v′∥22.

For a set B ∈ Nk containing k unique integers selected from
{1, 2, ..., n}, we define Bc ≜ {1, 2, ..., n} \ B, and denote
CBB as the sub-matrix of C indexed by B. Ckn counts the
combinations to select k items from n without repetition.
Ωkn ≜ {B(1),B(2), . . . ,B(Ck

n)
} represents the set of all index

vector combinations for this selection, with each B(i) ∈ Nk.

2. Smoothing Proximal Gradient Methods
This section explores Smoothing Proximal Gradient Meth-
ods (SPGM) for Problem (1), detailing two versions:
SPGM-IHT, using Iterative Hard Thresholding (Blumen-
sath & Davies, 2008; 2009), and SPGM-BCD, employing
Block Coordinate Decomposition (Yuan et al., 2020a; 2019).

Initially, we impose the following assumptions on Problem
(1).

Assumption 2.1. The functions f(·) and h(·) are Lips-
chitz continuous with some constants Lf and Lh, satisfying
∥∇f(x)∥ ≤ Lf for all ∥x∥0 ≤ s and ∥∂h(y)∥ ≤ Lh for
all y ∈ Rm. Consequently, F (x) is Lipschitz continuous
with constant LF ≜ Lf + ∥A∥Lh.

Assumption 2.2. The function f(·) is restricted Vs-strongly
convex and restrictedMs-smooth, such that for all ∥x∥0 ≤ s
and ∥x′∥0 ≤ s, we have:

Vs

2 ∥x− x′∥22 ≤ Q(x,x′) ≤ Ms

2 ∥x− x′∥22,

where Q(x,x′) ≜ f(x′)− f(x)− ⟨x′ − x,∇f(x)⟩. Addi-
tionally, for all ∥x∥0 ≤ s and ∥x′∥0 ≤ s, a symmetric ma-
trix M̃ ∈ Rn×n exists, fulfilling 0 ≺ VsIn ⪯ M̃ ⪯ MsIn
and

Q(x,x′) ≤ 1
2∥x− x′∥2

M̃
. (3)

Assumption 2.3. A constant As > 0 exists, ensuring
∥A(x − x′)∥ ≤ As∥x − x′∥ for all x ∈ Rn,x′ ∈ Rn
with ∥x∥0 ≤ s, ∥x′∥0 ≤ s.

Remarks. (i) Assumptions 2.1, 2.2, and 2.3 are broadly
applicable, meeting conditions of various applications like
robust regression and support vector machines (see (Yuan
et al., 2017)). (ii) Assumption 2.3 is less stringent than
∥A(x − x′)∥ ≤ ∥A∥∥x − x′∥. (iii) Common choices for
nonsmooth h(y) include {∥y∥1, ∥max(0,y)∥1, ∥y∥∞},
with their corresponding Lh values being {

√
m,

√
m, 1},

respectively. (iv) When f(x) takes the form of a quadratic
function with f(x) ≜ 1

2x
TQ̂x+ xTp̂ for some Q̂ ∈ Rn×n

and p̂ ∈ Rn, Inequality (3) holds with Q(x,x′) = 1
2∥x−

x′∥2
M̃

, where M̃ = Q̂.

Subsequently, we introduce a new variable y ∈ Rm and
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reframe Problem (1) as:

min
x,y

f(x) + h(y), s. t. Ax− b = y, ∥x∥0 ≤ s.

In SPGM, a smoothing parameter µ→ 0 is incorporated to
penalize the squared error in the linear constraints, leading
to the following minimization problem:

min
x,y

J (x,y;µ) ≜ R(x,y;µ) + h(y) + δ(x),

whereR(x,y;µ) ≜ f(x) + 1
2µ∥Ax− b− y∥22, (4)

and δ(x) ≜
{

0, ∥x∥0 ≤ s
∞, else . In each iteration, we em-

ploy proximal alternating linearized minimization strategies
(Bolte et al., 2014) to alternatively minimize w.r.t. x and
y. Notably, SPGM is closely related to block coordinate
descent methods (Tseng & Yun, 2009; Xu & Yin, 2013),
and penalty decomposition methods (Lu & Zhang, 2013) in
the literature.

We summarize the SPGM algorithm in Algorithm 1.

Algorithm 1 Smoothing Proximal Gradient Methods
with IHT or BCD Strategies.

Input: initial feasible solution x1; working set size
k ∈ {2, 3, . . . , n}; positive proximal point parameters
{θ, θ1, θ2}; positive smoothing parameter {µ1};
for t = 1 to T do
(S1) Solve the x-subproblem using IHT or BCD strategy.
▶ Option I (IHT): Solve the following problem globally

(Blumensath & Davies, 2008):

xt+1 ∈ argmin
∥x∥0≤s

Ṁ(x,xt,yt;µt) ≜ Rt

+ Ht

2 ∥x− xt∥22 + ⟨x− xt, rt⟩,
(5)

where Ht ≜ A2
s/µ

t + Ms + θ ∈ R, and Rt ≜
R(xt,yt;µt).
▶ Option II (BCD): Use a random or/and a greedy

method to find a working set Bt of size k for the t-th
iteration. Let B = Bt and Bc ≜ {1, ..., n} \ B. Solve the
following problem globally (Yuan et al., 2020a):

xt+1 ∈ argmin
∥x∥0≤s,xBc=xt

Bc

M̈(x,xt,yt;µt) ≜ Rt

+ 1
2∥x− xt∥2Ht + ⟨x− xt, rt⟩,

(6)

where Ht ≜ (ATA+ θ1In)/µ
t + M̃+ θ2In ∈ Rn×n,

and Rt ≜ R(xt,yt;µt).
(S2) Solve the y-subproblem yt+1 = Pµt(Axt+1 −b).
(S3) Choose a new parameter µt+1 with µt+1 ≤ µt.
end for

▶ x-subproblem. Keeping parameters yt and µt constant
at their current values, we minimize J (x,yt;µt) w.r.t. x,

resulting in the subsequent optimization problem:

min
x

R(x,yt;µt), s. t. ∥x∥0 ≤ s.

The function R(x,yt;µt) is differentiable in x, with its
gradient at xt given by:

∇xR(xt,yt;µt) = ∇f(xt) + 1
µtA

T(Axt − b− yt) ≜ rt.

To solve the x-subproblem, we consider state-of-the-art
sparse optimization methods, including the IHT strategy
(Yuan et al., 2017; 2020b; Jain et al., 2014; Lu, 2014) and
the BCD strategy (Yuan et al., 2020a; 2019).

IHT strategy. We notice the following inequality con-
sistently holds for all ∥x∥0 ≤ s:

R(x,yt;µt) ≤ Ṁ(x,xt,yt;µt), (7)

where Ṁ(x,xt,yt;µt) is defined in Problem (5), and θ > 0
is a constant. The IHT strategy aims to minimize the ma-
jorization function Ṁ(x,xt,yt;µt), while adhering to the
sparsity constraint. This approach simultaneously reduces
the objective function and identifies the active variables,
as indicated by the update in Problem (5). We note that
Problem (5) is equivalent to the following problem:

xt+1 ∈ arg min
∥x∥0≤s

1
2∥x− xt+∥22 = Πs(x

t
+), (8)

where xt+ ≜ xt−rt/Ht,Ht ≜ A2
s/µ

t+Ms+θ, and Πs(x)
is an operator that sets all but the largest (in magnitude) s
elements of x to zero.

BCD strategy. We observe that the following condition
always holds for all ∥x∥0 ≤ s:

R(x,yt;µt) ≤ M̈(x,xt,yt;µt), (9)

where M̈(x,xt,yt;µt) is defined in Problem (6), and
{θ1, θ2} are given positive constants. The BCD strategy
minimizes the majorization function M̈(x,xt,yt;µt) us-
ing a block coordinate descent approach. It employs either
a random method or a greedy method to select a subset of
coordinates of size k as the working set B, where k ≥ 2. It
then conducts a global combinatorial search over this work-
ing set, based on the quadratic majorization function, as
indicated by the update in Problem (6). Problem (6) can be
equivalently rewritten as: xt+1

B ∈ argminzB M̈(UBzB +
UBcxtBc ,xt,yt;µt) + δ(UBzB + UBcxtBc), where Bc ≜
{1, ..., n} \ B, UB ∈ Rn×k, UBc ∈ Rn×(n−k), and

[UB]ji =

{
1, Bi = j;
0, else. , [UBc ]ji =

{
1, Bci = j;
0, else. .

We have: x = (UBcUT
Bc +UBU

T
B )x = UBxB +UBcxBc ,

and xB = UT
Bx. Thus, Problem (6) reduces to the following

problem:

xt+1
B ∈ argminzB∈Rk

1
2 (zB − xtB)

T[Ht
BB](zB − xtB),

+⟨zB − xtB, r
t
B⟩, s. t. ∥zB∥0 + ∥xtBc∥0 ≤ s, (10)
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where Ht ≜ (ATA+ θ1In)/µ
t+M̃+ θ2In. Problem (10)

involves k unknown decision variables, and can be tackled
by solving a set of 2k linear equations. The BCD strategy
combines the efficacy of combinatorial search methods with
the efficiency of coordinate descent methods, allowing it to
efficiently identify stronger stationary points than the IHT
strategy when minimizing smooth functions under sparsity
constraints (Yuan et al., 2020a; 2019).

▶ y-subproblem. With the parameters xt+1 and µt fixed
at their current estimates, we encounter an optimization
problem w.r.t. y as: yt+1 = argminy J (xt+1,y;µt) =
Pµt(Axt+1 − b), which is equivalent to the computation
of the proximal operator as described in Equation (2).

3. Smooth and Optimality Analyses
This section provides smooth and optimality analyses for
the smoothing function as in Problem (4).

3.1. Smooth Analysis

We conduct a smooth analysis for Problem (4). By eliminat-
ing y, Problem (4) simplifies to:

min
x

G(x;µ) ≜ f(x) + h(Pµ(Ax− b))

+ 1
2µ∥Ax− b− Pµ(Ax− b)∥22, s. t. ∥x∥0 ≤ s.

(11)

The function G(x;µ) is differentiable w.r.t. x and its gradi-
ent is given by:

∇xG(x;µ) = ∇f(x) + 1
µA

T(Ax− b− Pµ(Ax− b)).

We have the following useful lemmas 1.

Lemma 3.1. (Proof in Appendix B.1) Fix x with ∥x∥0 ≤ s.
The function ψ(µ) ≜ G(x;µ) is decreasing and ( 12L

2
h)-

Lipschitz continuous for all µ > 0. In other words, for all
0 < µ1 < µ2, we have: 0 ≤ ψ(µ1)−ψ(µ2)

µ2−µ1
≤ 1

2L
2
h.

Lemma 3.2. (Proof in Appendix B.2) Fix µ > 0. For all x
with ∥x∥0 ≤ s, we have:

(a) It holds that F (x)− µ
2L

2
h ≤ J (x,Pµ(Ax− b);µ) =

G(x;µ) ≤ F (x).
(b) It holds that ∥∂F (x)∥ ≤ LF , ∥∇G(x;µ)∥ ≤ LF ,

where LF ≜ Lf + Lh∥A∥.
(c) G(x;µ) is restricted Vs-strongly convex and restricted

(Ms +As∥A∥/µ)-smooth.

Remarks. (i) Lemmas 3.1 and 3.2 can be derived using
Assumptions 2.1, 2.2, and 2.3, along with the optimality of
the proximal operator Pµ(c) for any c. (ii) The inequalities
in Lemma 3.1 and Part (a) of Lemma 3.2 are closely linked
to smooth approximation functions as discussed in (Chen,

1All proofs can be found in the Appendix.

2012) and the Moreau-Yosida approximation (Bauschke
et al., 2011) in the literature. These properties play a crucial
role in the development of smoothing methods for nons-
mooth optimization. (iii) Given that G(xt;µt−1) serves as a
smooth approximation function for F (xt), we can assess the
convergence rate of F (xt) by estimating the convergence
rate of G(xt;µt−1).

3.2. Optimality Analysis

We provide an optimality analysis for SPGM.

As µ tends to 0, Problem (4) becomes equivalent to the
original optimization problem in Problem (1). This equiv-
alence can be represented as: [minx F (x) + δ(x)] ≡
[minx limµ→0 G(x;µ)] ≡ [minx,y limµ→0 J (x,y;µ)].
Thus, we can perform an optimality analysis using the
smooth function J (x,y;µ) with a sufficiently small µ.

We introduce the following fundamental definitions.

Definition 3.3. (Critical Point, or Basic Stationary
Point (Beck & Eldar, 2013)) A solution x̌ is a criti-
cal point if the following condition is met: F (x̌) =
minx F (x), s. t. [x]Jc = 0. Here, Jc ≜ {1, ..., n} \ J,
where J represents the known support set of the solution x̌
with |J| ≤ s.

Remarks. When the support set is restricted, the NP-hard
problem in Problem (1) reduces to a convex problem. The
basic stationary point implies that the solution attains global
optimality for the reduced convex problem when the support
set is fixed.

Definition 3.4. (Lipschitz Stationary Point) Fix µ > 0 as a
sufficiently small constant. A solution (ẋ, ẏ) is a Lipschitz
stationary point if the following condition holds:

ẏ = argmin
y

J (ẋ,y;µ),

ẋ ∈ argmin
x

Ṁ(x, ẋ, ẏ;µ) + δ(x),

where Ṁ(x,xt,yt;µt) is defined in Problem (5).

Remarks. The Lipschitz stationary point states that if we
minimize the smoothing function J (ẋ,y;µ) over y and the
majorization function Ṁ(x, ẋ, ẏ;µ) over x, the quality of
the solution (ẋ, ẏ) cannot be further improved.

Definition 3.5. (Block-k Stationary Point) Fix µ > 0 as a
sufficiently small constant. We denote Bc ≜ {1, ..., n}\B. A
solution (ẍ, ÿ) is a block-k stationary point if the following
condition is met:

ÿ = argmin
y

J (ẍ,y;µ),

ẍB ∈ argmin
zB,∥zB∥0+∥ẍBc∥0≤s

M̈(UBzB +UBc ẍBc , ẍ, ÿ;µ)
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for all B ∈ Ωkn. Here, Ωkn ≜ {B(i)}
Ck

n
i=1 denotes all the

combinations of the index vector choosing k items from n
without repetition, and M̈(x,xt,yt;µt) is defined in Prob-
lem (6).

Remarks. (i) Block-k stationary point captures more in-
trinsic structures of the nonconvex problem than Lipschitz
stationary points, and it holds that M̈(x,xt,yt;µt) ≤
Ṁ(x,xt,yt;µt) for all x. (ii) Deterministically finding
a block-k stationary point requires evaluating Ckn subprob-
lems, which can be time-consuming. However, using a ran-
dom strategy to select the working set B from the Ckn com-
binations allows for an expected block-k stationary point.

The following proposition states the relation between differ-
ent types of the stationary point above.

Proposition 3.6. Optimality Hierarchy (Yuan et al., 2020a).
We denote the sets {x̌} (basic stationary points), {ẋ} (Lips-
chitz stationary points), {ẍ[k]} (block-k stationary points),
and {x̄} (global optimal points). The following relation
holds for all 2 ≤ k ≤ n− 1:

{x̄} ≡ {ẍ[n]} ⊆ {ẍ[k+1]} ⊆ {ẍ[k]} ⊆ {ẋ} ⊆ {x̌}.

We establish the optimality hierarchy among the optimality
conditions by directly applying the results of Proposition 1
in (Yuan et al., 2020a), which addresses the minimization
of smooth functions under sparsity constraints.

4. Convergence Analysis
In this section, we develop novel theories to analyze the
convergence rate of SPGM-IHT and SPGM-BCD.

In our analysis, we consider two strategies for updating µt

for all t = 1, 2, . . . ,∞.

• µt = µ̄, where µ̄ > 0 is a sufficiently small constant.

• µt = η
t+t0

, where η > 0 and t0 ≥ 1 are constants.

We notice the following relation between ∇xG(xt;µt−1)
and ∇xR(xt,yt;µt):

gt ≜∇G(xt;µt−1) = ∇xR(xt,yt+1;µt−1)

=∇f(xt) + 1
µt−1A

T(Axt − b− yt)

= ∇xR(xt,yt;µt)︸ ︷︷ ︸
≜ rt

+( 1
µt−1 − 1

µt )A
T(Axt − b− yt)︸ ︷︷ ︸
≜ εt

.

We derive the following lemmas for both SPGM-IHT and
SPGM-BCD, which are independent of the choice of strate-
gies for solving the x-subproblem, and hold deterministi-
cally.

Lemma 4.1. (Proof in Appendix B.3) For all t = 1, 2, ...,∞,
we have:

(a) ∥Axt − yt − b∥ ≤ Lhµ
t−1.

(b) ∥yt+1 − yt∥ ≤ ∥A∥∥xt+1 − xt∥+ 2Lhµ
t−1.

(c) ∥rt∥ ≤
{

LF ≜ Lf + Lh∥A∥, µt = µ̄;
L′

F ≜ Lf +
t0+1
t0

Lh∥A∥, µt = η/(t+ t0)
.

(d) ∥εt∥ ≤ (µ
t−1

µt − 1)∥A∥Lh.

(e) J (xt,yt;µt) − J (xt,yt;µt−1) ≤ Ψt, where Ψt ≜
L2

h

2 ( (µ
t−1)2

µt − µt−1).

(f) [
∑∞
t=1 Ψ

t] ≤
{

0, µt = µ̄;
ηL2

h, µt = η/(t+ t0)
.

Remarks. (i) Given our choices of µt and the fact that
∥Axt−yt−b∥ ≤ Lhµ

t−1, we have: ∥Axt−yt−b∥ → 0.
(ii) When ∥xt+1−xt∥ → 0, it holds that ∥yt+1−yt∥ → 0.
(iii) We notice that ∥rt∥ is upper bounded, and L′

F → LF

as t0 → ∞. (iv) We observe µt−1 → 0 and µt−1

µt → 1 as
t → ∞, resulting in ∥εt∥ → 0. (v) We focus on the term
1
2µ∥Ax− b− y∥22 in Problem (4). We have 1

2µt ∥Axt+1 −

b− yt+1∥22 ≤ 1
2µt (Lhµ

t)2 =
L2

hµ
t

2 → 0.

The following lemma is useful in our subsequent analysis.

Lemma 4.2. (Proof in Appendix B.4) Let x̄ be any global
optimal solution of Problem (1). We define:

Υt ≜ F (x̄)− F (xt) +
µt−1L2

h

2 + 2LFLh

Vs
∥A∥(µ

t−1

µt − 1).

We have the following results:

(a) ⟨rt, x̄− xt⟩ ≤ Υt − Vs

2 ∥xt − x̄∥22.
(b) If µt = µ̄, we have: Υt ≤ 1

2 µ̄L
2
h − [minti=1 F (x

i)] +
F (x̄).

(c) If µt = η
t+t0

, we have:
∑t
i=1 Υ

i ≤ CΥ(ln(t) + 1) −
t[minti=1 F (x

i)] + tF (x̄), where CΥ ≜ 2LFLh

Vs
∥A∥+

ηL2
h

2 .

Remarks. Noticing that F (x̄) − F (xt) ≤ 0 and µt−1

µt −
1 → 0, we have Υt → 0 as t → ∞. This results in:
⟨rt,xt − x̄⟩ ≤ −Vs

2 ∥xt − x̄∥22 in the limit.

4.1. Convergence Rate for SPGM-IHT

In this subsection, we assume that IHT strategy is used for
solving the x-subproblem.

We denote any limit point of SPGM-IHT as (ẋ, ẏ) and
present the following useful definition.

Definition 4.3. (Approximate Lipschitz Stationary Point)
Given any constant ϵ > 0. Fix µ > 0 to be a sufficiently
small constant. A solution (ẋ, ẏ) is a ϵ-approximate Lip-
schitz stationary point if: dist2(ẏ, argminy J (ẋ,y;µ)) +

dist2(ẋ, argminx δ(x) + Ṁ(x, ẋ, ẏ;µ)) ≤ ϵ, where
Ṁ(·, ·, ·; ·) is defined in Problem (5).
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The following theorem establishes the convergence of
SPGM-IHT.

Theorem 4.4. (Proof in Appendix C.1) Convergence
to Lipschitz Stationary Solutions. We let J t+1 ≜
J (xt+1,yt+1;µt). We define Ψt as in Lemma 4.1. We
have:

(a) θ
2∥x

t+1−xt∥22+ 1
2µ0 ∥yt+1−yt∥22 ≤ Ψt+J t−J t+1.

(b)
∑T
t=1[

θ
2∥x

t+1 − xt∥22 + 1
2µ0 ∥yt+1 − yt∥22] ≤ J 1 −

J T+1 + ηL2
h ≜ C <∞.

(c) Algorithm 1 finds an ϵ-approximate Lipschitz stationary
point of Problem (1) in at most T iterations, where
T ≤ ⌈ 2C

ϵmin(θ,(µ0)−1)⌉ = O(ϵ−1).

Remarks. The introduction of parameter θ > 0 is important
since it guarantees sufficient decrease condition and global
convergence of Algorithm 1.

In what follows, we present enhanced convergence results
for SPGM-IHT, leading to the attainment of the approx-
imate global optimal solution x̄. We use the following
quantities to measure the distance between xt and x̄:

∆t
x ≜ ∥xt − x̄∥22, and∆t

F ≜ [
t

min
i=1

F (xi)]− F (x̄).

We first have the following useful lemma.

Lemma 4.5. (Proof in Appendix C.2) We define Ht ≜
A2
s/µ

t +Ms + θ. We have:

(a) ∥xt+1 − xt∥ ≤ 2
Ht ∥rt∥.

(b) ⟨xt+,xt+⟩ ≥ ⟨xt+,xt+1⟩, where xt+ ≜ xt − rt/Ht.

(c) 1
2H

t∆t+1
x ≤ 1

2 (H
t−Vs)∆t

x+
3∥rt∥2

2

Ht +Υt+∥rt∥∥x̄∥.

Remarks. As µt → 0, we have Ht → +∞, leading to
∥xt+1 − xt∥ → 0.

The following theorems establish the convergence of
SPGM-IHT to the approximate global optimal solution
x̄.

Theorem 4.6. (Proof in Appendix C.3) Convergence to
the Approximate Global Optimal Solutions for Constant
Stepsizes. Assume constant stepsizes are used with µt = µ̄.
We define γ ≜ 1− Vs/H , and H ≜ A2

s/µ̄+Ms + θ.

(a) We have the following recursive inequality:

1
2∆

t+1
x − γ

2∆
t
x ≤ LF

H ∥x̄∥+ 3L2
F

(H)2 + ( 12 µ̄L
2
h −∆t

F )
1
H .

(b) The following inequalities hold:

∆t
F ≤ K1γ

t +D1µ̄+ LF ∥x̄∥, (12)

∆t+1
x ≤

(
K1γ

t +D1µ̄+ LF ∥x̄∥
)

2
Vs
, (13)

where K1 ≜ Vs

2 ∆1
x, and D1 ≜ 3L2

F

A2
s
+ 1

2L
2
h.

Theorem 4.7. (Proof in Appendix C.4) Convergence to
Approximate Global Optimal Solutions for Diminishing
Stepsizes. Assume diminishing stepsizes are used with µt =
η

t+t0
, where η = A2

s/Vs. We let L′
F ≜ Lf + t0+1

t0
Lh∥A∥,

and Ht ≜ A2
s/µ

t+Ms+ θ. We define Υt as in Lemma 4.2.

(a) We have the following recursive inequality:

1
2 (H

t+1 − Vs)∆
t+1
x

≤ 1
2 (H

t − Vs)∆
t
x + 3(L′

F )
2/(Vs · t) + Υt + L′

F ∥x̄∥.

(b) The following inequalities hold:

∆t
F ≤ K2+D2(ln(t)+1)

t + L′
F ∥x̄∥, (14)

∆t+1
x ≤ (K2+D2(ln(t)+1)

t+1 + L′
F ∥x̄∥) 2

Vs
, (15)

where K2 ≜ H1

2 ∆1
x, D2 ≜ 3(L′

F )2

Vs
+ CΥ, and CΥ is

defined in Lemma 4.2.

Remarks. (i) As t0 → +∞, we have L′
F = Lf +

t0+1
t0

Lh∥A∥ → LF . (ii) The irreducible error terms for
SPGM-IHT {LF ∥x̄∥, 2LF ∥x̄∥/Vs, L′

F ∥x̄∥, 2LF ∥x̄∥/Vs,
as presented respectively in Inequalities (12), (13), (14),
and (15), are influenced by the Lipschitz constant LF , the
strong convexity parameter Vs, and the ℓ2 norm of the opti-
mal solution ∥x̄∥. This highlights the challenges inherent
in solving such NP-hard problems. SPGM-IHT shows
a higher likelihood of converging to the global optimum
when ∥x̄∥ and LF are small while Vs is large. (iii) Given
∥x̄∥0 ≤ s, we obtain: ∥x̄∥ ≤

√
s∥x̄∥∞, rendering the irre-

ducible error terms small. Hence, our theoretical bounds
can exploit the inherent sparsity structure of the problem.
(iv) Our theoretical results do not rely on the Restricted
Isometry Property (RIP) condition (Candes & Tao, 2005).
Instead, they primarily hinge on the Lipschitz continuity of
F (x) (see Assumption 2.1), along with the restricted strong
convexity and smoothness of the objective function (see
Assumption 2.2). (v) We do not claim to achieve the exact
global optimal solution of Problem (1), as that would imply
solving an NP-hard problem outright. Instead, we aim to
identify an approximate solution that closely approaches the
global optimum. (vi) We compare our results in Inequalities
(14) and (15) with the following estimates generated by the
PSGD method (Liu et al., 2019):

[minti=1 F (x
i)]− F (x̄) ≤ O(1/t) + LF ∥x̄∥, (16)

∥xt − x̄∥22 ≤ O(1/t) + LF ∥x̄∥ · 2
Vs
. (17)

Inequalities (16) and (17) have been established in Corol-
lary III.4 and Corollary III.8 of (Liu et al., 2019), respec-
tively. We conclude that the irreducible estimation error
terms L′

F ∥x̄∥ and L′
F ∥x̄∥ · 2

Vs
, as specified in Inequalities

(14) and (15), match the best-known error bounds presented
in (Liu et al., 2019) for this nonconvex NP-hard problem.
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(vii) We also draw comparisons with the following estimate
generated by the GHTP method (Yuan et al., 2017):

∥xt − x̄∥ ≤ O(ϑt) + c0
√
s∥∇F (x̄)∥∞, (18)

where ϑ ∈ (0, 1), and c0 is a constant related to the stepsize.
Inequality (18) has been established in Theorem 2 of (Yuan
et al., 2017). Noting that ∥x̄∥ ≤

√
s∥x̄∥∞, we derive from

Inequalities (14) and (15):

[minti=1 F (x
i)]− F (x̄) ≤ Õ(1/t) + L′

F

√
s∥x̄∥∞, (19)

∥xt − x̄∥22 ≤ Õ(1/t) + L′
F

√
s∥x̄∥∞ · 2

Vs
. (20)

We conclude that our results in Inequalities (19) and (20)
are in some sense analogous to those in (Yuan et al., 2017).

4.2. Convergence Rate for SPGM-BCD

In this subsection, we assume that BCD strategy is used for
solving the x-subproblem.

We assume that the working set B is selected randomly
and uniformly from Ωkn ≜ {B1,B2, ...,BCk

n
}. SPGM-BCD

generates a random output xt with t = 1, 2, ..., based on
the observed realization of the random variable ξt−1 ≜
{B1,B2, ...,Bt−1}. The expectation of a random variable is
denoted by Eξt [·]. The following lemma is useful in this
context.

Lemma 4.8. (Proof in Appendix C.5) For any x ∈ Rn
and z ∈ Rn, we have 1

Ck
n

∑
B∈Ωk

n
xT(UBU

T
B )z = Zkn⟨x, z⟩,

and EB∥xB∥22 = Zkn∥x∥22, where Zkn ≜ k
n .

We denote any limit point of SPGM-BCD as (ẍ, ÿ) and
offer the following useful definition.

Definition 4.9. (Approximate block-k Stationary Point)
Given any constant ϵ > 0. Fix µ > 0 to be a sufficiently
small constant. A solution (ẍ, ÿ) is an ϵ-approximate block-
k stationary point if: dist2(ÿ, argminy J (ẍ,y;µ)) +
1
Ck

n

∑
B∈Ωk

n
dist2(ẍB, argminxB δ(UBxB + UBc ẍBc) +

M̈(UBxB + UBc ẍBc , ẍ, ÿ;µ)) ≤ ϵ, where M̈(·, ·, ·; ·) is
defined in Problem (6).

The following theorem establishes the convergence of
SPGM-BCD.

Theorem 4.10. (Proof in Appendix C.6) Convergence to
Block-k Stationary Solutions. We let θ ≜ θ1

µ1 + θ2, and

J t+1 ≜ Eξt [J (xt+1,yt+1;µt)]. We define Ψ as in Lemma
4.1. We have:

(a) Eξt [ θ2∥x
t+1−xt∥22+ 1

2µ1 ∥yt+1−yt∥22] ≤ Ψt+J t−
J t+1.

(b) EξT [
∑T
t=1

θ
2∥x

t+1−xt∥22+ 1
2µ1 ∥yt+1−yt∥22] ≤ J 1−

J T+1 + ηL2
h ≜ C <∞.

(c) Algorithm 1 finds an ϵ-approximate block-k stationary
point of Problem (1) in at most T iterations in the sense
of expectation, where T ≤ ⌈ 2C

ϵmin(θ,(µ0)−1)⌉ = O(ϵ−1).

Remarks. Theorem 4.10 resembles Theorem 4.4, with
the key distinction being that SPGM-IHT deterministically
converges to a Lipschitz stationary point, whereas SPGM-
BCD converges to a block-k stationary point in expectation.

In what follows, we present enhanced convergence results
for SPGM-BCD, leading to the attainment of the approxi-
mate global optimal solution x̄. For notation convenience,
we define

∆t
x ≜ Eξt [∥xt − x̄∥22], ∆t

F ≜ Eξt [(
t

min
i=1

F (xi))− F (x̄)],

V ≜ max
B∈Ωk

n

λmax(M̃BB), V ≜ min
B∈Ωk

n

λmin(M̃BB),

A ≜ max
B∈Ωk

n

λmax(A
TA)BB), A ≜ min

B∈Ωk
n

λmin((A
TA)BB),

H
t
≜ A+θ1

µt + V + θ2, Ht ≜ A+θ1
µt + V + θ2, κ

t ≜ Ht

Ht ,

where V ≥ Vs, and A could be zero.

We first have the following two useful lemmas.

Lemma 4.11. (Proof in Appendix C.8) Given any constant
ϵ̃ > 0. If θ1 and θ2 are sufficiently large such that θ1 ≥
T1(ϵ̃) ≜ A−A(1+ϵ̃)

ϵ̃ and θ2 ≥ T2(ϵ̃) ≜ V−V(1+ϵ̃)
ϵ̃ , we have:

κt ≜ Ht

Ht ≤ 1 + ϵ̃.

Lemma 4.12. (Proof in Appendix C.7) We define Zkn as in
Lemma 4.8. We define:

Ht ≜ (ATA+ θ1In)/µ
t + M̃+ θ2In,

Ht
∗ ≜ UBtUT

BtHtUBtUT
Bt .

For all t ≥ 1, we have the following results:

(a) Eξt [∥xt+1 − xt∥] ≤ 2
HtEξt [∥rt∥].

(b) Eξt [⟨[[Ht]BB](x
t+1
B − xtB),x

t+1
B ⟩] = −Zkn⟨rt,xt+1⟩.

(c) Eξt [ 12∥x
t+1 − x̄∥2Ht

∗
− 1

2∥x
t − x̄∥2Ht

∗
] ≤ Zkn · {Υt +

2/Ht∥rt∥22 + (1 + 2κt)∥rt∥∥x̄∥ − Vs

2 ∥xt − x̄∥22}.

Remarks. When µt → 0, we have Ht → +∞, leading to
Eξt [∥xt+1 − xt∥] → 0.

The following theorems establish the convergence of
SPGM-BCD to the approximate global optimal solution
x̄.

Theorem 4.13. (Proof in Appendix C.9) Convergence to
Approximate Global Optimal Solutions for Constant Step-
sizes. Assume constant stepsizes are used with µt = µ̄.
Given any constant ϵ̃ > 0. Assume that θ1 ≥ T1(ϵ̃) and
θ2 ≥ T2(ϵ̃), where T1(·) and T2(·) are define in Lemma
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4.11. We let H ≜ A+θ1
µ̄ +V+ θ2, H ≜ A+θ1

µ̄ +V+ θ2, and

γ ≜ 1− Vs

H
∈ (0, 1). We define Ht

∗ as in Lemma 4.12, and
Υt as in Lemma 4.2.

(a) We have the following recursive inequality:

Eξt+1 [ 12∥x
t+1 − x̄∥2

Ht+1
∗

]− γEξt [ 12∥x
t − x̄∥2Ht

∗
]

≤ Zkn[Υ
t + 2(LF )2

H + (3 + 2ϵ̃)LF ∥x̄∥].

(b) The following inequalities hold:

∆t
F ≤ K3γ

t +D3µ̄+ (3 + 2ϵ̃)LF ∥x̄∥, (21)

∆t+1
x ≤ (K3γ

t +D3µ̄+ (3 + 2ϵ̃)LF ∥x̄∥) 2
Vs
, (22)

where K3 ≜ Vs(1+ϵ̃)
2 ∆1

x, and D3 ≜ 2(LF )2

θ1+A
+

L2
h

2 .

Theorem 4.14. (Proof in Appendix C.10) Convergence to
Approximate Global Optimal Solutions for Diminishing
Stepsizes. Assume diminishing stepsizes are used with µt =
η

t+t0
, where η = A+θ1

Vs
. Given any constant ϵ̃ > 0. Assume

that θ1 ≥ T1(ϵ̃) and θ2 ≥ T2(ϵ̃), where T1(·) and T2(·)
are define in Lemma 4.11. We let H

t
≜ A+θ1

µt + V + θ2,

Ht ≜ A+θ1
µt + V + θ2, and L′

F ≜ Lf + t0+1
t0

Lh∥A∥. We
define Ht

∗ as in Lemma 4.12, and Υt as in Lemma 4.2.

(a) We have the following recursive inequality:

Φt+1 − Φt ≤ ZknΥ
t +

2Zk
n(L

′
F )2

Ht + (3 + 2ϵ̃)ZknL
′
F ∥x̄∥,

where Φt ≜ Eξt [ 12∥x
t − x̄∥2Ht

∗
]− Zkn

Vs

2 ∥xt − x̄∥22.
(b) The following inequalities hold:

∆t
F ≤ K4+D4(1+ln(t))

t + (3 + 2ϵ̃)L′
F ∥x̄∥, (23)

∆t+1
x ≤ (K4+D4(ln(t)+1)

t+1 + (3 + 2ϵ̃)L′
F ∥x̄∥) 2

Vs
, (24)

where K4 ≜ H1

2 ∆1
x, D4 ≜ 2(L′

F )2

Vs
+ CΥ, and CΥ is

defined in Lemma 4.2.

Remarks. (i) The convergence rates in Theorems 4.13 and
4.6 are similar, as are those in Theorems 4.14 and 4.7. How-
ever, analyzing SPGM-BCD is more intricate than SPGM-
IHT due to the utilization of a general Hessian matrix Ht

and a stochastic mechanism of SPGM-BCD, in contrast to
the utilization of a scaled identity matrix HtIn and a de-
terministic mechanism of SPGM-IHT. Consequently, their
theoretical derivations differ significantly. (ii) As ϵ̃→ 0 and
t0 → +∞, the irreducible estimation error terms for ∆t

F

in Inequalities (21) and (23) simplify to 3LF ∥x̄∥, which is
three times the bound of PSGD in (Liu et al., 2019). Our
bounds leverage the inherent sparsity of the problem.

5. Experiments
This section evaluates the effectiveness of SPGM-IHT and
SPGM-BCD, comparing them with five state-of-the-art non-
smooth sparsity constrained optimization algorithms: (i)

Projective Subgradient Descent (PSGD) (Liu et al., 2019).
(ii) Alternating Direction Method of Mutipliers based on
IHT (ADMM-IHT) (He & Yuan, 2012). (iii) Dual Iterative
Hard Thresholding(DIHT) (Yuan et al., 2020b). (iv) Convex
ℓ1 Approximation Method (CVX-ℓ1) (Candes & Tao, 2005).
(v) Nonconvex ℓp Approximation Method (NCVX-ℓp) (Xu
et al., 2012).

Our experiments reveal that SPGM-IHT is on par with
existing IHT-style methods, and SPGM-BCD consistently
delivers the best performance. This outcome is expected as
SPGM-IHT is an IHT-style method itself, while SPGM-
BCD excels in identifying stronger stationary points com-
pared to other approaches.

Due to space constraints, detailed experiment results are
provided in Appendix Section D. Our MATLAB code is
available on the author’s research webpage.

6. Conclusions
This paper explores Smoothing Proximal Gradient Meth-
ods (SPGM) for solving nonsmooth sparsity constrained
optimization problems. We discuss two specific variants of
SPGM: one based on Iterative Hard Thresholding (SPGM-
IHT) and the other on Block Coordinate Decomposition
(SPGM-BCD). We provide both smooth and optimality
analyses for the smoothing functions, demonstrating that
SPGM-BCD discovers stronger stationary points of the
nonsmooth nonconvex problem. We offer theoretical in-
sights into the convergence rates of the SPGM-IHT and
SPGM-BCD algorithms. Our bounds depend on the Lips-
chitz constant of the objective function, the strong convexity
parameter of its smooth component, and the ℓ2 norm of the
global optimal point. Leveraging the inherent sparsity of
the optimization problem, our bounds align with the most
competitive error estimates in the field. Finally, numerical
experiments demonstrate that SPGM-IHT performs on par
with existing IHT-style methods, while SPGM-BCD con-
sistently delivers state-of-the-art numerical performance.
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Appendix
The appendix is organized as follows.

Appendix A contains some useful lemmas.

Appendix B includes the proofs for Section 3.

Appendix C presents the proofs for Section 4.

Appendix D provides the experimental results.

A. Some Useful Lemmas
We present some useful lemmas that will be used subsequently.

Lemma A.1. (Pythagoras Relation) For any symmetric matrix H ∈ Rn×n with HT = H and any vectors a ∈ Rn,
b ∈ Rn, c ∈ Rn, we have:

1

2
∥a− b∥2H − 1

2
∥c− b∥2H =

1

2
∥a− c∥2H − ⟨a− c,H(b− c)⟩.

Lemma A.2. Assume γ ∈ (0, 1). Denote γt as the t-th power of γ. Let {Φt}∞t=1 and {Λt}∞t=1 be any two non-negative
sequences. If the following inequality is satisfied for all t: Φt+1 ≤ γΦt + Λt. Then, it implies the following inequality:
Φt+1 ≤ γtΦ1 +

maxt
i=1(Λ

i)
1−γ .

Proof. Using basic induction, we have the following results:

t = 1, Φ2 ≤ γΦ1 + Λ1

t = 2, Φ3 ≤ γΦ2 + Λ2 ≤ γ(γΦ1 + Λ2) + Λ1 = γ2Φ1 + (Λ2 + γΛ1)

t = 3, Φ4 ≤ γΦ3 + Λ3 ≤ γ(γ2Φ1 + (Λ2 + γΛ1)) + Λ3 = γ3Φ1 + (Λ3 + γΛ2 + γ2Λ1)

...

Therefore, we obtain:

ΦT+1 ≤ γTΦ1 +

T∑
i=1

ΛiγT−i ①
≤ γTΦ1 + (

T
max
i=1

Λi) · (
T∑
i=1

γT−i)
②
≤ γTΦ1 +

(maxTi=1 Λ
i)

1− γ
,

where step ① uses the Cauchy-Schwarz Inequality; step ② uses the fact that

t∑
i=1

γt−i = 1 + γ1 + γ2 + ...+ γt−1 =
1− γt

1− γ
<

1

1− γ
.

B. Proofs for Section 3
B.1. Proof of Lemma 3.1

Proof. Without loss of generality, we assume µ1 < µ2. For all x with ∥x∥0 ≤ s, we define:

ψ(µ) ≜ G(x;µ) = f(x) + h(Pµ(c)) + 1
2µ∥c− Pµ(c)∥22 with c ≜ Ax− b. (25)

Using the definition of Pµ(c) as shown in Equation (2), we have for any given µ1 and µ2:

Pµ1
(c) = argmin

y
h(y) + 1

2µ1
∥y − c∥22, andPµ2

(c) = argmin
y

h(y) + 1
2µ2

∥y − c∥22.
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By the optimality of Pµ1
(c) and Pµ2

(c), we obtain:

c− Pµ1
(c) ∈ µ1∂h(Pµ1

(c)), and c− Pµ2
(c) ∈ µ2∂h(Pµ2

(c)). (26)

(a) We now prove that ψ(µ) is a decreasing function. For any p1 ∈ ∂h(Pµ1(c)) and p2 ∈ ∂h(Pµ2(c)), we have:

ψ(µ2)− ψ(µ1)
①
= h(Pµ2(c)) +

1
2µ2

∥c− Pµ2
(c)∥22 − h(Pµ1

(c))− 1
2µ1

∥c− Pµ1
(c)∥22

②
≤ ⟨Pµ2

(c)− Pµ1
(c),p2⟩+ 1

2µ2
∥c− Pµ2

(c)∥22 − 1
2µ1

∥c− Pµ1
(c)∥22

③
= ⟨µ1p1 − µ2p2,p2⟩+ µ2

2 ∥p2∥22 −
µ1

2 ∥p1∥22
= ⟨µ1p1,p2⟩ − µ2

2 ∥p2∥22 −
µ1

2 ∥p1∥22
④
≤ ⟨µ1p1,p2⟩ − µ1

2 ∥p2∥22 −
µ1

2 ∥p1∥22
= −µ1

2 ∥p1 − p2∥22 ≤ 0,

where step ① uses the definition of ψ(µ) in Equation (25); step ② uses the convexity of h(·); step ③ uses the optimality of
Pµ1

(c) and Pµ2
(c) in Equation (26); step ④ uses 0 < µ1 < µ2.

(b) We now prove that ψ(µ) is ( 12L
2
h)-Lipschitz. For any p1 ∈ ∂h(Pµ1(c)) and p2 ∈ ∂h(Pµ2(c)), we have:

ψ(µ1)− ψ(µ2)
①
= h(Pµ1(c)) +

1
2µ1

∥c− Pµ1(c)∥22 − h(Pµ2(c))− 1
2µ2

∥c− Pµ2(c)∥22
②
≤ ⟨Pµ1(c)− Pµ2(c),p1⟩+ 1

2µ1
∥c− Pµ1(c)∥22 − 1

2µ2
∥c− Pµ2(c)∥22

③
= ⟨[c− Pµ2

(c)]− [c− Pµ1
(c)],p1⟩+ 1

2µ1
∥c− Pµ1

(c)∥22 − 1
2µ2

∥c− Pµ2
(c)∥22

④
= ⟨µ2p2 − µ1p1,p1⟩+ µ1

2 ∥p1∥22 −
µ2

2 ∥p2∥22
= −µ2

2 ∥p2∥22 + µ2⟨p1,p2⟩ − µ1

2 ∥p1∥22
⑤
≤ µ2

2 ∥p1∥22 −
µ1

2 ∥p1∥22
⑥
≤ µ2−µ1

2 · L2
h,

where step ① uses the definition of ψ(µ) in Equation (25); step ② uses the convexity of h(·); step ③ uses the fact that
Pµ1(c)− Pµ2(c) = [c− Pµ2(c)]− [c− Pµ1(c)]; step ④ uses the optimality of Pµ1(c) and Pµ2(c) in Equation (26); step ⑤
uses the inequality that −µ

2 ∥p2∥22 + µ⟨p1,p2⟩ ≤ µ
2 ∥p1∥22 for all µ > 0 and for all p1,p2 ∈ Rm; step ⑥ uses ∥p1∥ ≤ Lh.

Dividing both sides by (µ2 − µ1), we conclude that ψ(µ) is ( 12L
2
h)-Lipschitz.

B.2. Proof of Lemma 3.2

Proof. We fix µ > 0 to be a constant. For any given x,x′ ∈ Rn with ∥x∥0 ≤ s and ∥x′∥0 ≤ s, we define

c ≜ Ax− b, and c′ ≜ Ax′ − b. (27)

Using the definition of Pµ(·) as shown in Equation (2), we have:

Pµ(c) = argmin
y
h(y) + 1

2µ∥y − c∥22, andPµ(c′) = argmin
y
h(y) + 1

2µ∥y − c′∥22.

By the optimality condition of Pµ(c) and Pµ(c′), we have:

c− Pµ(c) ∈ µ∂h(Pµ(c)), and c′ − Pµ(c′) ∈ µ∂h(Pµ(c)). (28)

The function G(x;µ) defined in Equation (11) is differentiable and its gradient at x and x′ can be respectively computed as:

∇xG(x;µ) = ∇f(x) + 1
µA

T(c− Pµ(c)) and ∇xG(x′;µ) = ∇f(x′) + 1
µA

T(c′ − Pµ(c′)). (29)
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(a) We notice that F (x) = limµ̄→0 G(x; µ̄) and G(x;µ) is a decreasing function w.r.t. µ. The inequality F (x) ≥ G(x;µ)
clearly holds. We now prove that F (x)− µ

2L
2
h ≤ G(x;µ). For any x with ∥x∥0 ≤ s and p ∈ ∂h(Pµ(c)), we obtain:

F (x)− G(x;µ) ①
= [f(x) + h(Ax− b)]− [f(x) + h(Pµ(Ax− b)) + 1

2µ∥Ax− b− Pµ(Ax− b)∥22]
②
= h(c)− h(Pµ(c))− 1

2µ∥c− Pµ(c)∥22
③
≤ ⟨c− Pµ(c), ∂h(Pµ(c))⟩ − 1

2µ∥µ∂h(Pµ(c))∥
2
2

≤ ⟨c− Pµ(c),p⟩ − µ
2 ∥p∥

2
2

④
≤ 1

2µ∥c− Pµ(c)∥22
⑤
= 1

2µ∥µp∥
2
2

⑥
≤ µ

2L
2
h,

where step ① uses the definition of F (x) ≜ f(x) + h(Ax− b) in Problem (1) and the definition of G(x;µ) in Equation
(11); step ② uses Ax−b = c; step ③ uses the convexity of h(·) and the optimality of Pµ(c) as shown in Equation (28); step
④ uses the inequality −µ

2 ∥p∥
2
2 + ⟨v,p⟩ ≤ 1

2µ∥v∥
2
2 for all v and µ > 0; step ⑤ uses Equation (28); step ⑥ uses ∥p∥2 ≤ Lh.

(b) We now prove that F (x) is (Lf + Lh∥A∥)-Lipschitz. We have:

∥∂F (x)∥ ①
= ∥∇f(x) +AT∂h(Ax− b)∥
②
≤ ∥∇f(x)∥+ ∥A∥∥∂h(Ax− b)∥
③
≤ Lf + Lh∥A∥,

where step ① uses ∂F (x) = ∇f(x) +AT∂h(Ax− b); step ② uses the norm inequality; step ③ uses the fact that h(·) is
Lh-Lipschitz and f(·) is Lf -Lipschitz.

We now prove that G(x, µ) is (Lf + Lh∥A∥)-Lipschitz. We obtain:

∥∇xG(x;µ)∥ = ∥∇f(x) + 1
µA

T(c− Pµ(c))∥

≤ ∥∇f(x)∥+ ∥A∥ · ∥ 1
µ (c− Pµ(c))∥

①
= ∥∇f(x)∥+ ∥A∥ · ∥∂h(Pµ(c))∥
≤ Lf + Lh∥A∥,

where step ① uses the optimality condition of Pµ(c) as shown in Equation (28) that c− Pµ(c) ∈ µ∂h(Pµ(c)).

(c) Noticing f(x) is restricted Vs-strongly convex, we directly conclude that G(x, µ) is also restricted Vs-strongly convex.
We now prove that the function G(x, µ) is restricted (Ms +

As∥A∥
µ )-smooth. For any x ∈ Rn, x′ ∈ Rn, p1 ∈ ∂h(Pµ(c)),

and p2 ∈ ∂h(Pµ(c′)), we derive:

∥[Ax′ −Ax] + [Pµ(c)− Pµ(c′)]∥22
①
= ∥Ax′ −Ax∥22 + ∥Pµ(c)− Pµ(c′)∥22 + 2⟨Pµ(c)− Pµ(c′), (Ax′ − b)− (Ax− b)⟩
②
= A2

s∥x′ − x∥22 + ∥Pµ(c)− Pµ(c′)∥22 + 2⟨Pµ(c)− Pµ(c′), [µp1 + Pµ(c′)]− [µp1 + Pµ(c)]⟩
= A2

s∥x′ − x∥22 − ∥Pµ(c)− Pµ(c′)∥22 + 2⟨Pµ(c)− Pµ(c′), µp2 − µp1⟩
③
≤ A2

s∥x′ − x∥22 + 0 + 0, (30)

where step ① uses the Pythagoras relation; step ② uses Assumption 2.3 and the optimality conditions in (28); step ③ uses
the convexity of h(·) that ⟨y′ − y, ∂h(y′)− ∂h(y)⟩ ≥ 0 for all y and y′.
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Finally, we have the following inequalities:

∥∇xG(x′;µ)−∇xG(x;µ)∥
①
= ∥[∇f(x′) + 1

µA
T(c′ − Pµ(c′))]− [∇f(x) + 1

µA
T(c− Pµ(c))]∥

②
≤ ∥∇f(x′)−∇f(x)∥+ ∥ 1

µA
T(Ax′ − b− Pµ(c′))− 1

µA
T(Ax− b− Pµ(c))]∥

③
≤ Ms∥x− x′∥+ 1

µ · ∥A∥ · ∥[Ax′ −Ax] + [Pµ(c)− Pµ(c′)]∥
④
≤ Ms∥x− x′∥+ 1

µ · ∥A∥ ·As · ∥x− x′∥,

where step ① uses the definition of ∇xG(x;µ) in Equation (29); step ② uses the norm inequality; step ③ uses the fact that
f(x) is restricted Ms-smooth as shown in Assumption 2.2 and norm inequality; step ④ uses Inequality (30).

B.3. Proof of Lemma 4.1

Proof. (a) We now bound ∥yt+1 + b−Axt+1∥ using these inequalities:

∥yt+1 + b−Axt+1∥ ①
= µt∥∂h(yt+1)∥

②
≤ Lhµ

t, (31)

where step ① uses the optimality condition of yt+1 with yt+1 = argminy h(y) +
1

2µt ∥Axt+1 − b− y∥22, which yields:

Axt+1 − b− yt+1 ∈ µt∂h(yt+1); (32)

step ② uses Assumption 2.1.

(b) We now bound ∥yt+1 − yt∥ using these inequalities:

∥yt+1 − yt∥ ①
= ∥A(xt+1 − xt) + µt−1∂h(yt)− µt∂h(yt+1)∥
②
≤ ∥A∥∥xt+1 − xt∥+ ∥µt∂h(yt+1)∥+ ∥µt−1∂h(yt)∥
③
≤ ∥A∥∥xt+1 − xt∥+ 2µt−1Lh,

where step ① uses (32); step ② uses the triangle inequality and norm inequality; step ③ uses ∥∂h(y)∥ ≤ Lh and µt ≤ µt−1.

(c) We now bound ∥∇xR(xt,yt;µt)∥ using these inequalities:

∥∇xR(xt,yt;µt)∥ ①
= ∥∇f(xt) + 1

µtA
T(Axt − yt − b)∥

≤ ∥∇f(xt)∥+ 1
µt ∥A∥∥Axt − yt − b∥

②
≤ Lf +

µt−1

µt Lh∥A∥,

where step ① uses the definition of ∇xR(xt,yt;µt) as in Equation (4); step ② uses Part (a) of this lemma.

If we choose µt = µ̄, we have: µ
t−1

µt = 1, and ∥∇xR(xt,yt;µt)∥ ≤ Lf + Lh∥A∥.

If we choose µt = η
t+t0

, we have µt−1

µt = t+t0
t−1+t0

≤ max∞i=1
i+t0
i−1+t0

≤ t0+1
t0

, and ∥∇xR(xt,yt;µt)∥ ≤ Lf +
t0+1
t0

Lh∥A∥.

(d) We now bound the term ∥εt∥ using these inequalities:

∥εt∥ = ∥( 1
µt−1 − 1

µt ) ·AT(Axt − b− yt)∥
①
≤ ( 1

µt − 1
µt−1 )∥A∥∥Axt − b− yt∥

②
= ( 1

µt − 1
µt−1 )∥A∥ · Lhµt−1,
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where step ① uses the norm inequality; step ② uses Inequality (31).

(e) We now bound J (xt,yt;µt)− J (xt,yt;µt−1) using these inequalities:

J (xt,yt;µt)− J (xt,yt;µt−1)
①
= 1

2∥Axt − b− yt∥22 · ( 1
µt − 1

µt−1 )

②
≤ 1

2 (µ
t−1Lh)

2( 1
µt − 1

µt−1 )

= 1
2L

2
h(

(µt−1)2

µt − µt−1) ≜ Ψt,

where step ① uses the definition of J (xt,yt;µt) ≜ f(xt) + 1
2µt ∥Axt − b− yt∥22; step ② uses Part (a) of Lemma 4.1.

(f) We now prove that [
∑∞
t=1 Ψ

t] ≤
{

0, µt = µ̄;
ηL2

h, µt = η(t+ t0)
−1 , where Ψt ≜ 1

2L
2
h(

(µt−1)2

µt − µt−1). We discuss two cases

for µt.

Case 1). When µt = µ̄, we have:

[

∞∑
t=1

Ψt] ≜ 1
2L

2
h

∞∑
t=0

( (µ
t−1)2

µt − µt−1) = 1
2L

2
h

∞∑
t=0

(µ̄− µ̄) = 0.

Case 2). When µt = η
t+t0

, we have:

[

∞∑
t=1

Ψt]
①
= ( 12L

2
h) ·

∞∑
t=1

( (µ
t−1)2

µt − µt−1)
②
= ( 12L

2
h) · (

∞∑
t=1

η

(t+ t0 − 1)2
)

③
≤ ( 12L

2
h) · (

∞∑
t=1

η

t2
)

④
< ( 12L

2
h) · 2η,

where step ① uses the definition of Ψt ≜ L2
h

2 ( (µ
t−1)2

µt − µt−1); step ② uses µt = η
t+t0

; step ③ uses t0 ≥ 1; step ④ uses∑∞
t=1

1
t2 = π2

6 < 2.

B.4. Proof of Lemma 4.2

Proof. (a) We first now bound the term ∥xt − x̄∥ using these inequalities:

Vs

2 ∥xt − x̄∥22
①
≤ F (x̄)− F (xt)− ⟨x̄− xt, ∂F (xt)⟩

②
≤ 0 + LF ∥x̄− xt∥,

where step ① uses the restricted strong convexity of F (·); step ② uses F (x̄) ≤ F (xt) and ∥∂F (x)∥ ≤ LF . Dividing both
sides by (Vs

2 ∥x̄− xt∥), we have:

∥xt − x̄∥ ≤ 2LF

Vs
. (33)

We now now bound the term Vs

2 ∥xt − x̄∥22 using these inequalities:

Vs

2 ∥xt − x̄∥22
①
≤ ⟨∇xG(xt;µt−1), xt − x̄⟩+ G(x̄;µt−1)− G(xt;µt−1)
②
≤ ⟨rt + εt, xt − x̄⟩+ [F (x̄)− F (xt) + µt−1

2 L2
h]

③
≤ ⟨rt,xt − x̄⟩+ ∥εt∥ · ∥x̄− xt∥+ [F (x̄)− F (xt) + µt−1

2 L2
h]

④
≤ ⟨rt,xt − x̄⟩+ ( 1

µt − 1
µt−1 )Lhµ

t−1∥A∥ · 2LF

Vs
+ [F (x̄)− F (xt) + µt−1

2 L2
h]︸ ︷︷ ︸

≜Υt
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where step ① uses the restricted strong convexity of G(x;µt−1); step ② uses the the relation between ∇xG(xt;µt−1) and
∇xR(xt,yt;µt) and Part (a) in Lemma (3.2) that

G(x̄;µt−1) ≤ F (x̄), G(xt;µt−1) ≥ F (xt)− µt−1

2
L2
h;

step ③ uses the norm inequality; step ④ uses Inequality (33) and the inequality in Part (d) of Lemma 4.1 that ∥εt∥ ≤
( 1
µt − 1

µt−1 )Lhµ
t−1∥A∥.

(b) When µt = µ̄, we have the following results:

Υt ≜ F (x̄)− F (xt) + 1
2µ

t−1L2
h +

2LFLh

Vs
∥A∥(µ

t−1

µt − 1)

①
= F (x̄)− F (xt) + 1

2 µ̄L
2
h.

②
≤ F (x̄)− [

t
min
i=1

F (xi)] + 1
2 µ̄L

2
h,

where step ① uses µt+1

µt = 1; step ② uses [minti=1 F (x
i)] ≤ F (xt).

(c) When µt = η
t+t0

, we have the following results:

T∑
t=1

Υt
①
=

T∑
t=1

(
F (x̄)− F (xt) + 1

2µ
t−1L2

h +
2LFLh

Vs
∥A∥(µ

t−1

µt − 1)
)

②
≤ TF (x̄)− T [

T
min
t=1

F (xt)] +

T∑
t=1

(
L2
h

2

η

t+ t0 − 1
+ 2LFLh

Vs
∥A∥ 1

t+ t0 − 1

)
③
≤ TF (x̄)− T [

T
min
t=1

F (xt)] + [1 + ln(T )] ·
(
ηL2

h

2
+ 2LFLh

Vs
∥A∥

)
,

where step ① uses the definition of Υt as shown in Lemma 4.2; step ② uses maxTt=1[−F (xt)] = −[minTt=1 F (x
t)], the

inequality that µ
t−1

µt − 1 = t+t0
t+t0−1 − 1 = 1

t+t0−1 ; step ③ uses t0 ≥ 1, and the fact that

T∑
t=1

1

t+ t0 − 1
≤

T∑
t=1

1

t
≤ 1 + ln(T ).

Using the definition of CΥ ≜ ηL2
h

2 + 2LFLh

Vs
∥A∥, we finish the proof of this lemma.

C. Proofs for Section 4
C.1. Proof of Theorem 4.4

Proof. We denote rt ≜ ∇xR(xt,yt;µt) and Ht = A2
s/µ

t +Ms + θ.

(a) We focus on the x-subproblem. We have from Problem (5) that

⟨rt, xt+1 − xt⟩+ Ht

2 ∥xt+1 − xt∥22 ≤ ⟨rt, xt − xt⟩+ Ht

2 ∥xt − xt∥22 = 0.

Since R(xt,yt;µt) is restricted (A2
s/µ

t +Ms)-smooth w.r.t. x, we have:

R(xt+1,yt;µt) ≤ R(xt,yt;µt) + ⟨rt,xt+1 − xt⟩+ A2
s/µ

t+Ms

2 ∥xt − xt+1∥22.

We observe that the following equality holds:

R(xt+1,yt;µt)−R(xt,yt;µt) = J (xt+1,yt;µt)− J (xt,yt;µt)
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Summing these three inequalities, we have:

J (xt+1,yt;µt)− J (xt,yt;µt) ≤ − θ
2∥x

t+1 − xt∥22. (34)

We now focus on the y-subproblem. We derive the following inequalities for all y ∈ Rm:

J (xt+1,yt+1;µt)− J (xt+1,y;µt)
①
≤ − 1

2µt
∥yt+1 − y∥22 − ⟨y − yt+1, ∂yJ (xt+1,yt+1;µt)⟩

②
= − 1

2µt
∥yt+1 − y∥22

③
≤ − 1

2µ1
∥yt+1 − y∥22,

where step ① uses the fact that J (xt+1,y;µt) is 1
µ -strongly convex w.r.t. y; step ② uses the optimality of yt+1 that

0 ∈ ∂yJ (xt+1,yt+1;µt); step ③ uses the fact that the sequence {µt}∞t=1 is non-increasing. Letting y = yt, we obtain:

J (xt+1,yt+1;µt)− J (xt+1,yt;µt) ≤ − 1

2µ1
∥yt+1 − yt∥22 (35)

Using the continuity of J (xt,yt;µ) w.r.t. µ as shown in Part (e) of Lemma 4.1, we obtain:

0 ≤ J (xt,yt;µt)− J (xt,yt;µt−1) ≤ L2
h

2 ( (µ
t−1)2

µt − µt−1) ≜ Ψt. (36)

Summing Inequalities (34), (35), and (36) together, we have:

1
2µ1 ∥yt+1 − yt∥22 + θ

2∥x
t+1 − xt∥22

≤ J (xt,yt;µt−1)− J (xt+1,yt+1;µt) + 1
2L

2
h(

(µt−1)2

µt − µt−1)

①
= J t − J t+1 +Ψt, (37)

where step ① uses the definitions of Ψt and J t+1 ≜ J (xt+1,yt+1;µt).

(b) Summing Inequality (37) over t from 1 to T , we obtain:∑T
t=1

1
2µ1 ∥yt+1 − yt∥22 +

∑T
t=1

θ
2∥x

t+1 − xt∥22

≤ J 1 − J T+1 + [
∑T
t=1 Ψ

t]
①
≤ J 1 − J T+1 + ηL2

h ≜ C < +∞,

where step ① uses
∑T
t=1 Ψ

t <
∑∞
t=1 Ψ

t ≤ ηL2
h which is shown in Part (f) of Lemma 4.1.

(c) As a result, there exists an index t̄ with 1 ≤ t̄ ≤ T such that 1
2µ1 ∥yt̄+1 − yt̄∥22 + θ

2∥x
t̄+1 − xt̄∥22 ≤ C

T , leading to:

∥yt̄+1 − yt̄∥22 + ∥xt̄+1 − xt̄∥22 ≤ 2C

T ·min(θ, (µ1)−1)
. (38)

Letting Γx(x,y;µ) ≜ dist2(x, argminx′ M(x′,x,y;µ)) and Γy(x,y;µ) ≜ dist2(y, argminy′ J (x,y′;µ)), we have:

∥xt̄+1 − xt̄∥22 + ∥yt̄+1 − yt̄∥22 ≥ Γx(x
t̄,yt̄;µ) + Γy(x

t̄,yt̄;µ) (39)

for all t̄ ≥ 1 and some sufficiently small µ = µt̄ > 0. Combining Inequalities (38) and (39), we have:

Γx(x
t̄,yt̄;µt̄) + Γy(x

t̄,yt̄;µt̄) ≤ 2C

T ·min(θ, (µ1)−1)

Therefore, we conclude that Algorithm 1 finds an ϵ-approximate Lipschitz stationary point of Problem (1) in at most T
iterations, where T ≤ ⌈ 2C

ϵmin(θ,(µ1)−1)⌉.
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C.2. Proof of Lemma 4.5

Proof. We define Ht ≜ A2
s/µ

t +Ms + θ, xt+ ≜ xt − rt/Ht ∈ Rn, J ≜ {i |xt+1
i ̸= 0}, and Jc ≜ {i |xt+1

i = 0}.

(a) Due to the optimality of xt+1 in Problem (5) that xt+1 = argmin∥x∥0≤s
1
2∥x−xt+∥22, we have ∥xt+1−xt+∥ ≤ ∥x−xt+∥

for all ∥x∥0 ≤ s. Given that ∥xt∥0 ≤ s, we let x = xt, resulting in:

∥xt+1 − xt+∥ ≤ ∥xt − xt+∥. (40)

We derive the following inequalities:

∥xt+1 − xt∥
①
≤ ∥xt+1 − xt+∥+ ∥xt+ − xt∥

②
≤ 1

Ht ∥rt∥+ 1
Ht ∥rt∥ = 2

Ht ∥rt∥,

where step ① uses the triangle inequality; step ② uses Inequality (40).

(b) We have the following inequalities:

⟨xt+,xt+⟩ = ⟨[xt+]J, [xt+]J⟩+ ∥[xt+]Jc∥22
≥ ⟨[xt+]J, [xt+]J⟩+ 0

①
= ⟨[xt+]J, [xt+1]J⟩
②
= ⟨[xt+]J, [xt+1]J⟩+ ⟨[xt+]Jc , [xt+1]Jc⟩
③
= ⟨xt+,xt+1⟩, (41)

where step ① uses the fact [xt+]J = [xt+1]J; step ② uses [xt+1]Jc = 0; step ③ uses J ∪ Jc = {1, 2, ..., n}.

(c) We derive the following inequalities:

Ht

2 ∥xt+1 − x̄∥22 − Ht

2 ∥xt − x̄∥22 − Ht

2 ∥xt+1 − xt∥22
①
= Ht⟨xt − xt+1, x̄− xt⟩
②
= Ht⟨xt+ − xt+1, x̄− xt⟩+Ht⟨rt/Ht, x̄− xt⟩
③
≤ Ht⟨xt+ − xt+1, x̄− xt⟩+Υt − Vs

2 ∥xt − x̄∥22 (42)

where step ① uses the Pythagoras relation that ∥a− b∥22 − ∥c− b∥22 = ∥a− c∥22 − 2⟨a− c,b− c⟩ for all a, b, c; step ②
uses xt = xt+ + rt/Ht; step ③ uses Part (b) of this lemma.

We now bound the first term of the right-hand side in Inequality (42) using the following inequalities:

Ht⟨xt+ − xt+1, x̄− xt⟩ ①
= Ht⟨xt+ − xt+1, x̄− xt − xt+ + xt+⟩
②
≤ Ht⟨xt+ − xt+1, x̄− xt + xt+⟩
= Ht⟨xt+ − xt+1, x̄⟩+Ht⟨xt+ − xt+1,xt+ − xt⟩
③
≤ Ht(∥xt+ − xt+1∥∥x̄∥+ ∥xt+ − xt+1∥∥xt+ − xt∥)
④
≤ Ht∥xt+ − xt∥(∥x̄∥+ ∥xt+ − xt∥)
⑤
= ∥rt∥(∥x̄∥+ ∥rt∥

Ht ), (43)

where step ① uses the fact that x̄−xt = (x̄−xt+)+(xt+−xt); step ② uses Inequality (41); step ③ uses the Cauchy-Schwarz
Inequality, step ④ uses Inequality (40); step ⑤ uses ∥xt+ − xt∥ = 1

Ht ∥rt∥.

Finally, we derive from Inequalities (42) and (43):

Ht

2 ∥xt+1 − x̄∥22 − (H
t

2 − Vs

2 )∥xt − x̄∥22
≤ Ht

2 ∥xt+1 − xt∥22 + 1
Ht ∥rt∥22 +Υt + ∥rt∥∥x̄∥

①
≤ 2+1

Ht ∥rt∥22 +Υt + ∥rt∥∥x̄∥,
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where step ① uses ∥xt+1 − xt∥ ≤ 2
Ht ∥rt∥ as shown in Part (a) of this lemma.

C.3. Proof of Theorem 4.6

Proof. Assume constant stepsizes are used with µt = µ̄ for all t ≥ 1.

We define H ≜ A2
s/µ̄+Ms + θ, γ ≜ 1− Vs

H , ∆t
x ≜ ∥xt − x̄∥22, and ∆t

F ≜ [minti=1 F (x
i)]− F (x̄).

First, using Part (c) in Lemma 4.1, we have: ∥rt∥ ≤ LF .

Second, using Part (b) Lemma 4.2, we have the upper bound of Υt that ∀t, Υt ≤ µ̄
2L

2
h −∆t

F .

Third, it holds that Ht = H for all t ≥ 1.

(a) Using the inequality in Part (c) in Lemma 4.5, we have the following recursive formulation:

∆t+1
x ≤ (1− Vs

H )∆t
x + 6

H2 ∥rt∥22 + 2
HΥt + 2

H ∥rt∥ · ∥x̄∥
①
≤ γ∆t

x +
6L2

F

H2 +
µ̄L2

h−2∆t
F

H + 2LF ∥x̄∥
H ,

where step ① uses the definition of γ ≜ 1− Vs

H , ∥rt∥ ≤ LF , and Υt ≤ 1
2 µ̄L

2
h −∆t

F .

(b) Let T ≥ 1 be any integer. Applying Lemma A.2 with Φt = ∆t
x and Λt =

6L2
F

H2 +
µ̄L2

h−2∆t
F

H + 2LF ∥x̄∥
H , we have:

∆T+1
x ≤ γT∆1

x + 1
1−γ · T

max
t=1

(
6L2

F

H2 +
µ̄L2

h−2∆t
F

H + 2LF ∥x̄∥
H

)
①
= γT∆1

x +
6L2

F

VsH
+

µ̄L2
h

Vs
− 2∆T

F

Vs
+ 2LF ∥x̄∥

Vs

②
≤ γT∆1

x +
6L2

F

VsA2
s
µ̄+

L2
h

Vs
µ̄− 2∆T

F

Vs
+ 2LF ∥x̄∥

Vs

③
= 2

Vs

(
K1γ

T +D1µ̄−∆T
F + LF ∥x̄∥

)
, (44)

where step ① uses maxTt=1[−∆t
F ] = −∆T

F since ∆1
F ≥ ∆2

F ≥ ... ≥ ∆T
F ≥ 0 and γ ≜ 1 − Vs

H ; step ② uses H ≜

A2
s/µ̄+Ms + θ ≥ A2

s/µ̄; step ③ uses the definitions of K1 ≜ 1
2Vs∆

1
x and D1 ≜ 3L2

F

A2
s
+ 1

2L
2
h.

We now focus on Inequality (44). Using the fact that ∆T+1
x ≥ 0, we obtain: ∆T

F ≤ K1γ
t +D1µ̄+ LF ∥x̄∥.

Using the fact that ∆T
F ≥ 0, we obtain: ∆T+1

x ≤
(
K1γ

T +D1µ̄+ LF ∥x̄∥
)

2
Vs

.

C.4. Proof of Theorem 4.7

Proof. Assume diminishing stepsizes are used with µt = η
t+t0

for all t ≥ 1, where η =
A2

s

Vs
.

We define Ht ≜ A2
s/µ

t +Ms + θ, ∆t
x ≜ ∥xt − x̄∥22, and ∆t

F ≜ [minti=1 F (x
i)]− F (x̄).

First, using Part (c) in Lemma 4.1, we have: ∥rt∥ ≤ L′
F .

Second, using Lemma 4.2, we have:
∑T
t=1 Υ

t ≤ CΥ (1 + ln(T ))− T∆T
F for any T ≥ 1.

Third, using the definition of Ht and the choice of η =
A2

s

Vs
, we have:

Ht = Vsη/µ
t +Ms + θ = Vs(t+ t0) +Ms + θ, (45)
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(a) We have the following inequalities:

1
2 (H

t+1 − Vs)∆
t+1
x

①
≤ 1

2H
t∆t+1

x

②
≤ 1

2 (H
t − Vs)∆

t
x +

3∥rt∥2
2

Ht +Υt + ∥rt∥∥x̄∥
③
≤ 1

2 (H
t − Vs)∆

t
x +

3(L′
F )2

Vs·t +Υt + L′
F ∥x̄∥, (46)

where step ① uses Ht+1 = Ht + Vs, which can be implied by Equality (45); step ② uses Part (b) in Lemma 4.5; step ③
uses ∥rt∥ ≤ L′

F and Ht ≥ A2
s/µ

t = A2
s(t+ t0)/η ≥ A2

st/η = Vst.

(b) Let T ≥ 1 be any integer. Summing Inequality (46) over t from 1 to T , we obtain:

0 ≤ − 1
2 (H

T+1 − Vs)∆
T+1
x + 1

2 (H
1 − Vs)∆

1
x +

3(L′
F )2

Vs

∑T
t=1

1
t +

∑T
t=1 Υ

t + TL′
F ∥x̄∥

①
≤ −Vs

2 (T + 1)∆T+1
x + H1

2 ∆1
x + [

3(L′
F )2

Vs
+ CΥ](ln(T ) + 1)− T∆T

F + TL′
F ∥x̄∥

②
≤ −Vs

2 (T + 1)∆T+1
x +K2 +D2(ln(T ) + 1)− T∆T

F + TL′
F ∥x̄∥, (47)

where step ① uses HT+1 − Vs = Vs(T + 1 + t0) +Ms + θ − Vs ≥ Vs(T + 1) +Ms + θ ≥ Vs(T + 1), − 1
2Vs∆

1
x ≤ 0,

the fact that
∑T
t=1

1
t ≤ ln(T ) + 1, and the upper bound

∑T
t=1 Υ

t ≤ CΥ (1 + ln(T ))− T∆T
F ; step ② uses the definition of

K2 ≜ H1

2 ∆1
x, and the definition of D2 ≜ 3(L′

F )2

Vs
+ CΥ.

We now focus on Inequality (47). Using the fact that Vs

2 (T+1)∆T+1
x ≥ 0, we obtain: T∆T

F ≤ K2+TL
′
F ∥x̄∥+D2(ln(T )+

1), leading to ∆T
F ≤ K2

T + L′
F ∥x̄∥+D2

ln(T )+1
T .

Using the fact that T∆T
F ≥ 0, we obtain: Vs

2 (T + 1)∆T+1
x ≤ K2 + TL′

F ∥x̄∥ + D2(ln(T ) + 1), leading to ∆T+1
x ≤

( K2

T+1 +D2
ln(T )+1
T+1 + L′

F ∥x̄∥) 2
Vs

.

C.5. Proofs for Lemma 4.8

Proof. We denote Ωkn ≜ {B(i)}
Ck

n
i=1 as all the possible combinations of the index vectors choosing k items from n with

Bi ∈ Nk, ∀i. For any vector x ∈ Rn, we have:∑
B∈Ωk

n
xT(UBU

T
B )z

①
=

∑
B∈Ωk

n
⟨xB, zB⟩

②
= Ckn

k
n ⟨x, z⟩,

where step ① uses UT
Bx = xB and UT

Bz = zB; step ② uses the basic induction that every entry (xi · zi) is present within the
term (

∑
B∈Ωk

n
⟨xB, zB⟩) for a total of (Ckn · kn ) times for all i ∈ [n].

Given B is chosen from Ωkn randomly and uniformly, we have: EB[∥xB∥22] = 1
Ck

n

∑Ck
n

i=1 ∥xBi∥22 = k
n∥x∥

2
2.

C.6. Proof of Theorem 4.10

Proof. We denote rt ≜ ∇xR(xt,yt;µt), Ht = (ATA+ θ1In)/µ
t + M̃+ θ2In, and θ = θ1

µ1 + θ2.

(a) We focus on the x-subproblem. We have from Problem (6) that

Eξt [⟨rt,xt+1 − xt⟩+ 1
2∥x

t+1 − xt∥2Ht ] ≤ Eξt [⟨rt,xt − xt⟩+ 1
2∥x

t − xt∥2Ht ] = 0.

Using Assumption 2.2 and the inherent structure of the function R(xt,yt;µt), we have:

R(xt+1,yt;µt) ≤ R(xt,yt;µt) + ⟨rt,xt+1 − xt⟩+ 1
2∥x

t − xt+1∥2
[ATA/µt+M̃]

.
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We observe that the following equality holds:

R(xt+1,yt;µt)−R(xt,yt;µt) = J (xt+1,yt;µt)− J (xt,yt;µt).

Summing these three inequalities, we obtain:

Eξt [J (xt+1,yt;µt)− J (xt,yt;µt)] ≤ Eξt [−( θ1µt + θ2) ·
1

2
∥xt+1 − xt∥22]

①
≤ Eξt [−θ ·

1

2
∥xt+1 − xt∥22], (48)

where step ① uses θ1
µt + θ2 ≤ θ1

µ1 + θ2 ≜ θ as the sequence {µt}∞t=1 is non-increasing.

We now focus on the y-subproblem. Similar to the proof for Theorem 4.4, we have:

J (xt+1,yt+1;µt)− J (xt+1,yt;µt) ≤ − 1

2µ1
∥yt+1 − yt∥22. (49)

Using the continuity of J (xt,yt;µ) w.r.t. µ as detailed in Part (e) of Lemma 4.1, we obtain:

0 ≤ Eξt [J (xt,yt;µt)− J (xt,yt;µt−1)] ≤ L2
h

2 ( (µ
t−1)2

µt − µt−1) ≜ Ψt. (50)

Summing Inequalities (48), (49), and (50) together, we have:

EξT [
1

2µ1
∥yt+1 − yt∥22 + θ

2∥x
t+1 − xt∥22]

≤ Eξt−1 [J (xt,yt;µt−1)]− Eξt [J (xt+1,yt+1;µt)] + 1
2L

2
h(

(µt−1)2

µt − µt−1)

①
= J t − J t+1 +Ψt, (51)

where step ① uses the definitions of Ψt and J t+1 ≜ Eξt [J (xt+1,yt+1;µt)].

(b) Summing Inequality (51) over t from 1 to T , we have:∑T
t=1

1
2µ1 ∥yt+1 − yt∥22 +

∑T
t=1

θ
2∥x

t+1 − xt∥22

≤ J 1 − J T+1 + [
∑T
t=1 Ψ

t]
①
≤ J 1 − J T+1 + ηL2

h = C < +∞,

where step ① uses
∑T
t=1 Ψ

t <
∑∞
t=1 Ψ

t ≤ ηL2
h, as demonstrated in Part (f) of Lemma 4.1.

(c) As a result, there exists an index t̄ with 1 ≤ t̄ ≤ T such that 1
2µ1 ∥yt̄+1 − yt̄∥22 + θ

2∥x
t̄+1 − xt̄∥22 ≤ C

T , leading to:

∥yt̄+1 − yt̄∥22 + ∥xt̄+1 − xt̄∥22 ≤ 2C

T ·min(θ, (µ1)−1)
. (52)

We define Γx(x,y;µ) ≜ 1
Ck

n

∑
B∈Ωk

n
dist2(xB, argminzB δ(UBzB + UBcxBc) + M̈(UBzB + UBcxBc ,x,y;µ) and

Γy(x,y;µ) ≜ dist2(y, argminy′ J (x,y′;µ)). It is important to note that xt̄+1 and xt̄ differ in at most k coordinates. We
have:

∥xt̄+1 − xt̄∥22 + ∥yt̄+1 − yt̄∥22 ≥ Γx(x
t̄,yt̄;µ) + Γy(x

t̄,yt̄;µ) (53)

for all t̄ ≥ 1 and some sufficiently small µ = µt̄ > 0. Combining Inequalities (52) and (53), we have:

Γx(x
t̄,yt̄;µt̄) + Γy(x

t̄,yt̄;µt̄) ≤ 2C

T ·min(θ, (µ1)−1)
.

Therefore, we conclude that Algorithm 1 finds an ϵ-approximate block-k stationary point of Problem (1) in at most T
iterations in the sense of expectation, where T ≤ ⌈ 2C

ϵmin(θ,(µ1)−1)⌉ = O(ϵ−1).
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C.7. Proof of Lemma 4.12

Proof. For notation simplicity, we denote B = Bt, where t can be inferred from the context.

We define Ht ≜ (ATA+ θ1In)/µ
t + M̃+ θ2In ∈ Rn×n, and Ht

∗ ≜ UBtUT
BtHtUBtUT

Bt ∈ Rn×n.

We define H
t
≜ V + θ + θ1+A

µt , and Ht ≜ V + θ + θ1+A
µt .

(a) Problem (6) in Algorithm 1 is equivalent to solving the following optimization problem:

xt+1
B ∈ arg min

zB∈Rk
W(zB) s. t. ∥zB∥0 + ∥xtBc∥0 ≤ s, (54)

where W(zB) ≜ ⟨zB−xtB, r
t
B⟩+ 1

2 (zB−xtB)
T[Ht]BB(zB−xtB). By the optimality of xt+1

B , we have: W(xt+1
B ) ≤ W(xtB) = 0,

leading to:

⟨xt+1
B − xtB, r

t
B⟩+

1

2
(xt+1

B − xtB)
T[Ht]BB(x

t+1
B − xtB) ≤ 0. (55)

We derive the following inequalities:

1

2
Ht∥xt+1

B − xtB∥22
①
≤ 1

2
(xt+1

B − xtB)
T[Ht]BB(x

t+1
B − xtB)

②
≤ −⟨xt+1

B − xtB, r
t
B⟩

③
= ∥xt+1

B − xtB∥∥rtB∥,

where step ① uses HtIk ⪯ [Ht]BB ⪯ H
t
Ik; step ② uses Inequalities (55); step ③ uses the Cauchy-Schwarz Inequality.

Dividing both sides by ∥xt+1
B − xtB∥, we have: Eξt [∥xt+1

B − xtB∥] ≤ Eξt [ 2
Ht ∥rtB∥]. Using the result in Lemma 4.8, we have:

ZknEξt [∥xt+1 − xt∥] ≤ ZknEξt [ 2
Ht ∥rt∥]. (56)

(b) For notation convenience, we define:

B1 ≜ {i |xt+1
i ̸= 0, i ∈ B}, andB2 ≜ {i |xt+1

i = 0, i ∈ B}.

The solution xt+1
B ∈ Rk is a local minimizer for Problem (54) if and only if [∇W(xt+1

B )]B1 = 0. We have:

0 = rtB1
+ [[Ht

BB]B1B](x
t+1
B − xtB)

①
= rtB1

+ [[Ht
BB]B1B1

](xt+1
B1

− xtB1
) + [[Ht

BB]B1B2
](xt+1

B2
− xtB2

), (57)

where step ① uses B = B1 ∪ B2. We derive the following equalities:

Eξt [⟨[[Ht]BB](x
t+1
B − xtB),x

t+1
B ⟩]

= Eξt [
[
xt+1
B1

− xtB1

xt+1
B2

− xtB2

]T [
[Ht

BB]B1B1
[Ht

BB]B1B2

[Ht
BB]B2B1

[Ht
BB]B2B2

] [
xt+1
B1

xt+1
B2

]
]

①
= Eξt [ ⟨[[Ht

BB]B1B1 ](x
t+1
B1

− xtB1
),xt+1

B1
⟩+ ⟨[[Ht

BB]B1B2 ](x
t+1
B2

− xtB2
),xt+1

B1
⟩] + 0 + 0

②
= Eξt [ ⟨−rtB1

− [[Ht
BB]B1B2

](xt+1
B2

− xtB2
),xt+1

B1
⟩+ ⟨[[Ht

BB]B1B2
](xt+1

B2
− xtB2

),xt+1
B1

⟩]
= Eξt [ ⟨−rtB1

,xt+1
B1

⟩]
③
= Eξt [−⟨rtB1

,xt+1
B1

⟩ − ⟨rtB2
,xt+1

B2
⟩] = E[−⟨rtB,xt+1

B ⟩]
④
= −Zkn⟨rt,xt+1⟩, (58)

where step ① uses the fact that [xt+1]B2 = 0; step ② uses the optimality condition as in Equality (57); step ③ uses
B = [B1;B2] and the fact that [xt+1]B2 = 0; step ④ uses Lemma 4.8 with Zkn = k

n .

(c) We derive the following equalities:

Eξt [
1

2
∥xt+1 − x̄∥2Ht

∗
]− Eξt [

1

2
∥xt − x̄∥2Ht

∗
] + Eξt [

1

2
∥xt+1 − xt∥2Ht

∗
]

①
= Eξt [⟨Ht

∗(x
t+1 − xt),xt+1 − x̄⟩]

②
= Eξt [⟨[[Ht]BB](x

t+1
B − xtB),x

t+1
B − x̄B⟩]

= Eξt [⟨[[Ht]BB](x
t
B − xt+1

B ), x̄B⟩]︸ ︷︷ ︸
Γ1

+Eξt [⟨[[Ht]BB](x
t+1
B − xtB),x

t+1
B ⟩]︸ ︷︷ ︸

Γ2

, (59)
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where step ① uses the Pythagoras relation; step ② uses [Ht
∗]BB = [Ht]BB and xt+1

Bc − xtBc = 0.

We first bound the term Γ1 in Equality (59) using the following inequalities:

Γ1 = Eξt [⟨[[Ht]BB](x
t
B − xt+1

B ), x̄B⟩]
①
≤ Eξt [∥[[Ht]BB](x

t
B − xt+1

B )∥ · ∥x̄B∥]
②
≤ Eξt [H

t∥xtB − xt+1
B ∥ · ∥x̄B∥]

③
= ZknH

t∥xt − xt+1∥ · ∥x̄∥
④
≤ 2Zkn∥rt∥∥x̄∥H

t
/Ht = 2Zkn∥rt∥∥x̄∥κt, (60)

where step ① uses the Cauchy-Schwarz Inequality; step ② uses HtIk ⪯ [Ht]BB ⪯ H
t
Ik; step ③ uses Lemma 4.8 with

Zkn = k
n ; step ④ uses Inequality (56).

We now bound the term Γ2 in Equality (59) using the following inequalities:

Γ2

①
≤ −Zkn⟨rt,xt+1⟩
= Zkn⟨rt, x̄− xt⟩+ Zkn⟨rt,xt − xt+1⟩+ Zkn⟨rt,−x̄⟩
②
≤ Zkn(Υ

t − Vs

2 ∥x̄− xt∥22) + Zkn∥rt∥∥xt − xt+1∥+ Zkn∥rt∥∥x̄∥
③
≤ Zkn(Υ

t − Vs

2 ∥x̄− xt∥22) +
2Zk

n

Ht ∥rt∥22 + Zkn∥rt∥∥x̄∥, (61)

where step ① uses Equality (58); step ② uses Lemma 4.2 that ⟨rt, x̄− xt⟩ ≤ Υt − Vs

2 ∥xt − x̄∥22, and the Cauchy-Schwarz
Inequality; step ③ uses Inequality (56).

In view of Inequalities (59), (60), and (61), we have:

Eξt [ 12∥x
t+1 − x̄∥2Ht

∗
− 1

2∥x
t − x̄∥2Ht

∗
]

≤ −Eξt [ 12∥x
t+1 − xt∥2Ht

∗
] + Γ1 + Γ2

①
≤ 0 + Zkn(Υ

t − Vs

2 ∥x̄− xt∥22) +
2Zk

n

Ht ∥rt∥22 + (1 + 2κt)Zkn∥rt∥∥x̄∥,

where step ① uses −Eξt [ 12∥x
t+1 − xt∥2Ht

∗
] ≤ 0.

C.8. Proof of Lemma 4.11

Proof. We initially establish the subsequent inequality:

a+ b

c+ d
≤ max(

a

c
,
b

d
),∀a ≥ 0, b ≥ 0, c > 0, d > 0. (62)

We consider two cases: (i) ac ≥ b
d . we have: b ≤ ad

c , leading to a+b
c+d ≤ a+ ad

c

c+d = a
c ·

c+d
c+d = a

c . (ii) ac <
b
d . We have: a ≤ bc

d ,

resulting in a+b
c+d ≤

bc
d +b

c+d = b
d · c+dc+d = b

d . Therefore, Inequality (62) holds.

Using the definition of H
t

and Ht, we have:

H
t

Ht
=

A+θ1
µt + V + θ2

A+θ1
µt + V + θ2

①
≤ max(

A + θ1
A + θ1

,
V + θ2
V + θ2

)
②
≤ 1 + ϵ̃,

where step ① uses Inequality (62); step ② uses the fact that A+θ1
A+θ1

≤ 1 + ϵ̃ if θ1 ≥ A−A(1+ϵ̃)
ϵ̃ , and V+θ2

V+θ2
≤ 1 + ϵ̃ if

θ2 ≥ V−V(1+ϵ̃)
ϵ̃ .
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C.9. Proof of Theorem 4.13

Proof. We consider constant stepsizes with µt = µ̄ for all t ≥ 1.

We define H ≜ (ATA+ θ1In)/µ̄+ M̃+ θ2In ∈ Rn×n, and Ht
∗ ≜ UBtUT

BtHUBtUT
Bt ∈ Rn×n.

We let H ≜ A+θ1
µ̄ + V + θ2, and H ≜ A+θ1

µ̄ + V + θ2, ∆t
x ≜ Eξt [∥xt − x̄∥22], ∆t

F ≜ Eξt [(minti=1 F (x
i))− F (x̄)].

First, using Part (c) in Lemma 4.1, we have: ∥rt∥ ≤ LF .

Second, using Part (b) of Lemma 4.2, we have the upper bound of Υt that ∀t, Υt ≤ 1
2 µ̄L

2
h −∆t

F .

Third, with Bt and Bt+1 randomly and uniformly chosen, for any z ∈ Rn, the following holds:

EBt [∥z∥2Ht
∗
] = EBt [zT[Ht

∗]z] = EBt [zTUBtUT
BtHUBtUT

Bt ]z

= EBt+1 [zT[UBt+1UT
Bt+1HUBt+1UT

Bt+1 ]z]

= EBt+1 [∥z∥2
Ht+1

∗
]. (63)

(a) Building upon our prior discussions, we derive the following inequalities:

Eξt+1 [ 12∥x
t+1 − x̄∥2

Ht+1
∗

]

①
= Eξt [ 12∥x

t+1 − x̄∥2Ht
∗
]

②
≤ Eξt [ 12∥x

t − x̄∥2Ht
∗
]− Zkn

Vs

2 ∥xt − x̄∥22 + Zkn{ 2
Ht ∥rt∥22 +Υt + (1 + 2κt)∥rt∥∥x̄∥}

③
≤ Eξt [(1− Vs

H
) · 1

2∥x
t − x̄∥2Ht

∗
] + Zkn{ 2

Ht (LF )
2 +

µ̄L2
h

2 −∆t
F + (3 + 2ϵ̃)LF ∥x̄∥}, (64)

where step ① uses Equality (63) with z = xt+1 − x̄, leading to Eξt [∥xt+1 − x̄∥2Ht
∗
] = Eξt+1 [∥xt+1 − x̄∥2

Ht+1
∗

]; step ② uses

the inequality in Part (b) of Lemma (4.12); step ③ uses Zkn
Vs

2 ∥xt − x̄∥22 ≥ Eξt [ Vs

2H
∥xt − x̄∥2Ht

∗
].

(b) Based on (64), we apply Lemma A.2 with the following definitions:

γ ≜ 1− Vs

H
, Φt ≜ Eξt [ 12∥x

t − x̄∥2Ht
∗
], Λt ≜ Zkn{ 2

Ht (LF )
2 + µ̄

2L
2
h −∆t

F + (3 + 2ϵ̃)LF ∥x̄∥}. (65)

This results in the subsequent inequality for any integer T ≥ 1:

EξT+1 [ 12∥x
T+1 − x̄∥2Ht

∗
]

≤ γTEξ1 [
1

2
∥x1 − x̄∥2H1

∗
] +

Zk
n

1−γ
T

max
t=1

{ 2
H (LF )

2 + µ̄
2L

2
h −∆t

F + (3 + 2ϵ̃)LF ∥x̄∥} (66)

We further derive the following inequalities:

EξT+1 [ 12∥x
T+1 − x̄∥22]

①
≤ 1

HZk
n
E[ 12∥x

T+1 − x̄∥2
HT+1

∗
]

②
≤ γT

HZk
n
· Eξ1 [ 12∥x

1 − x̄∥2H1
∗
] + 1

H(1−γ)
T

max
t=1

{ 2(LF )2

Ht + 1
2 µ̄L

2
h −∆t

F + (3 + 2ϵ̃)LF ∥x̄∥}

③
≤ γT H

H · Eξ1 [ 12∥x
1 − x̄∥22] + 1

H(1−γ) ·
T

max
t=1

{ 2(LF )2

Ht + 1
2 µ̄L

2
h −∆t

F + (3 + 2ϵ̃)LF ∥x̄∥}

④
≤ γT · (1 + ϵ̃) · Eξ1 [ 12∥x

1 − x̄∥22] + 1
Vs
{2(LF )2 · µ̄

A+θ1
+ 1

2 µ̄L
2
h −∆T

F + (3 + 2ϵ̃)LF ∥x̄∥}
⑤
= 1

Vs
{K3γ

T +D3µ̄−∆T
F + (3 + 2ϵ̃)LF ∥x̄∥}, (67)

where step ① uses HZknEξT+1 [∥xT+1 − x̄∥22] ≤ EξT+1 [∥xT+1 − x̄∥2
HT+1

∗
]; step ② uses Inequality (66); step ③ uses

Eξ1 [∥x1 − x̄∥2H1
∗
] ≤ ZknHEξ1 [∥x1 − x̄∥22]; step ④ uses H

H = κ ≤ 1+ ϵ̃, γ ≜ 1− Vs

H
, and H ≜ A+θ1

µ̄ +V+ θ2 ≥ A+θ1
µ̄ ; step

⑤ uses K3 ≜ Eξ1 [(1 + ϵ̃) · Vs

2 ∥x1 − x̄∥22] =
Vs(1+ϵ̃)

2 ∆1
x and D3 ≜ 2(LF )2

θ1+A
+

L2
h

2 .

25



Nonsmooth Sparsity Constrained Optimization

We now focus on Inequality (67). Using the fact that EξT+1 [ 12∥x
T+1 − x̄∥22] ≥ 0, we obtain: ∆T

F ≤ K3γ
T +D3µ̄+ (3 +

2ϵ̃)LF ∥x̄∥.

Using the fact that ∆T
F ≥ 0, we have: ∆T+1

x ≤ 2
Vs

(
K3γ

T +D3µ̄+ (3 + 2ϵ̃)LF ∥x̄∥
)
.

C.10. Proof of Theorem 4.14

To finish the proof of this theorem, we first provide the following useful lemma.

Lemma C.1. Assume µt = η
t+t0

with η = A+θ1
Vs

. We have:

Eξt+1 [ 12∥x
t+1 − x̄∥2

Ht+1
∗

] ≤ Eξt [ 12∥x
t+1 − x̄∥2Ht

∗
] +

VsZ
k
n

2 ∥xt+1 − x̄∥22.

Proof. We denote Ht
∗ ≜ UBtUT

BtHtUBtUT
Bt ∈ Rn×n, where Ht ≜ (ATA+ θ1In)/µ

t + M̃+ θ2In ∈ Rn×n.

We have the following inequalities for all z ≜ xt+1 − x̄ ∈ Rn:

Eξt+1 [∥z∥2
Ht+1

∗
]− Eξt [∥z∥2Ht

∗
]

①
= Eξt+1 [zT(UBt+1UT

Bt+1Ht+1UBt+1UT
Bt+1)z]− Eξt [zT(UBtUT

BtHtUBtUT
Bt)z]

②
= Eξt [zT(UBtUT

BtHt+1UBtUT
Bt)z]− Eξt [zT(UBtUT

BtHtUBtUT
Bt)z]

= Eξt [zT(UBtUT
Bt [Ht+1 −Ht]UBtUT

Bt)z]

③
= ( 1

µt+1 − 1
µt )Eξt [zT(UBt [ATA+ θ1In]BtBtUT

Bt)z]

④
≤ 1

ηEξt [z
TUBt

(
AIk + θ1Ik

)
UT
Btz] = A+θ1

η EBt [zTUBtUT
Btz]

⑤
= Zkn

A+θ1
η ∥z∥22

⑥
= ZknVs∥z∥22,

where step ① uses the definition of Ht
∗; step ② uses the fact that both Bt and Bt+1 are choosen randomly and uniformly;

step ③ uses the choice µt = η
t+t0

that 1
µt+1 − 1

µt = 1
η · ((t+ t0 + 1)− (t+ t0)) =

1
η ; step ④ uses [ATA]BtBt ⪯ AIk; step

⑤ uses Lemma 4.8; step ⑥ uses the choice η = V+θ1
Vs

.

We now prove the proof of this theorem.

Proof. We consider diminishing stepsizes with µt = η
t+t0

for all t ≥ 1, where η = A+θ1
Vs

.

We define Ht ≜ (ATA+ θ1In)/µ
t + M̃+ θ2In ∈ Rn×n, Ht

∗ ≜ UBtUT
BtHtUBtUT

Bt ∈ Rn×n.

We let Ht ≜ A+θ1
µt + V + θ2, and H

t
≜ A+θ1

µt + V + θ2.

We let ∆t
x ≜ Eξt [∥xt − x̄∥22], ∆t

F ≜ Eξt [(minti=1 F (x
i))− F (x̄)], and Φt ≜ Eξt [ 12∥x

t − x̄∥2Ht
∗
]− ZknVs

1
2∥x

t − x̄∥22.

First, using Part (c) in Lemma 4.1, we have: ∥rt∥ ≤ L′
F .

Second, using Lemma 4.2, we have:
∑T
t=1 Υ

t ≤ CΥ (1 + ln(T ))− T∆T
F for any T ≥ 1.

Third, using the definition of Ht, we have:

Ht ≜
A + θ1
µt

+ V + θ2 ≥ A + θ1
µt

+ Vs =
(A + θ1)(t+ t0)

η
+ Vs = Vs(t+ t0) + Vs ≥ Vs(t+ 1). (68)
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Fourth, we establish the upper bound for (−ΦT+1 +Φ1) using the following inequalities:

−ΦT+1 +Φ1

= −{EξT+1 [ 12∥x
T+1 − x̄∥2

HT+1
∗

]− Zkn
Vs

2 ∥xT+1 − x̄∥22}

+{Eξ1 [ 12∥x
1 − x̄∥2H1

∗
]− Zkn

Vs

2 ∥x1 − x̄∥22}
①
≤ −HT+1EξT+1 [ 12∥x

T+1 − x̄∥22] + Zkn
Vs

2 ∥xT+1 − x̄∥22 + H
1Eξ1 [ 12∥x

1 − x̄∥22]
②
≤ −Zkn[Vs(T + 2)− Vs] · 1

2∥x
T+1 − x̄∥22 + ZknH

1 1
2∆

1
x

③
≤ Zkn{−(T + 1)Vs

2 ∆T+1
x +K4}, (69)

where step ① uses HtEξt [ 12∥x
t − x̄∥22] ≤ Eξt [ 12∥x

t − x̄∥2Ht
∗
] ≤ H

tEξt [ 12∥x
t − x̄∥22] for all t ≥ 1; step ② uses

EξT+1 [ 12∥x
T+1 − x̄∥22] = Zkn

1
2∥x

T+1 − x̄∥22 and HT+1 ≥ (T + 2)Vs

2 ∥xT+1 − x̄∥22; step ③ uses the definition of

K4 ≜ 1
2H

1
∆1

x.

(a) Using the inequality in Part (c) of Lemma 4.12, we have:

Eξt [ 12∥x
t+1 − x̄∥2Ht

∗
]− Eξt [ 12∥x

t − x̄∥2Ht
∗
] + Zkn

Vs

2 ∥xt − x̄∥22
≤ ZknΥ

t + (2/Ht)Zkn∥rt∥22 + (1 + 2κt)Zkn∥rt∥∥x̄∥
①
≤ ZknΥ

t +
2Zk

n(L
′
F )2

Vst
+ (3 + 2ϵ̃)ZknL

′
F ∥x̄∥, (70)

where step ① uses Ht ≥ Vs(t+ 1) > Vst as shown in Inequality (68), ∥rt∥ ≤ L′
F , and κt ≤ 1 + ϵ̃.

Using the results in Lemma C.1, we have:

Eξt+1 [ 12∥x
t+1 − x̄∥2

Ht+1
∗

]− Eξt [ 12∥x
t+1 − x̄∥2Ht

∗
] ≤ Zkn

Vs

2 ∥xt+1 − x̄∥22. (71)

We define Φt ≜ Eξt [ 12∥x
t − x̄∥2Ht

∗
]− Zkn

Vs

2 ∥xt − x̄∥22. Adding Inequalities (70) and (71) together, we have:

Φt+1 − Φt ≤ Zkn(
2(L′

F )2

Vs
· 1
t +Υt + (3 + 2ϵ̃)L′

F ∥x̄∥). (72)

(b) Let T ≥ 1 be any integer. Summing Inequality (72) over t from 1 to T , we have:

0 ≤ −ΦT+1 +Φ1 + Zkn{(
∑T
t=1

1
t ) ·

2(L′
F )2

Vs
+

∑T
t=1 Υ

t + T (3 + 2ϵ̃)L′
F ∥x̄∥}

①
≤ −ΦT+1 +Φ1 + Zkn{(ln(T ) + 1)(

2(L′
F )2

Vs
+ CΥ)− T∆T

F + T (3 + 2ϵ̃)L′
F ∥x̄∥}

②
= −ΦT+1 +Φ1 + Zkn{(ln(T ) + 1)D4 − T∆T

F + T (3 + 2ϵ̃)L′
F ∥x̄∥}

③
≤ Zkn{−(T + 1)Vs

2 ∆T+1
x +K4 +D4(1 + ln(T ))− T∆T

F + T (3 + 2ϵ̃)L′
F ∥x̄∥)}, (73)

where step ① uses
∑T
t+1

1
t ≤ ln(T ) + 1 and the upper bound for

∑T
t=1 Υ

t ≤ CΥ (1 + ln(T )) − T∆T
F ; step ② uses the

definition of D4 ≜ 2(L′
F )2

Vs
+ CΥ; step ③ uses Inequality (69).

We now focus on Inequality (73). Using the fact that ∆T+1
x ≥ 0, we obtain: ∆T

F ≤ K4

T + D4·(1+ln(T ))
T + (3 + 2ϵ̃)L′

F ∥x̄∥.

Using the fact that ∆T
F ≥ 0, we have: ∆T+1

x ≤
(
K4

T+1 + D4·(1+ln(T ))
T+1 + (3 + 2ϵ̃)L′

F ∥x̄∥
)

2
Vs

.

D. Experiments
This section demonstrates the effectiveness and efficiency of Algorithm 1 on two nonsmooth sparsity constrained optimization
tasks, namely the sparsity constrained ℓ1 regression and sparsity constrained ℓ∞ regression. Given an arbitrary design matrix
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A ∈ Rm×n and an observation vector b ∈ Rm, we aim to solve the following optimization problems:

min
x

λ

2
∥x∥22 + ∥Ax− b∥1, s. t. ∥x∥0 ≤ s,

and min
x

λ

2
∥x∥22 + ∥Ax− b∥∞, s. t. ∥x∥0 ≤ s,

where s and λ are given parameters.

▶ Datasets. Following (Yuan et al., 2020a), we examine four types of datasets for the design matrix A ∈ Rm×n. (i)
‘random-m-n’: The matrix of size m × n is generated by sampling from a standard Gaussian distribution. (ii) ‘e2006-
m-n’: We select m examples and n dimensions from the original real-world dataset ‘e2006’, available for download at:
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets. This dataset contains 16087 examples
and 150360 dimensions. (iii) ‘random-m-n-C’: We create a matrix V(A) ∈ Rm×n to verify the robustness of the algorithms.
Here, V(A) is a noisy version of A ∈ Rm×n, with 2% of entries in A corrupted by scaling the original values by 100 times
(Yuan et al., 2020a). (iv) ‘e2006-m-n-C’: We employ the same method to generate corrupted real-world data as used in
the ‘random-m-n-C’ dataset. We generate the observation vector b in Rm as follows: a sparse signal x̄ in Rn is created by
randomly selecting a support set of size 100, with values sampled from a standard Gaussian distribution. The observation
vector b is then computed as b = Ax̄+ 10× randn(m, 1).

▶ Compared Methods. We compare SPGM-IHT and SPGM-BCD with 5 state-of-the-art nonsmooth sparsity constrained
optimization algorithms: (i) Projective Subgradient Descent (PSGD) (Liu et al., 2019), (ii) Alternating Direction Method
of Mutipliers based on IHT (ADMM-IHT) (He & Yuan, 2012), (iii) Dual Iterative Hard Thresholding(DIHT)(Yuan et al.,
2020b), (iv) Convex ℓ1 Approximation Method (CVX-ℓ1) (Candes & Tao, 2005), and (v) Nonconvex ℓp Approximation
Method (NCVX-ℓp) (Xu et al., 2012). For CVX-ℓ1 and NCVX-ℓp, we use standard linearized ADMM to solve nonsmooth
ℓ1 norm and ℓ1/2 norm regularized problems minx F (x) + σ∥x∥pp with p ∈ {1, 12}, sweeping the regularization parameter
σ over a range or values (σ = {2−9, 2−7, ..., 29}). We run these two algorithms for 10 parameters, selecting the solution
that leads to the smallest objective after hard thresholding projection and re-optimization over the support set. We employ an
efficient closed-form solver to compute the ℓp norm proximal operator (Xu et al., 2012).

▶ Experimental Settings. We update the smoothing parameter µ every K = 10 iterations by halving it: µ⇐ µ× 1
2 . For

SPGM-BCD, the random strategy ensures a strong optimality guarantee by maintaining the block-k stationary condition.
However, the greedy strategy often yields faster convergence in practice. Therefore, we combine both methods, selecting 8
coordinates using the random strategy and 2 coordinates using the greedy strategy (Yuan et al., 2020a). We keep a record
of the relative changes of the objective function values by dt = |F (xt)− F (xt+1)|/(1 + |F (xt)|). We let SPGM run up
to T iterations and stop it at iteration t < T if mean([dt−min(t,υ)+1, dt−min(t,υ)+2, ..., dt]) ≤ ϵ. We use the default value
(θ, ϵ, υ, T ) = (10−3, 10−5, 100, 1000) for SPGM. All code was implemented in Matlab on an Intel 3.20GHz CPU with 8
GB RAM. We assess the quality of the solution by comparing the objective values across different methods. Recognizing
that the optimal solution is expected to be sparse, we initialize the solutions for all methods as 10−3 × randn(n, 1) and
project them to feasible solutions. We vary s = {5, 10, 20, ..., 80, 90} for different datasets and present the average results
based on 5 random initial points.

▶ Computational Effectiveness. We demonstrate the computational effectiveness of SPGM-IHT and SPGM-BCD by
comparing them to a set of methods {PSGD-IHT, ADMM-IHT, DIHT, CVX-ℓ1, NCVX-ℓp}. Several observations can
be made from Figure 1 and Figure 2. (i) DIHT achieves comparable results with SPGM-BCD on random-256-1024 and
random-256-2048 in the ℓ1 regression. (ii) CVX-ℓ1 and NCVX-ℓp exhibit similar performance, generally outperforming
others methods except SPGM-BCD. They achieve this by solving the relaxation problem ten times and fine-tuning the
hyperparameter σ to obtain k-sparsity solutions. (iii) PSGD-IHT generally yields worse results in our experiments. (iv)
SPGM-IHT performs similarly to ADMM-IHT. (v) SPGM-BCD significantly outperforms most methods due to its ability
to find stronger stationary points, which aligns with our theoretical results.

▶ Computational Efficiency. We present runtime comparisons for all the methods on various datasets for solving the
sparsity constrained ℓ1 regression problem. Table 2 displays the average CPU times from three runs. (i) The convex and
nonconvex relaxation methods are slightly slower than IHT-style methods because they need to run ten times to find the best
regularization parameter. (ii) The computational efficiency of SPGM-IHT is comparable to that of other IHT-style methods
since it is itself another IHT-style method. (iii) SPGM-DEC is slower than the other methods and typically takes about 20
seconds to converge in all instances while achieving better accuracy. (iv) Overall, the efficiency of both SPGM-DEC and
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SPGM-IHT is on par with existing methods. This is expected since they are block coordinate descent algorithms.
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(b) random-256-2048
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(d) e2006-5000-2048
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(e) random-256-1024
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(f) random-256-2048
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(g) e2006-5000-1024
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(h) e2006-5000-2048

Figure 1: Experimental results on sparsity constrained ℓ1 regression problems on different datasets with varying the sparsity
of the solution.
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(a) random-256-1024
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(b) random-256-2048
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(c) e2006-5000-1024
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(d) e2006-5000-2048
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(e) random-256-1024
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(f) random-256-2048
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(g) e2006-5000-1024
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Figure 2: Experimental results on sparsity constrained ℓ∞ regression problems on different datasets with varying the sparsity
of the solution.

PSGD-IHT ADMM-IHT DIHT CVX-ℓ1 NCVX-ℓp SPGM-IHT SPGM-BCD
random-256-1024 1± 1 2± 3 1± 2 4± 1 2± 1 2± 1 14± 3
random-256-2048 1± 1 2± 1 3± 2 3± 1 2± 1 2± 1 15± 3
e2006-5000-1024 4± 1 2± 1 2± 1 5± 1 4± 1 2± 1 21± 5
e2006-5000-2048 5± 1 3± 2 3± 3 5± 2 4± 1 2± 1 22± 5

Table 2: Comparisons of average times (in seconds) of all the methods on different datasets.
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