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Abstract

Efficient optimization is essential for training large language models. Although
intra-layer selective updates have been explored, a general mechanism that enables
fine-grained control while ensuring convergence guarantees is still lacking. To
bridge this gap, we propose MGUP, a novel mechanism for selective updates.
MGUP augments standard momentum-based optimizers by applying larger step-
sizes to a selected fixed proportion of parameters in each iteration, while applying
smaller, non-zero step-sizes to the rest. As a nearly plug-and-play module, MGUP
seamlessly integrates with optimizers such as AdamW, Lion, and Muon. This yields
powerful variants such as MGUP-AdamW, MGUP-Lion, and MGUP-Muon.
Under standard assumptions, we provide theoretical convergence guarantees for
MGUP-AdamW (without weight decay) in stochastic optimization. Extensive
experiments across diverse tasks, including MAE pretraining, LLM pretraining, and
downstream fine-tuning, demonstrate that our MGUP-enhanced optimizers achieve
superior or more stable performance compared to their original base optimizers.
We offer a principled, versatile, and theoretically grounded strategy for efficient
intra-layer selective updates, accelerating and stabilizing the training of large-scale
models. The code is publicly available at https://github.com/MaeChd/MGUP.

1 Introduction

Recent studies reveal that learning during Large Language Model (LLM) training exhibits low-rank
properties, suggesting that learning predominantly occurs in a low-dimensional space [1, 2]. This
observation has catalyzed the development of methods such as Galore [3] and LDAdam [4], which
use gradient low-rank decomposition to achieve performance comparable to full-rank updates while
reducing memory consumption. Although low-rank properties do not directly imply sparsity, the
insight that optimization occurs in a low-dimensional space provides a crucial foundation for selective
parameter updates. This principle is exemplified by SIFT [5], which achieves efficient adaptation
through gradient-based sparse parameter updates, leveraging the low intrinsic dimensionality and
sparse gradient characteristics inherent in LLMs. Building on this foundation, several innovative
layer-wise selective update methods have emerged, including AutoFreeze [6], LOMO [7], LISA [8],
and BAdam [9]. By strategically freezing certain layers while updating others, these methods achieve
performance comparable to, or even surpassing, that of full-parameter updates.

While layer-wise selective updates show promise, finer-grained parameter selection remains under-
explored. Although SIFT [5] investigates sparse intra-layer updates, a systematic methodology for
identifying the most critical parameters within each layer is still lacking. This research gap motivates
the development of novel intra-layer sparse update strategies.
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Recently, Liang et al. [10] propose Cautious Optimizers, a novel intra-layer sparse update strategy.
This approach selectively updates only parameters where momentum and gradient are aligned (i.e.,
I(mt ⊙ gt > 0)), enabling larger updates for aligned directions while skipping misaligned ones.
Conceptually, it extends earlier adaptive optimizers like AdaBelief [11], which adjusts step sizes
using (mt − gt)

2, but introduces parameter selection based on gradient-momentum alignment.

However, both methods have notable limitations. AdaBelief’s update mechanism relies heavily on
Adam’s second-moment estimation, which restricts its applicability to optimizers that do not compute
second moments (e.g., Lion [12] or Muon [13]). Furthermore, Cautious Optimizers lack rigorous
theoretical convergence guarantees in a stochastic setting. Although the strategy provides theoretical
insights in the deterministic case, its convergence properties under stochastic conditions remain an
open problem.

Within the stochastic optimization setting, can the concept of intra-layer sparsity in updates, based
on momentum-gradient direction consistency, truly serve as a plug-and-play mechanism?

If so, what are the boundaries of its effectiveness? If not, what are the underlying reasons?

We explore this issue in detail in the theoretical analysis presented in Section 4. Specifically,
we demonstrate that for Adam variants incorporating a mask, simply setting the update step to
zero for parameters where momentum and gradient directions are misaligned significantly impacts
the convergence properties of stochastic optimization. This motivates rethinking how to perform
selective parameter updates more effectively in stochastic optimization settings to maintain favorable
convergence properties. For example, without guided parameter selection, certain extreme cases
can occur: (i) only a small fraction of parameters receive substantial updates (potentially leading
to unstable training), or (ii) the updates for the vast majority of parameters are overly suppressed
(potentially resulting in slow training). Therefore, we propose that a promising policy involves not
only considering the alignment between momentum and gradient direction but also regulating the
proportion of parameters receiving substantial versus minor updates, to strike a balance between
training efficiency and stability.

Motivated by our theoretical analysis and resulting design considerations, we introduce a novel
selective update method: MGUP (Momentum-Gradient alignment Update Policy). MGUP updates
parameters selectively and differentially by sorting the values of the element-wise product mt ⊙ gt.
Specifically, the top K parameters ranked by mt ⊙ gt receive a scaled step size α · ηt (α > 1),
while the rest receive γ · ηt (γ < 1), where ηt is the base step size from the original optimizer.
MGUP is inspired by the cautious update strategy, refining it in line with the principles of AdaBelief
and Cautious Optimizers by dynamically adjusting update strength based on momentum-gradient
alignment.

Our contributions are summarized as follows:

• We develop a novel selective parameter update mechanism, MGUP, which assigns larger
step sizes to a subset of parameters and smaller ones to the rest. As a plug-and-play
mechanism, MGUP can be integrated into momentum-based optimizers such as AdamW,
Lion, and Muon, yielding variants we refer to as MGUP-AdamW, MGUP-Lion, and
MGUP-Muon.

• We establish the convergence of the Adam optimizer with the MGUP mechanism in the
stochastic setting, providing theoretical guarantees for its reliability.

• We validate the proposed MGUP optimizers through key experiments, including: MAE
pretraining of ViT-27M on CIFAR-10; autoregressive pretraining of LLaMA2-71M and
Qwen2.5-150M on Wikitext-103; and fine-tuning of RoBERTa-base on GLUE and LLaMA2-
7B for GSM-8K. These results demonstrate the robustness and versatility of MGUP across
diverse models and tasks.

2 Related Work

In this section, we review the basic principles of stochastic optimization methods relevant to the
momentum-gradient approach. We consider minimizing the objective function as follows:

min
x

f(x), where f(x) = Eξ∼D[f(x; ξ)]. (1)
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For problem (1), let f : Rd → R be a function where x ∈ Rd and ξ represents a random vector,
such as a training data point, sampled from an unknown data distribution D. We assume that f is
differentiable and possibly nonconvex.

In the context of solving problem (1), momentum-based methods are foundational in large-scale
machine learning optimization, accumulating past gradient information to accelerate convergence
and navigate complex loss landscapes. The standard momentum update, an exponentially weighted
moving average (EWMA) of gradients, is:

mt = β1mt−1 + (1− β1)gt,

where mt is the momentum, gt is the current stochastic gradient, and β1 is the decay factor. This
technique smooths gradient estimates, empirically and theoretically accelerating convergence and
enhancing training stability [14, 15, 16, 17].

While standard momentum is a robust baseline, research has sought to improve it, primarily through:
(i) reducing stochastic gradient estimate variance and (ii) adapting learning based on momentum and
gradient characteristics.

Variance reduction techniques, such as SPIDER [18], STORM [19], SUPER-ADAM [20], and
MARS [21], operate by substituting the original stochastic gradient gt with a gradient estimator
g′
t that exhibits lower variance. This refined estimator is then used in the momentum update:

mt = βmt−1 + (1− β)g′
t. While these methods theoretically accelerate convergence, they often

necessitate additional computation or storage (e.g., storing past gradients). In contrast, MGUP adopts
a distinct strategy, focusing on adaptively adjusting the update magnitude based on the characteristics
of momentum and the current stochastic gradient, rather than directly altering the variance of the
gradient estimation.

Another significant method involves adapting the optimization step based on the perceived reliability
or characteristics of the momentum estimate. The intuition guiding this class of methods can be
summarized as:

Increase step size for trustworthy momentum; Decrease step size for untrustworthy momentum.

This adaptation is often implemented by modulating the momentum vector, which can be represented
generally as:

xt+1 = xt − ηtmt ⊙ ϕt, (2)
where ϕt is a scaling factor, often applied element-wise , determined by gradient statistics.

Early adaptive methods, like Adagrad [22], introduced per-parameter learning rates by accumulating
squared gradients. The widely adopted Adam optimizer [23] builds on this by using EWMAs for
both the first moment mt and the second moment vt of the gradients:

vt = β2vt−1 + (1− β2)g
2
t .

The update step is then element-wise scaled by 1/
√
v̂t + ϵ, with v̂t being a bias-corrected vt.

This enables Adam to adapt the learning rate per parameter based on historical gradient magnitudes.
Subsequent research delved into various scaling factors, frequently investigating the interplay between
the current gradient gt and the accumulated momentum mt. The AdaBelief optimizer [11] modifies
Adam’s second moment by using the squared difference between momentum and the current gradient,
(mt − gt)

2, instead of the raw squared gradient g2
t . The update rule for the second moment vt is as

follows, with the initial condition v0 = 0:

vt = β2vt−1 + (1− β2)(mt − gt)
2 = (1− β2)

t∑
i=1

βt−i
2 (mi − gi)

2.

The term (mt − gt)
2 measures "belief" in the current gradient by its consistency with momentum.

Significant deviation increases the corresponding element in vt, reducing that parameter’s effective
step size. This mechanism aims to merge Adam’s rapid convergence with SGD’s generalization. If
mt,i and gt,i have different signs, (mt,i − gt,i)

2 is typically larger than g2
t,i (for similar magnitudes),

increasing vt,i and adaptively decreasing the step size. Meanwhile, a more direct approach to
leveraging the sign consistency between momentum and gradient is taken by the Cautious Optimizers
[10]. It employs an element-wise mask φt to selectively apply momentum updates:

φt = α · I(mt ⊙ gt > 0),

xt+1 = xt − ηtmt ⊙ φt.
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Here, I(·) is the indicator function. If mt,i and gt,i signs align, the momentum mt,i may be scaled
by α > 1; otherwise, the update for that component might be nullified. This "Cautious Updating"
strategy aims to prevent updates from potentially conflicting gradient information.

However, these advanced adaptive methods have notable limitations. AdaBelief’s reliance on
second-moment estimation restricts its applicability primarily to Adam-style optimizers, rendering
it incompatible with newer methods like Lion [12] and Muon [13] that perform well without this
component. The Cautious Optimizer, while more broadly applicable, lacks formal stochastic con-
vergence guarantees. As we analyze in Section 4, its binary masking mechanism can aggressively
discard gradient information. This behavior may slow convergence, especially in scenarios where the
signs of the momentum and gradient align infrequently. Furthermore, we provide a counterexample
in Appendix A to demonstrate that Cautious Adam exhibits non-convergent behavior, highlighting a
critical flaw in its design.

f(x)

xoptx

t tm  I

1 1t tm   I

1tx  tx 1tx 

f(x)

xoptx 1tx tx 1tx  2tx 
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Figure 1: The key idea of MGUP involves adaptively adjusting the learning rate by leveraging the
element-wise product of the stochastic gradient and momentum.

3 The Proposed Method

This section introduces the MGUP (Momentum-Gradient alignment Update Policy) mechanism
for solving Problem (1). Our motivation is to address limitations observed in methods such as
AdaBelief and Cautious Optimizers. Figure 1 provides a conceptual illustration of the MGUP idea.
The pseudocode for a specific implementation variant, MGUP-AdamW, is detailed in Algorithm 1.
The core steps of MGUP are as follows; see Algorithm 2 for the implementation.

▶ Step 1 : Compute Alignment Scores. For each parameter i, calculate its alignment score st,i =
mt,i · gt,i.

▶ Step 2: Top K Selection. Sort all parameters based on their alignment scores st,i in decreasing
order, and identify the index set ItopK of the top K entries, where K = ⌊τ · d⌋ with τ ∈ (0, 1).

▶ Step 3: Differentiated Update. Adjust the step size ηt,i computed by the original optimizer as
follows: (i) If parameter i ∈ ItopK, its effective step size is set to α · ηt,i. (ii) If parameter i /∈ ItopK,
its effective step size is set to γ · ηt,i. Here, α > 1 represents the amplification factor, while γ denotes
the decay factor. In practice, α and γ can be set to 1/τ and τ , respectively, where τ ∈ (0, 1).

An adjustment based on sign judgment is a concept from prior work (e.g., Cautious Optimizers[10]).
Similarly, we can define the Cautious-MGUP mechanism as:

ϕt,i =

{
1/τ if mt,i · gt,i > 0

τ if mt,i · gt,i ≤ 0.
(3)

In contrast, MGUP offers a more flexible and robust adjustment strategy by introducing the top K
selection and sorting based on the actual product magnitude.
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It is important to clarify the selection basis. While intuitively related to momentum-gradient con-
sistency, MGUP-AdamW’s implementation in Algorithm 1 can use the product of the final update
vector ut (typically mt/(

√
vt + ϵ)) and the gradient gt, not just momentum mt and gradient gt.

This is because, in specific contexts, especially when training large language models, the difference
between the selections based on ut,i ·gt,i and mt,i ·gt,i may be negligible. Research [24, 25, 26, 27]
suggests that within certain model layers, the second moment vt’s adaptive scaling might be relatively
uniform. This implies an approximation where (m1/

√
v1, . . . ,md/

√
vd) ≈ (m1/c, . . . ,md/c)

for some constant c. Consequently, the sign and relative magnitude ordering from ut,i · gt,i would
closely mirror that from mt,i ·gt,i. Thus, although MGUP-AdamW uses the update-gradient product
formally, it can be intuitively seen as a fixed-ratio selection strategy guided by momentum-gradient
alignment.

The MGUP selective mechanism is also applied to Lion [12] and Muon [13], with the pseudocode
for MGUP-Lion and MGUP-Muon provided in the Appendix H.
Remark 3.1. For optimizers with simpler update structures, such as Lion, Muon, or standard
SGD+Momentum, mt,i · gt,i is directly used as the alignment score.

Algorithm 1 MGUP-AdamW
Input: Learning rate η > 0, initial solu-
tion x0 ∈ Rd, momentum factors β1, β2 ∈
[0, 1), weight decay coefficient λ, stability
term ϵ > 0, ratio τ ∈ (0, 1).
Set m0 = 0, v0 = 0.
for t = 1 to T do

Compute the stochastic gradient gt =
∇f(xt; ξt)
mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)(gt ⊙ gt)

ut =
mt√
vt+ϵ

, ηt = η

√
1−βt

2

1−βt
1

ϕt = MGUP(ut ⊙ gt)
xt = (1− ηtλ)xt

xt+1 = xt − ηtϕt ⊙ ut

end for

Algorithm 2 MGUP
Input: Alignment score vector s = ut ⊙
gt ∈ Rd, ratio τ ∈ (0, 1).
(S1) Let ItopK be the index set of the largest
K elements of s with K = ⌊τ · d⌋.

(S2) Set ϕt,i =

{
1/τ, i ∈ ItopK;
τ, else.

return ϕt

Remark 3.2. MGUP method can be easily
plugged into existing momentum-based opti-
mization algorithms in a plug-and-play man-
ner.

4 Convergence Analysis

In this section, we rigorously establish both the expected convergence and high-probability conver-
gence guarantees for Algorithm 1 in the stochastic setting.

For the convergence analysis of Algorithm 1, we make the following assumptions:
Assumption 4.1. The function f is bounded from below. There exists f∗ > −∞ such that f(x) ≥ f∗,
for all x ∈ Rd.
Assumption 4.2. The function f is L-smooth: ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥.

4.1 Expectation Convergence

Assumption 4.3. The variance of unbiased stochastic gradient is finite. Specifically, there exists
a constant σ > 0 such that for all x ∈ Rd, the following holds: E[∇f(x; ξ)] = ∇f(x) and
E∥∇f(x; ξ)−∇f(x)∥22 ≤ σ2. Additionally, we assume that f(x; ξ) is M-Lipschitz for all x.

These assumptions are quite common [28, 29, 20, 30, 31, 32, 33]. Theorem 4.1 states our general
non-convex convergence result.

Theorem 4.1. Let β1,t = 1− t−1/2, 0 < β2 ≤ 1, and ηt = ηt−1/2/ρ. We define the following: ε1 =
σ2

L , ε2 = 1
ρ

(
u2
min

2u3
max

− 5L
ρu2

min

)
, and ε3 = 1

2L . Here, umin = ϵ
η and umax = M

ηγ for some constant
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learning rate η and any ϵ > 0. Let ρ >
10Lu3

max

u4
min

so that ε2 > 0, and define εmin = min(ε1, ε2, ε3).
Under Assumptions 4.1, 4.3, and 4.2, for Algorithm 1 (without weight decay), it holds that:

1

T

T∑
t=1

E∥∇f(xt+1)∥22 ≤ Ĝ.

where Ĝ = 3L2η2+3ρ2ϵ2

ρ2ϵ2T

(
f(x1)−f(x∗)+2σ2L−1 log(T+1)

εmin

√
T − 2(

√
T − 1)

)
.

Remark 4.1. Convergence relies on the condition ρ >
10Lu3

max

u4
min

. Notably, if γ can be 0, umax

approaches infinity, making 10Lu3
max

u4
min

unbounded. This renders the condition ρ >
10Lu3

max

u4
min

ill-defined,
as ρ would need to be infinitely large, which is unattainable and adversely affects convergence.
Remark 4.2. While our analysis assumes global Lipschitz continuity, the algorithm can be im-
plemented using MT = maxj∈[T ] ∥∇f(xj ; ξ)∥ instead of a global bound M. This approach only
requires bounded gradients along the optimization trajectory, typically yields tighter bounds, and
remains fully compatible with our theoretical guarantees. Furthermore, setting ηt = η · t−1/2/ρ

instead of η
√

1−βt
2

1−βt
1

· t−1/2/ρ is justified since
√

1−βt
2

1−βt
1

is bounded and can be absorbed into the
constant η without loss of generality. See Appendix C for details.

4.2 High Probability Convergence

Next, under the assumption of coordinate-wise random noise, we show that the MGUP-
AdamW(without weight decay) also achieves a optimal rate of O(poly(log(T ))/

√
T ) with high

probability.
Assumption 4.4. Unbiased gradient estimation: Eξ[∇f(x; ξ)] = ∇f(x), for all x ∈ Rd. Addition-
ally, the variance noise bound is coordinate-wise, satisfying (∇f(x; ξ)i −∇f(x)i)

2 ≤ σ2
i .

This assumption is quite common [34, 35, 36, 37, 38, 32]. Note that the coordinate-wise noise bound
in Assumption 4.4 is stronger than the standard bound E∥∇f(x; ξ)−∇f(x)∥22 ≤ σ2, as the latter
can be readily derived from the former. This relaxed choice is made to facilitate the application of
probabilistic inequalities, thereby achieving improved convergence properties.

Theorem 4.2. Let 0 ≤ β1 < β2 < 1, β2 = 1 − 1/T , η = C0

√
1− β2, ω = (

√
1 + 1/β2 +

1)max{1, γ, 1/γ}, γ ∈ ( 2β , 1), and β3 = max
{

1−β2√
1−β2

, 2−γ2(1+β2)

γ
√
1−β2

, |β2−γ2|+1−γ2

γ
√
1−β2

}
for some con-

stants C0 > 0, β > 2. Under Assumptions 4.1,4.2, and 4.4, for Algorithm 1(without weight decay),
then for any given δ ∈ (0, 1/2), it holds that with probability at least 1− 2δ,

1

T

T∑
s=1

∥∇f(xs)∥22 ≤ Õ(T−1/2).

Remark 4.3. Setting γ > 0 is crucial for ensuring the stable convergence of the algorithm. The
convergence proof relies on surrogate stepsizes (defined in equations (10) and (12)) to manage the
complex interplay between stochastic gradients and adaptive stepsizes. The theoretical framework
for employing these surrogate stepsizes within the proof is informed by the methodologies presented
in [35, 39, 40].

yt+1 = yt − ηtϕt ⊙
gt

bt
+

β1

1− β1

(
ηtbt−1 ⊙ ϕt

ηt−1bt ⊙ ϕt−1
− 1d

)
⊙ (xt − xt−1).

Notably, if γ were set to 0, the ratio ϕt,i

ϕt−1,i
could approach infinity for some component i when

ϕt,i = α and ϕt−1,i = γ = 0. Such occurrences might prevent parameter updates in certain
iterations, thereby hindering convergence. Consequently, γ is set to a positive value instead of 0. For
a more detailed discussion, please refer to Appendix E.
Remark 4.4. Theorem 4.1 and Theorem 4.2 are independent of the specific mask selection mechanism.

Combining Remark 4.1 and Remark 4.3, for Adam variants employing a mask, simply nullifying
the update step when momentum and gradient directions misalign (tantamount to setting γ = 0)
markedly alters the convergence properties of stochastic optimization.
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5 Experiments

In this section, we evaluate the performance of the proposed MGUP optimizers on both pretraining
and supervised fine-tuning (SFT) tasks. All experiments are conducted using two NVIDIA V100
(32GB) GPUs and four NVIDIA RTX 4090 (24GB) GPUs. Detailed experimental settings are
provided in Appendix G.

▶ Datasets. We use the image dataset CIFAR-10, the text dataset Wikitext-103, and the language
model fine-tuning benchmarks GLUE and GSM-8K.

▶ Compared Methods. We compare MGUP-AdamW, MGUP-Lion, MGUP-Muon with (i)
AdamW [41], (ii) Cautious Optimizers(C-AdamW, C-Lion, C-Muon) [10], (iii) Lion [12], (iv)
Muon [13, 42], as well as other state-of-the-art memory-efficient optimization methods such as (v)
GaLore [3], (vi) LDAdam [4], (vii) Adam-mini [27] and (viii)Adam-8Bit [43].

Unless specifically stated otherwise, the default setting for the MGUP-enhanced Optimizers is
τ = 0.5, so that α and γ are set to 2.0 and 0.5, respectively.

5.1 Pretraining

▶ Image MAE Pretraing We pre-train a straightforward ViT model [44] with the Masked Autoen-
coder (MAE) framework [45] on the CIFAR-10 dataset. For this experiment, we set the learning rate
to 1.5× 10−4, the MAE mask rate to 75%, and train for 200 epochs. We compare MGUP-AdamW
with the standard AdamW and C-AdamW optimizers by evaluating their training and validation losses.
The results, presented in Figure 2, show that MGUP-AdamW consistently achieves lower training
and validation loss throughout the training process. In contrast, the performance of C-AdamW
gradually falls behind that of AdamW.

(a) ViT training curve (b) ViT validation curve

Figure 2: ViT MAE training and validation curves on CIFAR-10

▶ Language Modeling We employ a straightforward LLaMA2-71M model [46] and a Qwen2.5-
150M model [47], both of which are pretrained on the WikiText-103 dataset.

LLaMA2-71M on WikiText-103. To assess optimizer performance on a smaller language model,
we train LLaMA2-71M on WikiText-103, evaluating validation loss. We compare AdamW, Lion,
and Muon variants using a learning rate of 3e-4, a batch size of 480, and 2000 training steps. As
shown in Figure 3a, the results highlight several key differences. Among the Adam-type optimizers,
MGUP-AdamW achieves a 1.6x speedup over standard AdamW and exhibits superior generalization
compared to C-AdamW. For the Lion-type optimizers, MGUP-Lion demonstrates a 2.5x speedup
over standard Lion; unlike the unstable C-Lion which shows early loss spikes, MGUP-Lion maintains
training stability. With the Muon-type optimizers, MGUP-Muon yields a ∼1.2x speedup relative to
Muon and delivers better generalization than C-Muon.

While τ serves as the primary hyperparameter in our approach, it is essential to examine how variations
in γ influence the performance of MGUP-AdamW. We conduct experiments with τ ∈ {0.3, 0.5, 0.7}
and γ ∈ {0, 0.1, 0.5, 0.9} to evaluate this relationship across different hyperparameter configura-
tions.The comparative results are presented in Figure 3b. The analysis indicates the following: (i)
with γ fixed, increasing τ beyond a certain threshold degraded performance; (ii) with τ fixed, a larger
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γ generally improved performance. The findings in (ii) precisely corroborate the discussion on the
setting of γ in Section 4.

Qwen2.5-150M on WikiText-103. We also evaluate optimizers on a larger Qwen2.5-150M model
using WikiText-103 (Figure 4). For these experiments, we use a learning rate of 1e-3, a batch size of
160, and 1500 training steps. With Adam-type optimizers, MGUP-AdamW demonstrates a higher
speedup than standard AdamW and better generalization than C-AdamW. For Muon-type optimizers,
MGUP-Muon achieves a 1.1x speedup over standard Muon and superior generalization compared to
C-Muon.

(a) LLaMA2 validation curve (b) Sensitivity analysis

Figure 3: LLaMA2-71M validation curve and MGUP-AdamW sensitivity analysis on WikiText-103

(a) Qwen2.5 training curve (b) Qwen2.5 validation curve

Figure 4: Qwen2.5-150M training and validation curves on WikiText-103

5.2 Finetuing

(a) AdamW-type (b) Lion-type (c) Muon-type

Figure 5: Adamw-type, Lion-type,Muon-type optimizers average performance across GLUE tasks

We conduct comprehensive experiments on downstream tasks, with particular emphasis on supervised
fine-tuning (SFT) scenarios. Our evaluation encompassed two representative tasks: fine-tuning
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the RoBERTa-base model [48] on the GLUE benchmark and the LLaMA2-7B model [46] on the
GSM-8K.

▶ GLUE Benchmark Evaluation. To evaluate performance and generalization on diverse Natural
Language Understanding (NLU) tasks, we experiment on the GLUE benchmark, which comprises
tasks varying in dataset size and complexity. We perform a learning rate search within the range
of 1e-5 to 5e-5 for most optimizers, and within the range of 1e-6 to 5e-6 for Lion-type optimizers.
The best performance for each task is reported in Table 1. On most tasks, MGUP-AdamW and
MGUP-Muon achieve state-of-the-art results. Notably, MGUP-AdamW reaches an average optimal
performance of 85.15 across all GLUE tasks.

Figure 5 shows how the average GLUE score changes across the tested learning rates. MGUP-
AdamW, MGUP-Lion, and MGUP-Muon consistently outperform their standard counterparts
AdamW, Lion, and Muon across this range. Additionally, all MGUP-enhanced optimizers demon-
strate greater robustness compared to the cautious variants: C-AdamW, C-Lion, and C-Muon.

▶ GSM-8K Fine-tuning. We further evaluate MGUP-AdamW by fine-tuning LLaMA2-7B on the
challenging GSM-8K dataset, a critical indicator of fine-tuning effectiveness due to typically low
zero-shot accuracy [49]. We conduct a learning rate grid search (from 1e-5 to 5e-5), consistent with
[4]. As shown in Table 2, MGUP-AdamW achieves lower training loss per epoch and the highest
validation accuracy 34.96%, outperforming baseline optimizers.

Table 1: Comparison of best results of fine-tuning RoBERTa-base model on GLUE benchmark.

Method RTE
2.5k

MRPC
3.7k

STS-B
7k

CoLA
8.5k

SST-2
67k

QNLI
105k

QQP
364k Avg.

AdamW [41] 72.93 90.44 90.55 60.32 94.84 92.79 91.34 84.74
Lion [12] 67.15 87.50 89.39 60.57 94.84 93.00 91.32 83.39

Muon [13] 64.62 81.13 87.33 59.34 94.27 93.11 91.72 81.65
Adam-mini [27] 56.32 87.01 89.49 56.32 93.35 92.02 89.58 80.44
GaLore(r=8) [3] 69.45 86.19 88.97 55.12 94.15 92.01 89.86 82.25

LDAdamW(r=8) [4] 67.58 88.32 90.03 60.60 94.49 92.82 91.23 83.58
C-AdamW [10] 71.12 89.22 90.25 57.29 93.92 92.62 91.39 83.69

C-Lion [10] 67.87 88.73 89.58 57.78 94.50 92.81 91.41 83.23
C-Muon [10] 70.04 88.24 90.04 59.81 94.84 93.19 91.75 83.98

MGUP-Lion 71.12 88.24 90.07 61.23 94.27 93.04 91.33 84.18
MGUP-Muon 70.40 88.24 89.84 61.07 94.61 93.24 91.78 84.17

MGUP-AdamW 75.81 90.44 90.54 59.83 94.95 93.08 91.43 85.15

Table 2: Fine-tuning results for LLaMA-2 on GSM-8k.

Model Metric AdamW AdamW-8b LDAdamW GALore C-AdamW MicroAdamW MGUP-AdamW
(rank = 512) (rank = 512) (m = 10)

7B Accuracy 34.53 34.42 34.88 34.62 34.68 34.58 34.96
Train loss 0.064 0.069 0.073 0.070 0.081 0.057 0.056

6 Conclusion

We introduce MGUP, a novel intra-layer parameter selection mechanism based on momentum-
gradient alignment, and integrated it into AdamW, Lion, and Muon yields MGUP-AdamW, MGUP-
Lion, and MGUP-Muon. Empirically, MGUP Optimizers demonstrate competitive convergence
speeds and superior generalization over their base versions across diverse tasks, including large
language model training. Theoretically, we establish stochastic convergence guarantees for MGUP-
AdamW(without weight decay) under standard non-convex assumptions, achieving a rate near the
known optimum. Limitations include the pre-selection of τ , inviting future work on adaptive methods.
Our theoretical analysis also primarily covers MGUP-AdamW (without weight decay). Thus, while
empirically effective with optimizers like Lion and Muon, MGUP’s theoretical properties (e.g., the
necessity of γ > 0) in these diverse frameworks require further study.
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Appendix
The appendices are structured as follows:

• Appendix A gives a counterexample showing that Cautious Adam may diverge.
• Appendix B summarizes additional related work.
• Appendix C provides the definitions and lemmas related to Theorem 4.1.
• Appendix D offers the formal proof of Theorem 4.1.
• Appendix E presents the definitions and lemmas related to Theorem 4.2.
• Appendix F includes the formal proof of Theorem 4.2.
• Appendix G supplies additional details regarding the experimental setup.
• Appendix H contains the pseudocode for other MGUP-type algorithms.
• Appendix I presents more experimental results.

A Motivating Counterexample: The Necessity of γ > 0

To intuitively demonstrate the necessity of a non-zero decayed step size (γ > 0) for misaligned
updates, we present a counterexample where optimizers that nullify updates (i.e., γ = 0), such as
Cautious Adam (C-Adam), fail to converge. We adapt a classic construction from [50].

Consider the one-dimensional objective function f(x) =
∑n−1

i=0 fi(x), where the stochastic compo-
nents are defined as:

fi(x) =

{
nx, x ≥ −1
n
2 (x+ 2)2 − 3n

2 , x < −1
for i = 0.

fi(x) =

{
−x, x ≥ −1

− 1
2 (x+ 2)2 + 3

2 , x < −1
for i > 0.

The full objective is f(x) =
∑n−1

i=0 fi(x), which simplifies to:

f(x) =

{
x, x ≥ −1
1
2 (x+ 2)2 − 3

2 , x < −1.

We analyze the behavior of C-Adam and MGUP-Adam on a counterexample with its global minimum
at x∗ = −2, starting from an initial point x0 = −0.5. In this environment, the optimizer encounters
frequent, small negative gradients gt = −1 and rare, large positive gradients gt = n.

▶ Analysis of C-Adam’s Failure. The stochastic nature of the gradients induces a "pulse-decay"
dynamic in the momentum term mt. A rare positive gradient pulse pushes mt to a high value, after
which the frequent negative gradients cause it to decay. This leads to persistent oscillations of the
momentum around zero, a behavior empirically confirmed in Figure 6b.

This momentum instability is detrimental to C-Adam (γ = 0). When mt > 0, the frequent, correctly-
signed gradients gt = −1 are misaligned with the momentum mtgt < 0, causing the optimizer to
skip the update. When mt < 0, these same gradients are aligned mtgt > 0, but they produce an
incorrect update, pushing the parameter x away from the optimum x∗ = −2. Figure 6c provides
clear evidence for this dysfunction: C-Adam’s updates are either null (∆xt = 0) or strictly positive
(∆xt > 0), moving in the wrong direction. As a result, the iterates not only stagnate but actively
diverge from the minimum, as illustrated by the trajectory in Figure 6a.

▶ MGUP’s Advantage. In stark contrast, MGUP-Adam leverages its safeguarding mechanism
(γ > 0) to overcome this failure mode. The critical scenario is when mt > 0 and the gradient is
gt = −1. Instead of inaction, MGUP performs a small, corrective update of size γηt in the proper
negative direction. This ensures a persistent, albeit small, push towards the optimum. The scatter plot
in Figure 6c demonstrates that MGUP-Adam consistently performs updates in the correct direction
(∆xt < 0). These small but steady corrective steps enable the optimizer to escape the challenging
region and successfully converge to the true minimum at x∗ = −2, as shown by its trajectory in
Figure 6a.
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Figure 6: Analysis of C-Adam’s failure and MGUP-Adam’s success in the counterexample. (a)
MGUP-Adam converges to the optimum x∗ = −2 while C-Adam diverges. (b) The momentum in
C-Adam oscillates around zero, leading to unstable update decisions. (c) A scatter plot of update
steps shows C-Adam either skips updates (∆xt = 0) or updates in the wrong direction (∆xt > 0),
whereas MGUP-Adam consistently updates in the correct direction (∆xt < 0).

B More Related Work

B.1 Efficient Training and Parameter Update Strategies

Large Language Model (LLM) training often exhibits gradient updates with inherent low-rank
characteristics [1, 2]. This observation has spurred the development of methods aiming to enhance
training efficiency and reduce memory footprint. Techniques like Adafactor significantly cut memory
needs by applying low-rank decomposition to Adam’s second-order moments [51], while Adam-
mini achieves further optimization using Transformer-specific Hessian-based storage strategies [27].
More directly exploiting gradient structure, GaLore enhances memory and computational efficiency
through low-rank projection of gradient matrices [3], and LDAdam complements this by optimizing
within low-dimensional gradient subspaces [4]. Furthermore, Q-Galore integrates quantization with
low-rank projections, boosting efficiency, particularly in resource-constrained scenarios [52].

While the aforementioned methods focus on compressing or projecting the update information, an-
other significant avenue for efficiency involves selectively updating only a subset of model parameters.
This strategy operates on the principle that not all parameters contribute equally to learning at every
stage. Such selective approaches have been particularly explored for accelerating the fine-tuning or
adaptation phase of LLMs, although their applicability to large-scale pre-training is less established
compared to full parameter updates.

For instance, SIFT [5] achieves efficient adaptation through gradient-based sparse parameter updates,
leveraging the low intrinsic dimensionality and sparse gradient characteristics observed in LLMs
during fine-tuning. Applying the selective principle at a coarser granularity, layer-wise and block-
wise strategies have also proven effective, primarily in fine-tuning contexts. Building upon early
unsupervised pre-training concepts [53, 54], the LOMO method enables efficient gradient calculation
and grouped updates, allowing for full-parameter fine-tuning with reduced memory [7], later enhanced
by AdaLOMO with adaptive learning rates [55]. The LISA method introduces an innovative layer
selection strategy based on parameter norms to further optimize the update process during fine-
tuning [8]. Similarly, BAdam implemented a block coordinate optimization framework, selecting
parameter blocks for Adam updates, thereby reducing memory and computation specifically for
adaptation tasks [9].

These diverse approaches highlight prominent pathways towards more efficient training and adapta-
tion: leveraging low-rank approximations, or strategically selecting which parameters or parameter
groups receive updates, with many selective methods currently specialized for post-pre-training
stages.

B.2 Evolution of Adaptive Optimization Methods

First-order optimization methods play a critical role in deep learning. Building on early foundational
work, the Momentum method accelerates the optimization process by accumulating historical gradi-
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ents [56]. Subsequently, the RMSprop algorithm introduced the concept of adaptive learning rates,
which enables distinct update steps for different parameters [57]. The Adam algorithm merges the
benefits of Momentum and RMSprop, adaptively adjusting both first and second moments, and is
widely used for its effective adaptive moment estimation [23].

Building upon Adam, researchers have proposed several enhanced variants. The AMSGrad
method [58] aims to strengthen optimization stability by utilizing the maximum of historical second-
order moments, while the NAdam approach [59] incorporates Nesterov momentum to enhance
performance. To address challenges with weight decay and learning rate adjustment in Adam, the
AdamW method [41] enhances L2 regularization through decoupled weight decay, and the AdaBound
method [60] introduces learning rate bounds to prevent excessively large or small update steps. The
RAdam method [61] is designed to enhance convergence stability by rectifying variance estimation
during the early stages of training. Finally, the AdaBelief algorithm [62] refines the computation of
second-order moments by employing the exponential moving average of gradient deviations from
their mean, a design choice intended to improve generalization performance.

Recent advances have further expanded the capabilities of adaptive optimization methods. Xie
et al. [63] presents the Adai framework from the perspective of dynamical systems, accelerating
training and improving minima selection by decoupling the effects of adaptive learning rates and
momentum. In [33], the Adan method is introduced. This method incorporates a novel Nesterov
momentum estimation approach designed to accelerate convergence without incurring additional
gradient computation overhead. More recently, the C-AdamW method is proposed in [10], which
employs a masking strategy aimed at enhancing optimization efficiency.

Beyond Adam variants, other optimizers also demonstrate considerable advantages. The Sophia
method, detailed in [64], enhances Adam’s second-moment estimation through efficient diagonal
Hessian approximation combined with coordinate-wise clipping. This approach has demonstrated
superior performance in language model pretraining. In contrast, the Lion optimizer, presented in [12],
is designed to optimize memory efficiency and computational speed. It achieves this by tracking
momentum exclusively and employing a sign-based operator to standardize update magnitudes.
Notably, the Muon method, proposed in [13] and originating from the framework of Shampoo [65],
incorporates Newton-Schulz-iterated orthogonalization of gradient momentum. This technique is
intended to enhance convergence dynamics through adaptation to parameter curvature.

B.3 A Brief Review on the Convergence of Adam

The convergence theory for the Adam optimizer has evolved from early uncertainty to rigorous proof.
Initially, Reddi et al. [58] revealed its risk of non-convergence with a convex counterexample. Early
work to address this established conditional guarantees; for instance, Chen et al. [29] provided the first
convergence rate in non-convex settings, while Zou et al. [66] identified necessary hyperparameter
coupling conditions to ensure stability. A key turning point was the work of Zhang et al. [50], who
first proved that the unmodified Adam algorithm is convergent, attributing prior failures to a mismatch
between hyperparameters and the specific problem rather than an inherent algorithmic flaw. Building
on this, He et al. [67] strengthened the guarantee from ergodic to the more practical last-iterate
convergence. Finally, Wang et al. [32] resolved the debate by proving that Adam achieves an optimal
iteration complexity of O(ϵ−4), matching the theoretical lower bound and providing a firm theoretical
foundation for its excellent empirical performance.

C Expectation Convergence Lemmas

C.1 Definition

Recall the form of Algorithm 1. Let gt denote the stochastic gradient. Let’s consider β1,t = 1−t−1/2,
ηt = ηt−1/2/ρ. Therefore, we can rewrite the formal definition of the algorithm,
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mt = β1,tmt−1 + (1− β1,t)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

v′
t = ρ

√
tmax(ϵ,

√
vt), ρ > 0,

ηt = η,

ht =
v′
t

ηtϕt
,

xt+1 = xt −
mt

ht
.

(4)

Here, we incorporate ηt = ηt−1/2/ρ into v′
t and set ηt = η. Without loss of generality, for

ϕt ∈ {α, γ}, we set α = 1 and γ ∈ (0, 1). Then, we define that

umin =
ϵ

η
, umax =

M

ηγ
, κ =

umax

umin
,

rt = ht ⊙ (xt+1 − xt),

st = mt −∇f(xt).

(5)

C.2 Lemma C.1

Lemma C.1. Suppose that {Ei, Ai} are two nonnegative sequences. Assume Et+1 ≤ (1 − (t +
1)−1/2)Et +At+1 , and δ ≥ 1/2. Then we have:

t−1/2Et ≤ 2δ(Et − Et+1 +At+1).

Proof.

t−1/2Et − c (Et − Et+1 +At+1)

(•)
≤ t−1/2Et − c (Et +At+1) + c ·

(
Et − (t+ 1)−1/2Et +At+1

)
= Et

(
t−1/2 − c(t+ 1)−1/2

)
= Et · (t+ 1)−1/2 ·

((
t

t+ 1

)−1/2

− c

)
(◦)
≤ Et · (t+ 1)−1/2 · (21/2 − c)

(⋆)

≤ 0.

where (•) follows from Et+1 ≤ (1− (t+ 1)−1/2)Et + At+1; (◦) is due to ( t
t+1 )

−1/2 ≤ 21/2; (⋆)
is due to our choice c = 2δ .

C.3 Lemma C.2

Lemma C.2. We have the following results for all t ≥ 1, ρ
√
tumin ≤ min(ht) ≤ ρ

√
tumax.
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Proof.

vt,i = (1− β2)

t∑
j=1

βt−j
2 g2

j,i

≤ (1− β2)(max
j∈[t]

g2
j,i)

t∑
j=1

βt−j
2

(◦)
≤ max

j∈[t]
|gj |2

(⋆)

≤ M2,

where (◦) is due to
∑t

i=1 β
t−i
2 =

1−βt
2

1−β2
≤ 1

1−β2
; (⋆) is due to we assume that f(x; ξ) is M-Lipschitz

for all x. Additionally, we note that

vt,i ≥ 0.

Thus, we conclude:

vt,i ∈ [0,M2].

This implies:

v′
t,i ∈ [ρ

√
tϵ, ρ

√
tM ].

Next, according to the definition of umin and umax:

umin =
ϵ

η
, umax =

M

ηγ
.

Therefore, we have:

ht,i ∈
[
ρ
√
tϵ

η
,
ρ
√
tM

ηγ

]
=
[
ρ
√
tumin, ρ

√
tumax

]
.

C.4 Lemma C.3

Lemma C.3. Let umin, umax, rt, st be given in (5). We have the following inequality:

E[f(xt+1)] ≤ f(xt)−
(

1

2κ2ρumax
− L

ρ2umin

)
E∥rt∥22√

t
+

E∥st∥22
2
√
tL

.

Proof. First, we have the following inequalities:

∥xt+1 − xt∥2ht
= ∥xt+1 − xt∥2ht

· max(ht)
2

min(ht)2
· 1

κ2

≥ ∥xt+1 − xt∥22 ·min(ht) ·
max(ht)

2

min(ht)2
· 1

κ2

= ∥xt+1 − xt∥22 ·
max(ht)

2

min(ht)
· 1

κ2

≥ 1

κ2 min(ht)
∥ht ⊙ (xt+1 − xt)∥22

=
1

κ2 min(ht)
∥rt∥22.

(6)
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Applying the descent Lemma to the algorithm, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

= f(xt) + ⟨mt,xt+1 − xt⟩ − ⟨mt −∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

(•)
≤ f(xt)−

1

2
∥xt+1 − xt∥2ht

− ⟨mt −∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

(◦)
≤ f(xt)−

1

2
∥xt+1 − xt∥2ht

+
1

2βL
∥mt −∇f(xt)∥22 +

(β + 1)L

2
∥xt+1 − xt∥22

≤ f(xt)−
1

2
∥xt+1 − xt∥2ht

+
1

2βL
∥mt −∇f(xt)∥22 +

(β + 1)L

2min(ht)2
∥ht ⊙ (xt+1 − xt)∥22

(⋆)

≤ f(xt)−
1

2κ2 min(ht)
∥rt∥22 +

(β + 1)L

2min(ht)2
∥rt∥22 +

1

2βL
∥st∥22

(∗)
≤ f(xt)−

(
1

2κ2ρ
√
tumax

− (β + 1)L

2ρ2tu2
min

)
∥rt∥22 +

∥st∥22
2βL

,

where (•) follows from the equality ⟨mt,xt+1 − xt⟩+ ∥xt+1 − xt∥2ht
= 0; (◦) is due to Young’s

inequality; (⋆) results from Inequality (6); and (∗) is derived from Lemma C.2.

Then, by setting β =
√
t and taking the expectation of both sides, we obtain:

E[f(xt+1)] ≤ f(xt)−
(

1

2κ2ρ
√
tumax

− (
√
t+ 1)L

2ρ2tu2
min

)
E∥rt∥22 +

1

2
√
tL

E∥st∥22

≤ f(xt)−
(

1

2κ2ρ
√
tumax

− L

ρ2
√
tu2

min

)
E∥rt∥22 +

1

2
√
tL

E∥st∥22

= f(xt)−
(

1

2κ2ρumax
− L

ρ2u2
min

)
E∥rt∥22√

t
+

E∥st∥22
2
√
tL

.

(7)

C.5 Lemma C.4

Lemma C.4. Let rt, st be given in (5). We define St = E∥st∥, Rt = E∥rt∥, Pt = f(xt)− f(x∗) +
2
LS

2
t , ε1 = σ2

L , ε2 = 1
ρ

(
1

2κ2umax
− 5L

ρu2
min

)
, and ε3 = 1

2L . Assume that ρ is sufficiently large such

that ε2 > 0. Let εmin = min(ε1, ε2, ε3). The following result holds:

T∑
t=1

R2
t + S2

t ≤ P1 + 2σ2L−1 log(T + 1)

εmin
·
√
T − 2(

√
T − 1).

Proof. First, we derive the following equalities:

st = mt −∇f(xt)

= β1,tmt−1 + (1− β1,t)gt −∇f(xt)

= β1,t(mt−1 −∇f(xt−1)) + (1− β1,t)gt + β1,t∇f(xt−1)−∇f(xt)

= β1,tst−1 + β1,t(∇f(xt−1)−∇f(xt))︸ ︷︷ ︸
zt

+(1− β1,t)(gt −∇f(xt)).
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Then, we have:

E∥zt∥22 = ∥β1,tst−1 + β1,t(∇f(xt−1)−∇f(xt))∥22
(•)
≤ (1 + β)β2

1,t∥st−1∥22 +
(
1 +

1

β

)
β2
1,t∥∇f(xt−1)−∇f(xt))∥22

(◦)
≤ (2− β1,t)β

2
1,t∥st−1∥22 +

(
1 +

1

1− β1,t

)
β2
1,t∥∇f(xt−1)−∇f(xt))∥22

(⋆)

≤ (2β1,t − β2
1,t)β1,t∥st−1∥22 +

2β1,t − β2
1,t

1− β1,t
β1,tL

2∥xt−1 − xt∥22

(∗)
= β1,t∥st−1∥22 +

L2

1− β1,t
∥xt−1 − xt∥22,

where (•) is due to Young’s inequality for any β > 0; (◦) follows from setting β = 1 − β1,t; (⋆)
is due to Assumption 4.2; and (∗) results from the fact that 2β1,t − β2

1,t − 1 = −(β1,t − 1)2 ≤ 0,
which implies 2β1,t − β2

1,t ≤ 1.

Therefore, we have:

E∥st∥22
(◦)
= E∥(1− β1,t)(gt −∇f(xt))∥22 + E∥zt∥22

≤ σ2(1− β1,t)
2 + β1,t∥st−1∥22 +

L2

1− β1,t
∥xt−1 − xt∥22

≤ σ2(1− β1,t)
2 + β1,t∥st−1∥22 +

L2

(1− β1,t)min(ht−1)2
E∥ht−1 ⊙ (xt − xt−1)∥22,

where (◦) is due to Assumption 4.3 E[∇f(x; ξ)] = ∇f(x). Then,we define

At = σ2(1− β1,t)
2 +

L2

(1− β1,t)min(ht−1)2
R2

t−1.

Therefore, we have

S2
t ≤ β1,tS

2
t−1 +At.

Then, using Lemma C.1 and β1,t = 1− t−1/2, we obtain:

t−1/2S2
t ≤ 2(S2

t − S2
t+1 +At+1)

= 2(S2
t − S2

t+1) + 2σ2(t+ 1)−1 +
2L2

(t+ 1)−1/2 min(ht)2
R2

t

(◦)
≤ 2(S2

t − S2
t+1) +

2σ2

t+ 1
+ 2

(
t+ 1

t

)1/2
L2R2

t

ρ2u2
min

√
t

(⋆)

≤ 2(S2
t − S2

t+1) +
2σ2

t+ 1
+

4L2R2
t

ρ2u2
min

√
t
,

(8)

where (◦) is due to Lemma C.2;(⋆) relies on ( t+1
t )1/2 ≤ 21/2 ≤ 2.

Then, from Lemma C.3, it follows that:

E[f(xt+1)]− f(xt) ≤ −
(

1

2κ2ρumax
− L

ρ2u2
min

)
E∥rt∥22√

t
+

E∥st∥22
2
√
tL

= −
(

1

2κ2ρumax
− L

ρ2u2
min

)
R2

t√
t
+

S2
t

2
√
tL

.
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Adding both sides by ε1t
−1 + t−1/2

2L S2
t yields:

E[f(xt+1)]− f(xt) + ε1t
−1 +

t−1/2

2L
S2
t

≤
(
− 1

2κ2ρumax
+

L

ρ2u2
min

)
R2

t√
t
+ ε1t

−1 +
t−1/2

L
S2
t

(◦)
≤
(
− 1

2κ2ρumax
+

L

ρ2u2
min

)
R2

t√
t
+ ε1t

−1 +
2

L
(S2

t − S2
t+1) +

2σ2

L(t+ 1)
+

4LR2
t

ρ2u2
min

√
t

= −
(

1

2κ2ρumax
− 5L

ρ2u2
min

)
︸ ︷︷ ︸

≜ε2

R2
t√
t
+ ε1t

−1 +
2

L
(S2

t − S2
t+1) +

2σ2

L(t+ 1)
,

where (◦) is due to Inequality (8).

Using the definition of Pt, ε1, ε2, ε3, we further derive:

ε1t
−1 + ε2t

−1/2R2
t + ε3t

−1/2S2
t ≤ Pt − Pt+1 +

2σ2

L
(t+ 1)−1.

This leads to

εmint
−1/2(t−1/2 +R2

t + S2
t ) ≤ Pt − Pt+1 +

2σ2

L
(t+ 1)−1. (9)

Summing Inequality (9) over t from 1 to T yields:

εmin

T∑
t=1

t−1/2 · (t−1/2 +R2
t + S2

t )

≤
T∑

t=1

(Pt − Pt+1 + 2σ2L−1(t+ 1)−1)

(◦)
≤ P1 + 2σ2L−1 · log(T + 1),

where (◦) is due to
∑T

t=1
1

t+1 ≤ log(T + 1).

This further leads to

T∑
t=1

R2
t + S2

t ≤ P1 + 2σ2L−1 · log(T + 1)

εmin
·
√
T −

T∑
t=1

t−1/2

(◦)
≤ P1 + 2σ2L−1 · log(T + 1)

εmin
·
√
T − 2(

√
T − 1) = O(log(T )

√
T ),

where (◦) is due to
∑T

t=1 t
−1/2 ≥ 2(

√
T − 1).
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D Proofs of Theorem 4.1

Proof. First, we have the following inequalities:
T∑

t=1

∥∇f(xt+1)∥22

=

T∑
t=1

∥∇f(xt+1)−mt − ht ⊙ (xt+1 − xt)∥22

=

T∑
t=1

∥∇f(xt+1)−∇f(xt) +∇f(xt)−mt − ht ⊙ (xt+1 − xt)∥22

=

T∑
t=1

∥∇f(xt+1)−∇f(xt)− st − ht ⊙ (xt+1 − xt)∥22

=

T∑
t=1

[∥∇f(xt+1)−∇f(xt)∥22 + ∥st∥22 + ∥ht ⊙ (xt+1 − xt)∥22 + 2⟨st,ht ⊙ (xt+1 − xt)⟩

− 2⟨∇f(xt+1)−∇f(xt), st⟩ − 2⟨∇f(xt+1)−∇f(xt),ht ⊙ (xt+1 − xt)⟩]
(•)
≤

T∑
t=1

3(∥∇f(xt+1)−∇f(xt)∥22 + ∥st∥22 + ∥rt∥22)

(◦)
≤

T∑
t=1

3L2∥xt+1 − xt∥22 + 3∥st∥22 + 3∥rt∥22

≤
T∑

t=1

3L2

(min(ht))2
∥rt∥22 + 3∥st∥22 + 3∥rt∥22,

where (•) is due to Young’s inequality; (◦) is due to Assumption 4.2.

Let’s take the expectation of both sides,
T∑

t=1

E∥∇f(xt+1)∥22 ≤
T∑

t=1

3L2

(min(ht))2
R2

t + 3S2
t + 3R2

t

(•)
≤

T∑
t=1

3L2

ρ2tu2
min

R2
t + 3(R2

t + S2
t )

=

T∑
t=1

3L2

ρ2tu2
min

R2
t + 3(R2

t + S2
t )

(◦)
≤ 3L2η2

ρ2ϵ2

T∑
t=1

R2
t + 3

T∑
t=1

(R2
t + S2

t )

≤
(
3L2η2

ρ2ϵ2
+ 3

)( T∑
t=1

R2
t + S2

t

)
(⋆)

≤ 3L2η2 + 3ρ2ϵ2

ρ2ϵ2

(
f(x1)− f(x∗) + 2σ2L−1 log(T + 1)

εmin

√
T − 2(

√
T − 1)

)
= O(log(T )

√
T ) = Õ(

√
T ),

where (•) results from Lemma C.2; (◦) is due to 1
t ≤ 1; (⋆) follows from Lemma C.4. Thus, we have

min
t=1,··· ,T

E∥∇f(xt+1)∥22 ≤ 1

T

T∑
t=1

E∥∇f(xt+1)∥22 ≤ Õ(T 1/2)

T
= Õ(T−1/2).
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E Probability Convergence Lemmas

This proof refers to the following literature [35, 37, 36, 38].

E.1 Definition

Let gs denote the stochastic gradient. We define the noise as ξs = gs −∇f(xs) and the coordinate-
wise noise as ξs,i = gs,i −∇f(xs)i. Furthermore, we define two auxiliary sequences {ps}s≥1 and
{ys}s≥1.

p1 = 0d,y1 = x1,ps =
β1

1− β1
(xs − xs−1),

ys = ps + xs,∀s ≥ 2,

ξs = gs −∇f(xs), ξs,i = gs,i −∇f(xs)i.

(10)

Then by the definition of Assumption 4.4 , we continue to define useful notations:

DT =

√
log

(
eT

δ

)
, Gs = max

j∈[s]
∥∇f(xj)∥,

GT (s) = DT

√
∥σ∥2 + 2G2

s, GT = DT

√
∥σ∥2 + 2G2,

m̂s =
ms

1− βs
1

, v̂s =
vs

1− βs
2

,

bs =
√
vs + ϵ =

√
β2vs−1 + (1− β2)g2

s + ϵ,

as =
√
ṽs + ϵ =

√
β2vs−1 + (1− β2) (GT (s)1d)

2
+ ϵ.

(11)

It is noted that yt can also be expressed in the following form:

ys+1 = ys − ηsϕs ⊙
gs

bs
+

β1

1− β1

(
ηsbs−1 ⊙ ϕs

ηs−1bs ⊙ ϕs−1
− 1d

)
⊙ (xs − xs−1). (12)

Without loss of generality, for ϕs ∈ {α, γ}, we set α = 1 and γ ∈ (0, 1).

Then, we define ∆s =
(

ηsbs−1⊙ϕs

ηs−1bs⊙ϕs−1
− 1d

)
.

E.2 Lemma E.1

Lemma E.1. Suppose that {αs}s≥1 is a real number sequence. Given 0 ≤ β1 < β2 ≤ 1,ϵ > 0, we
define cs =

∑s
j=1 β

s−j
1 αj , ds =

1
1−βs

1

∑s
j=1 β

s−j
1 αj and es =

∑s
j=1 β

s−j
2 α2

j ,then
t∑

s=1

c2s
ϵ+ es

≤ 1

(1− β1)(1− β1/β2)

(
log
(
1 +

et
ϵ

)
− t log β2

)
, ∀t ≥ 1,

t∑
s=1

d2s
ϵ+ es

≤ 1

(1− β1)2(1− β1/β2)

(
log
(
1 +

et
ϵ

)
− t log β2

)
, ∀t ≥ 1.

Proof. See the proof of [[35], Lemma A.2].

E.3 Lemma E.2

Lemma E.2. Suppose {Zs}s∈[T ] is a martingale difference sequence with respect to ζ1, · · · , ζT .
Assume that for each s ∈ [T ],σs is a random variable only dependent by ζ1, · · · , ζT and satisfies that

E
[
exp(Z2

s/σ
2
s) | ζ1, · · · , ζs−1

]
≤ e,

then for any λ > 0, and for any δ ∈ (0, 1),it holds that

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

23



Proof. See the proof of [[36], Lemma 1].

E.4 Lemma E.3

Lemma E.3. Let gs,ms, m̂s be given in Algorithm 1 and bs, be defined in (11). If 0 ≤ β1 < β2 < 1
and Fi(t) = 1 + 1

ϵ2

∑t
s=1 g

2
s,i then ∀t ≥ 1,we have,

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 ≤ 1

1− β2

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥ms

bs

∥∥∥∥2 ≤ 1− β1

(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥ ms

bs+1

∥∥∥∥2 ≤ 1− β1

β2(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
,

t∑
s=1

∥∥∥∥m̂s

bs

∥∥∥∥2 ≤ 1

(1− β2)(1− β1/β2)

d∑
i=1

log

(
Fi(t)

βt
2

)
.

Proof. First, we have:

ϵ2 ≥ ϵ2(1− βs
2) ≥ ϵ2(1− β2).

Next, the following inequalities and equality hold:

b2
s,i ≥ v2

s,i + ϵ2 ≥ (1− β2)

 s∑
j=1

βs−j
2 g2

j,i + ϵ2

 , ms,i = (1− β1)

s∑
j=1

βs−j
1 gj,i.

For the first expression, it follows that:

t∑
s=1

g2
s,i

b2
s,i

≤ 1

1− β2

t∑
s=1

g2
s,i

ϵ2 +
∑s

j=1 β
s−j
2 g2

j,i

.

(◦)
≤ 1

1− β2

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2

s,i

)
− t log β2

]

≤ 1

1− β2
log

(
Fi(t)

βt
2

)
,

where (◦) is due to using Lemma E.1.

For the second expression, we have:

t∑
s=1

m2
s,i

b2
s,i

≤ (1− β1)
2

1− β2
·

t∑
s=1

(∑s
j=1 β

s−j
1 gj,i

)2
ϵ2 +

∑s
j=1 β

s−j
2 g2

j,i

(◦)
≤ (1− β1)

2

1− β2
· 1

(1− β1)(1− β1/β2)

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2

s,i

)
− t log β2

]

=
1− β1

(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
,

where (◦) is due to using Lemma E.1 and setting β2 < 1.
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For the third inequality, we derive:

t∑
s=1

m2
s,i

b2
s+1,i

≤
t∑

s=1

[
(1− β1)

∑s
j=1 β

s−j
1 gj,i

]2
ϵ2(1− β2) + (1− β2)

∑s+1
j=1 β

s+1−j
2 g2

j,i

=

t∑
s=1

(1− β1)
2
(∑s

j=1 β
s−j
1 gj,i

)2
ϵ2(1− β2) + (1− β2)β2

∑s
j=1 β

s−j
2 g2

j,i

=
(1− β1)

2

(1− β2)β2
·

t∑
s=1

(∑s
j=1 β

s−j
1 gj,i

)2
ϵ2

β2
+
∑s

j=1 β
s−j
2 g2

j,i

(◦)
≤ (1− β1)

2

(1− β2)β2
· 1

(1− β1)(1− β1/β2)

[
log

(
1 +

β2

ϵ2

t∑
s=1

βt−s
2 g2

s,i

)
− t log β2

]

≤ 1− β1

β2(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
,

where (◦) is due to using Lemma E.1 and setting β2 < 1.

For the fourth inequality, we derive:

t∑
s=1

m̂2
s,i

b2
s,i

≤ (1− β1)
2

1− β2
·

t∑
s=1

(
1

1−βs
1

∑s
j=1 β

s−j
1 gj,i

)2
ϵ2 +

∑s
j=1 β

s−j
2 g2

j,i

≤ (1− β1)
2

1− β2
· 1

(1− β1)2(1− β1/β2)

[
log

(
1 +

1

ϵ2

t∑
s=1

βt−s
2 g2

s,i

)
− t log β2

]

≤ 1

(1− β2)(1− β1/β2)
log

(
Fi(t)

βt
2

)
,

where (◦) is due to using Lemma E.1 and setting β2 ≤ 1.

E.5 Lemma E.4

Lemma E.4. Let ηs, ηs−1, γ, bs,bs−1 be given in Algorithm 1 and (10), then we have∣∣∣∣ ηsbs−1,iϕs,i

ηs−1bs,iϕs−1,i
− 1

∣∣∣∣ ≤ ω, ∀t ≥ 2,

where ω = c0

√
1+β2

β2
+ 1, c0 = max{1, γ, 1/γ}

Proof. To proceed with the proof, we first establish the following. For all t ≥ 2, given the conditions
0 ≤ 1− βs−1

1 < 1− βs
1 and βs−1

2

1−βs−1
2

≤ β2

1−β2
, it follows that:

ηs
ηs−1

=

√
1− βs

2

1− βs−1
2

· 1− βs−1
1

1− βs
1

≤

√
1 +

βs−1
2 (1− β2)

1− βs−1
2

≤

√
1 + (1− β2) ·

β2

1− β2
=
√
1 + β2.

Next, We have:

bs−1,i

bs,i
=

ϵ+
√
vs−1,i

ϵ+
√
β2vs−1,i + (1− β2)g2

s,i

≤
ϵ+

√
vs−1,i

ϵ+
√
β2vs−1,i

≤ 1√
β2

.
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For ϕs−1,i, ϕs,i ∈ {1, γ}, the ratio satisfies ϕs,i

ϕs−1,i
≤ max

{
1, 1

γ , γ
}

. Defining c = max
{
1, 1

γ , γ
}

,
it follows that: ∣∣∣∣ ηsbs−1,iϕs,i

ηs−1bs,iϕs−1,i
− 1

∣∣∣∣ ≤ ∣∣∣∣cηsbs−1,i

ηs−1bs,i

∣∣∣∣+ 1 ≤ c

√
1 + β2

β2
+ 1.

E.6 Lemma E.5

Lemma E.5. Let ms,bs be given in Algorithm 1 and 11 with 0 ≤ β1 < β2 < 1, respectively. Then,∥∥∥∥ms

bs

∥∥∥∥
∞

≤

√
(1− β1)(1− βs

1)

(1− β2)(1− β1/β2)
, ∀t ≥ 1.

Consequently, if f is L-smooth and we set η = C0

√
1− β2 for some constant C0 > 0, then we have :

∥∇f(xs)∥ ≤ ∥∇f(x1)∥+ LC0s

√
d

1− β1/β2
, ∀t ≥ 1.

Proof. First,we derive:

∣∣∣∣ms−1,i

bs−1,i

∣∣∣∣ =
√√√√√ (1− β1)2

(∑t−1
j=1 β

s−1−j
1 gj,i

)2
(1− β2)

∑s−1
j=1 β

s−1−j
2 g2

j,i

(◦)
≤ 1− β1√

1− β2

√√√√s−1∑
j=1

βs−1−j
1 ·

∑s−1
j=1 β

s−1−j
1 g2

j,i∑s−1
j=1 β

s−1−j
2 g2

j,i

=
1− β1√
1− β2

√√√√ s−1∑
j =1

(
β1

β2

)s−1−j

·
βs−1−j
2 g2

j,i∑s−1
k=1 β

s−1−k
2 g2

k,i

(⋆)

≤ 1− β1√
1− β2

√√√√s−1∑
j=1

βs−1−j
1 ·

s−1∑
j=1

(
β1

β2

)s−1−j

=
1− β1√
1− β2

√√√√√1− βs−1
1

1− β1
·
1−

(
β1

β2

)s−1

1− β1

β2

≤

√√√√ (1− β1)(1− βs−1
1 )

(1− β2)
(
1− β1

β2

) ,

where (◦) follows from applying Cauchy-Schwarz inequality, which gives us (
∑s

j=1 β
s−1−j
1 gj,i)

2 ≤∑s
j=1 β

s−1−j
1

∑s
j=1 β

s−1−j
1 g2

j,i ; (⋆) is due to
βs−1−j
2 g2

j,i∑s−1
k=1 βs−1−k

2 g2
k,i

≤ 1.

For the second conclusion, we have:

∥∇f(xs)∥ ≤ ∥∇f(xs)∥+ ∥∇f(xs)−∇f(xs−1)∥ ≤ ∥∇f(xs)∥+ L∥xs − xs−1∥.

Furthermore, it follows that:

∥xs − xs−1∥ ≤
√
d∥xs − xs−1∥∞ = ηs−1

√
d

∥∥∥∥ϕs−1 ⊙ms−1

bs−1

∥∥∥∥
∞

≤ ηs−1

√
d

∥∥∥∥ms−1

bs−1

∥∥∥∥
∞

≤ η

√√√√ d

(1− β2)
(
1− β1

β2

) = C0

√
d

1− β1

β2

.
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So,we obtain:

∥∇f(xs)∥ ≤ ∥∇f(x1)∥+ LC0

√
d

1− β1

β2

≤ ∥∇f(x1)∥+ LC0s

√
d

1− β1

β2

.

E.7 Lemma E.6

Lemma E.6. Suppose that f is L-smooth and Assumption 4.1 holds, then for any x ∈ Rd,then we
have

∥∇f(x)∥2 ≤ 2L(f(x)− f∗).

If η = C0

√
1− β2 , 0 ≤ β1 < β2 < 1, let any xt,yt be defined in (10), then we have

∥∇f(xt)∥2 ≤ 2∥∇f(yt)∥+
2L2C2

0d

(1− β1)2(1− β1/β2)
, ∀s ≥ 1.

Proof. For the first conclusion, we define x̂ = x− 1
L∇f(x). According to the descent Lemma for

L-smooth functions, we have:

f(x̂) ≤ f(x) + ⟨∇f(x), x̂− x⟩+ L

2
∥x̂− x∥2 ≤ f(x)− 1

2L
∥∇f(x)∥2.

Rearranging the terms and noting that f(x̂) ≥ f∗, where f∗ denotes the optimal value of f , it follows
that:

∥∇f(x)∥2 ≤ 2L (f(x)− f(x̂)) ≤ 2L (f(x)− f∗) .

For the second conclusion, utilizing the norm inequality and the L-smoothness property, we obtain:

∥∇f(xt)∥2 ≤ 2∥∇f(yt)∥2 + 2∥∇f(xt)−∇f(yt)∥2

≤ 2∥∇f(yt)∥2 + 2L2∥yt − xt∥2

= 2∥∇f(yt)∥+
2L2β2

1

(1− β1)2
∥xt − xt−1∥2

≤ 2∥∇f(yt)∥2 + 2

(
Lβ1

√
dηt−1

1− β1

)2 ∥∥∥∥mt−1

bt−1

∥∥∥∥2
∞

(⋆)

≤ 2∥∇f(yt)∥2 +
2L2C2

0d

(1− β1)2(1− β1/β2)
,

where (◦) is due to Young’s inequality; (⋆) relies on the inequality ηt ≤ η
1−β1

≤ C0

√
1−β2

1−β1
, followed

by Lemma E.5.

E.8 Lemma E.7

Lemma E.7. Given T ≥ 1,suppose that for any s ∈ [T ],coordinate-wise ξs,i = gs,i − ∇f(xs)i
satisfies Assumption 4.4.Then for any given δ ∈ (0, 1), it holds that with probability at least 1− δ,

ξ2s,i ≤ D2
Tσ

2
i , ∀s ∈ [T ].

Then, if the inequality holds, we have

max
j∈[s]

∥ξj∥ ≤ GT (s), max
j∈[s]

∥gj∥ ≤ GT (s), max
j∈[s]

∥vj∥∞ ≤ (GT (s))
2
, ∀s ∈ [T ].

Proof. First, we define ωs,i =
ξ2s,i
σ2
i

for all s ∈ [T ]. According to Assumption 4.4, taking the full
expectation yields:

E [exp(ωs,i)] ≤ exp(1).
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By applying the Markov inequality, for any δ ∈ (0, 1), we have:

P
(
max
s∈[T ]

ωs,i ≥ δ

)
= P

(
exp

(
max
s∈[T ]

ωs,i

)
≥ exp(δ)

)
≤ exp(−δ)E

[
exp

(
max
s∈[T ]

ωs,i

)]
≤ exp(−δ)E

[
T∑

s=1

exp(ωs,i)

]
≤ exp(−δ)T exp(1).

This implies that, with probability at least 1− δ,

ξ2s,i ≤ log

(
eT

δ

)
σ2
i ∀s ∈ [T ].

Consequently, it follows that:
∥ξs∥2 ≤ D2

T

(
∥σ∥2 + 2G2

s

)
≤ G2

T (s),

where DT and GT (s) are appropriately defined constants or functions in 11.

Next, applying Young’s inequality and given DT ≥ 1, for any j ∈ [s], we obtain:

∥gj∥2 ≤ 2∥∇f(xj)∥2 + 2∥ξj∥2 ≤ 2D2
T

(
∥σ∥2 + ∥∇f(xj)∥2

)
≤ (GT (s))

2.

Finally, we employ mathematical induction to establish the concluding result. For any i ∈ [d], note
that the base case holds since:

v1,i = (1− β2)g
2
1,i ≤ (GT (s))

2.

Assume that for some s′ ∈ [s], the inequality vj,i ≤ (GT (s))
2 holds for all j ∈ [s′]. Then, for the

inductive step at j = s′ + 1,
vs′+1,i = β2vs′,i + (1− β2)g

2
s′,i ≤ β2(GT (s))

2 + (1− β2)(GT (s))
2 = (GT (s))

2.

Thus, by induction, it follows that:
vj,i ≤ (GT (s))

2 ∀j ∈ [s].

Since this inequality holds for all i ∈ [d], we conclude that the desired result is obtained.

E.9 Lemma E.8

Lemma E.8. Given T ≥ 1. If bs = (bs,i)i and as = (as,i)i follow the definitions in 11, and Lemma
E.7 holds, then for all s ∈ [T ], i ∈ [d], c ∈ {1, γ, 1/γ},γ is given by Algorithm 1,∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ ≤ GT (s)
√
1− β2

as,ibs,i
,∣∣∣∣ 1

as,i
− 1

bs−1,i

∣∣∣∣ ≤ (GT (s) + ϵ)
√
1− β2

as,ibs−1,i
,∣∣∣∣ 1

as,i
− c

bs−1,i

∣∣∣∣ ≤ (GT (s))β3

as,ibs−1,i
,

where β3 = |c2β2−1|+|c2−1|
c
√
1−β2

.

Proof. First, we prove the first inequality:∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ =
∣∣√vs,i −

√
ṽs,i
∣∣

as,ibs,i
=

1− β2

as,ibs,i

∣∣g2
s,i − (GT (s))

2
∣∣

√
vs,i +

√
ṽs,i

(◦)
≤ 1− β2

as,ibs,i
· (GT (s))

2

√
vs,i +

√
β2vs−1,i + (1− β2)(GT (s))2

(⋆)

≤ GT (s)
√
1− β2

as,ibs,i
,
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where (◦) applies the result from Lemma E.7, g2
s,i ≤ ∥gs∥2 ≤ (GT (s))

2, and (⋆) is due to√
ṽs,i ≥

√
1− β2GT (s).

Next, we prove the second inequality using
√
a−

√
b ≤

√
a− b for 0 ≤ b ≤ a:∣∣∣∣ 1

bs−1,i
− 1

as,i

∣∣∣∣ =
∣∣√ṽs,i −

√
vs−1,i

∣∣
bs−1,ias,i

≤ 1

bs−1,ias,i

(1− β2)
∣∣(GT (s))

2 − vs−1,i

∣∣√
ṽs,i +

√
vs−1,i

(◦)
≤ 1

bs−1,ias,i
· (1− β2)(GT (s))

2√
ṽs,i +

√
vs−1,i

(⋆)

≤ GT (s)
√
1− β2

bs−1,ias,i
,

where (◦) is due to the fact that vs−1,i ≤ (GT (s))
2, as stated in Lemma E.7; and (⋆) follows from

the inequality
√
1− β2G

2
T (s) ≤ ṽs,i.

Finally, we prove the third inequality, similar to the proof of the second inequality:∣∣∣∣ c

bs−1,i
− 1

as,i

∣∣∣∣ =
∣∣c√ṽs,i −

√
vs−1,i

∣∣
bs−1,ias,i

≤ 1

bs−1,ias,i

|c2ṽs,i − vs−1,i|
c
√

ṽs,i +
√
vs−1,i

≤ 1

bs−1,ias,i

|c2β2(vs−1,i −G2
T (s)) + (c2 − 1)(G2

T (s)− vs−1,i)|
c
√
ṽs,i +

√
vs−1,i

≤ 1

bs−1,ias,i

(|c2β2 − 1|+ |c2 − 1|)G2
T (s)

c
√
1− β2GT (s)

.

Let β3 = |c2β2−1|+|c2−1|
c
√
1−β2

, then we have:∣∣∣∣ c

bs−1,i
− 1

as,i

∣∣∣∣ ≤ β3GT (s)

bs−1,ias,i
.

This completes the proof of all three inequalities.

E.10 Lemma E.9

Lemma E.9. Given T ≥ 1 and δ ∈ (0, 1). If Assumptions 4.4 holds, then for any β > 0, λ =
2(1−β1)

√
1−β2

3ηGT β , with probability at least 1− δ,

A.1.1 ≤ 1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log(

T

δ
)

A.1.2 ≤ 1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + ηβGT (t)
√
1− β2

2(1− β1)

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 .
Proof. Recalling the definitions of as and GT (s), for any s ∈ [T ] and i ∈ [d], we have:

1

as,i
≤ 1

(GT (s) + ϵ)
√
1− β2

≤ 1

GT (s)
√
1− β2

≤ 1

σi

√
1− β2

.

Then, we define:

X̂s,i = −ηsϕs,i∇f(xs)iξs,i
as,i

, Xs,i = −ηs∇f(xs)iξs,i
as,i

, ws,i =
ηs∇f(xs)i

as,i
σi,
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where ∇f(xs)i and as,i are measurable with respect to Fs−1,i = σ(ξ1,i · · · , ξs−1,i) and ξs,i is the
noise at step s. Thus:

Fs,i = σ(ξ1,i · · · , ξs,i).
Next, applying the Cauchy-Schwarz inequality, we obtain:〈

∇f(xs),
ϕs ⊙ ξs

as

〉2

≤
〈
∇f(xs),

ξs
as

〉2

≤
∥∥∥∥∇f(xs)

as

∥∥∥∥2 ∥ξs∥2.
Given Assumption 4.4:Eξ[∇f(x; ξ)] = ∇f(x), and:

(∇f(x; ξ)i −∇f(x)i)
2 ≤ σ2

i ,

almost surely, it follows that:

E

[
exp

(
X̂2

s,i

w2
s,i

)
| Fs−1,i

]
≤ E

[
exp

(
X2

s,i

w2
s,i

)
| Fs−1,i

]

≤ E

[
exp

(
ηs∇f(xs)iξ

2
s,i

ηs∇f(xs)iσ2
i

)
| Fs−1,i

]
≤ exp(1).

Then, by invoking Lemma E.2, we derive:
t∑

s=1

X̂s,i ≤
3λ

4

t∑
s=1

w2
s,i +

1

λ
log

(
T

δ

)

=
3λ

4

t∑
s=1

η2s∇f(xs)
2
i

a2s,i
σ2
i +

1

λ
log

(
T

δ

)
(◦)
≤ 3λη

4(1− β1)
√
1− β2

t∑
s=1

ηs∇f(xs)
2
i

as,i
σi +

1

λ
log

(
T

δ

)
(⋆)

≤ 3ληGT (t)

4(1− β1)
√
1− β2

t∑
s=1

ηs∇f(xs)
2
i

as,i
+

1

λ
log

(
T

δ

)
,

where (◦) follows from 1
as,i

≤ 1
σi

√
1−β2

and ηs ≤ η
1−β1

;(⋆) follows from σi ≤ GT .

Setting λ = 2(1−β1)
√
1−β2

3ηGT β , we obtain:

A.1.1 =

t∑
s=1

−ηs

〈
∇f(xs),

ϕs ⊙ ξs
as

〉
≤ 1

2β

t∑
s=1

d∑
i=1

ηs∇f(xs)
2
i

as,i
+

d

λ
log

(
T

δ

)

=
1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log

(
T

δ

)
.

Next, we bound A.1.2 as follows:

A.1.2 =

t∑
s=1

ηs

〈
∇f(xs),

(
1

as
− 1

bs

)
ϕs ⊙ gs

〉

≤
d∑

i=1

t∑
s=1

ηs

∣∣∣∣ 1

as,i
− 1

bs,i

∣∣∣∣ · |∇f(xs)igs,i|

(◦)
≤

d∑
i=1

t∑
s=1

ηs ·
GT (s)

√
1− β2

as,ibs,i
· |∇f(xs)igs,i|

(⋆)

≤ 1

2β

d∑
i=1

t∑
s=1

ηs∇f(xs)
2
i

as,i
+

(1− β2)β

2

d∑
i=1

t∑
s=1

(GT (s))
2

as,i
·
ηsg

2
s,i

b2
s,i

(•)
≤ 1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + ηβGT (t)
√
1− β2

2(1− β1)

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 ,
where (◦) follows from the result of Lemma E.8, (⋆) is due to Young’s inequality, and (•) relies on
1

as,i
≤ 1

σi

√
1−β2

and ηs ≤ η
1−β1

.
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E.11 Lemma E.10

Lemma E.10. Given T ≥ 1, if Lemma E.7 holds, then for all t ∈ [T ],

B.1 ≤
t∑

s=1

ηs
β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + t∑
s=1

β(GT (t))η
√
1− β2

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2
+

t∑
s=1

βGT (t)ηβ
2
3

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 + 2
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
.

Proof. Decompose ∆s ⊙ (xs − xs−1) as follows:

∆s ⊙ (xs − xs−1) =

(
ηsbs−1 ⊙ ϕs

ηs−1bs ⊙ ϕs−1
− 1d

)
⊙
(
ηs−1

ms−1 ⊙ ϕs−1

bs−1

)
= −ϕs ⊙

(
ηs
bs

− ηs
as

)
⊙ms−1

−
(
ηsϕs

as
− ηsϕs−1

bs−1

)
⊙ms−1 − (ηs − ηs−1)

ms−1 ⊙ ϕs−1

bs−1
.

Then, we have

B.1 ≤ β1

1− β1
·
∣∣∣∣〈∆s ⊙

ηs−1ms−1 ⊙ ϕs−1

bs−1
,∇f(xs)

〉∣∣∣∣
=

β1

1− β1
·
∣∣∣∣〈(ηsϕs

bs
− ηs−1ϕs−1

bs−1

)
⊙ms−1,∇f(xs)

〉∣∣∣∣
≤ β1

1− β1
·
∣∣∣∣〈( ηs

bs
− ηs

as

)
⊙ ϕs ⊙ms−1,∇f(xs)

〉∣∣∣∣︸ ︷︷ ︸
B.1.1

+
β1

1− β1
·
∣∣∣∣〈(ηsϕs

as
− ηsϕs−1

bs−1

)
⊙ms−1,∇f(xs)

〉∣∣∣∣︸ ︷︷ ︸
B.1.2

+
β1

1− β1
·
∣∣∣∣(ηs−1 − ηs)

〈
ϕs−1 ⊙ms−1

bs−1
,∇f(xs)

〉∣∣∣∣︸ ︷︷ ︸
B.1.3

.

For B.1.1:
β1

1− β1

∣∣∣∣〈( ηs
bs

− ηs
as

)
⊙ ϕs ⊙ms−1,∇f(xs)

〉∣∣∣∣
=

β1

1− β1

d∑
i=1

ηs

∣∣∣∣( 1

bs,i
− 1

as,i

)
ϕs,ims−1,i∇f(xs)i

∣∣∣∣
≤ β1

1− β1

d∑
i=1

ηs

∣∣∣∣( 1

bs,i
− 1

as,i

)
ms−1,i∇f(xs)i

∣∣∣∣
(◦)
≤

d∑
i=1

β1

1− β1
· GT (s)ηs

√
1− β2

as,ibs,i
· |∇f(xs)ims−1,i|

(⋆)

≤
d∑

i=1

ηs
2β

· ∇f(xs)
2
i

as,i
+

βηsβ
2
1(1− β2)

2(1− β1)2

d∑
i=1

(GT (s))
2

as,i
·
m2

s−1,i

b2
s,i

≤ ηs
2β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + β(GT (t) + ϵ)η
√
1− β2

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 ,
where (◦) follows from Lemma E.8, and (⋆) follows from Young’s inequality.
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For B.1.2, let ϕs,i

ϕs−1,i
= ci and for any ci ∈ {1, γ, 1/γ}, let

β3 = max

{
1− β2√
1− β2

,
2− γ2(1 + β2)

γ
√
1− β2

,
|β2 − γ2|+ 1− γ2

γ
√
1− β2

}
.

Then, we derive:

β1

1− β1

∣∣∣∣〈( ηsϕs

bs−1
− ηsϕs−1

as

)
ms−1,∇f(xs)

〉∣∣∣∣
=

β1

1− β1

d∑
i=1

ηsϕs−1,i

∣∣∣∣( ci
bs−1,i

− 1

as,i

)
ms−1,i∇f(xs)i

∣∣∣∣
(◦)
≤

d∑
i=1

β1

1− β1
· GT (s)ηsβ3

as,ibs−1,i
· |∇f(xs)ims−1,i|

(⋆)

≤
d∑

i=1

ηs
2β

· ∇f(xs)
2
i

as,i
+

βηsβ
2
1β

2
3

2(1− β1)2

d∑
i=1

(GT (s))
2

as,i
·
m2

s−1,i

b2
s,i

≤ ηs
2β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + β(GT (t) + ϵ)ηβ2
3

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 ,
where (◦) follows from Lemma E.8 and the condition ϕi ≤ 1, and (⋆) is due to Young’s inequality.

For B.1.3, we derive:

β1

1− β1
·
∣∣∣∣(ηs−1 − ηs)

〈
ϕs−1 ⊙ms−1

bs−1
,∇f(xs)

〉∣∣∣∣
=

β1

1− β1

∣∣∣∣∣η
(√

1− βs
2

1− βs
1

−
√
1− βs

2

1− βs
1

+

√
1− βs

2

1− βs−1
2

−
√
1− βs

2

1− βs−1
2

)〈
ϕs−1 ⊙ms−1

bs−1
,∇f(xs)

〉∣∣∣∣∣ .
Thus,

B.1.3 ≤
ηβ1

√
1− βs

2

1− β1

∣∣∣∣( 1

1− βs−1
1

− 1

1− βs
1

)〈
∇f(xs),

ϕs−1 ⊙ms−1

bs−1

〉∣∣∣∣︸ ︷︷ ︸
B.1.3.1

+
ηβ1

(1− β1)(1− βs−1
1 )

∣∣∣∣(√1− βs−1
2 −

√
1− βs

2

)〈
∇f(xs),

ϕs−1 ⊙ms−1

bs−1

〉∣∣∣∣︸ ︷︷ ︸
B.1.3.2

.

Note that ∥∇f(xs)∥ ≤ Gs ≤ Gt for all s ≤ t. Then, by applying the Cauchy-Schwarz inequality,
Lemma E.5, and the condition ϕi ≤ 1, we have:√

1− βs
2

∣∣∣∣〈∇f(xs),
ϕs−1 ⊙ms−1

bs−1

〉∣∣∣∣
≤
√
1− βs

2∥∇f(xs)∥
∥∥∥∥ms−1

bs−1

∥∥∥∥ ≤
√
dGt

√
(1− β1)(1− βs−1

1 )

(1− β2)(1− β1/β2)
.

Therefore, summing B.1.3.1 over s ∈ [t], using β1 ∈ [0, 1], and noting that B.1.3.1 vanishes when
s = 1:

t∑
s=1

B.1.3.1 ≤
√
dηGt

1− β1
·

√
1− β1

(1− β2)(1− β1/β2)

t∑
s=2

(
1

1− βs−1
1

− 1

1− βs
1

)

≤
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
.
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Similarly, since ∥∇f(xs)∥ ≤ Gs ≤ Gt for all s ≤ t, and 1− βs−1
1 ≥ 1− β1, and ϕi ≤ 1, we have:

1

1− βs−1
1

∣∣∣∣〈∇f(xs),
ϕs−1 ⊙ms−1

bs−1

〉∣∣∣∣
≤ 1

1− βs−1
1

∥∇f(xs)∥
∥∥∥∥ms−1

bs−1

∥∥∥∥ ≤
√
dGt

√
1

(1− β2)(1− β1/β2)
.

Thus, we have:

t∑
s=1

B.1.3.2 ≤
√
dηGt

1− β1
·

√
1

(1− β2)(1− β1/β2)

t∑
s=2

(√
1− βs−1

2 −
√
1− βs

2

)

≤
√
dηGt

(1− β1)
√

(1− β2)(1− β1/β2)
≤

√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
.

Therefore, combining all terms, we obtain:

B.1 ≤
t∑

s=1

ηs
2β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + t∑
s=1

βGT (t)η
√
1− β2

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 + t∑
s=1

ηs
2β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2
+

t∑
s=1

βGT (t)ηβ
2
3

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 + 2
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)

=

t∑
s=1

ηs
β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + t∑
s=1

βGT (t)η
√
1− β2

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2
+

t∑
s=1

βGT (t)ηβ
2
3

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 + 2
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
.

E.12 Lemma E.11

Lemma E.11. Let β2 = 1 − 1/T , and Fi(t) be given in Lemma E.3. We have log
(

Fi(T )

βT
2

)
∼

O(log(T )).

Proof. First, we have

− log β2 = log

(
1

β2

)
≤ 1− β2

β2
=

1/T

1− 1/T
≤ 2

T
, (13)

where we apply log(1/a) ≤ (1− a)/a,∀a ∈ (0, 1).

It follows that

log

(
F(T )

βT
2

)
≤ log(F(T )) + 2 ≤ log(e2F(T )). (14)

According to the definition of Fi(t) in Lemma E.3, we have

t∑
s=1

βt−s
2 g2

s,i ≤ 2

t∑
s=1

(
∇f(xs)

2
i + ξ2s,i

)
≤ 2

t∑
s=1

(
σ2
i +∇f(xs)

2
i

)
≤ 2

(
∥σ∥2∞t+

t∑
s=1

∥∇f(xs)∥2∞

)
.

(15)
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Thus, we obtain

Fi(t) = 1 +
1

ϵ2

t∑
s=1

βt−s
2 g2

s,i

(◦)
≤ 1 +

2

ϵ

∥σ∥2∞ +

(
∥∇f(x1)∥∞ + tLC0

√
d

1− β1/β2

)2
 t


(⋆)

≤ 1 +
2

ϵ

[(
∥σ∥2∞ + 2∥∇f(x1)∥2∞

)
t+

2L2C2
0d

1− β1/β2
t3
]
,

(16)

where (◦) follows from using Lemma E.5; (⋆) is due to (a+ b)2 ≤ 2a2 + 2bb.

Therefore combining (13), (14) and (16), we arrive at log
(

Fi(T )

βT
2

)
∼ O(log(T )).

F Proofs of Theorem 4.2

Proof. Applying the descent Lemma to the algorithm, we have

f(ys+1) ≤ f(ys) + ⟨∇f(ys),ys+1 − ys⟩+
L

2
∥ys+1 − ys∥2

= f(ys) +

〈
∇f(ys),−ηsϕs ⊙

gs

bs
+

β1

1− β1
∆s ⊙ (xs − xs−1)

〉
+

L

2

∥∥∥∥−ηsϕs ⊙
gs

bs
+

β1

1− β1
∆s ⊙ (xs − xs−1)

∥∥∥∥2
= f(ys)− ηs

〈
∇f(ys), ϕs ⊙

gs

bs

〉
+

β1

1− β1
⟨∇f(ys),∆s ⊙ (xs − xs−1)⟩

+
L

2

∥∥∥∥−ηsϕs ⊙
gs

bs
+

β1

1− β1
∆s ⊙ (xs − xs−1)

∥∥∥∥2
≤ f(x1) +

t∑
s=1

−ηs

〈
∇f(ys), ϕs ⊙

gs

bs

〉
+

t∑
s=1

β1

1− β1
⟨∇f(ys),∆s ⊙ (xs − xs−1)⟩

+

t∑
s=1

L

2

∥∥∥∥−ηsϕs ⊙
gs

bs
+

β1

1− β1
∆s ⊙ (xs − xs−1)

∥∥∥∥2 .
Then, we define

A =

t∑
s=1

−ηs

〈
∇f(ys), ϕs ⊙

gs

bs

〉
,

B =

t∑
s=1

β1

1− β1
⟨∇f(ys),∆s ⊙ (xs − xs−1)⟩ ,

C =

t∑
s=1

L

2

∥∥∥∥−ηsϕs ⊙
gs

bs
+

β1

1− β1
∆s ⊙ (xs − xs−1)

∥∥∥∥2 .
Now, decomposing A and B,

A =

t∑
s=1

−ηs

〈
∇f(ys), ϕs ⊙

gs

bs

〉

=

t∑
s=1

−ηs

〈
∇f(xs), ϕs ⊙

gs

bs

〉
︸ ︷︷ ︸

A.1

+

t∑
s=1

ηs

〈
∇f(xs)−∇f(ys), ϕs ⊙

gs

bs

〉
︸ ︷︷ ︸

A.2

.
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B =

t∑
s=1

β1

1− β1
⟨∇f(ys),∆s ⊙ (xs − xs−1)⟩ =

β1

1− β1

t∑
s=1

⟨∇f(xs),∆s ⊙ (xs − xs−1)⟩︸ ︷︷ ︸
B.1

+
β1

1− β1

t∑
s=1

⟨∇f(ys)−∇f(xs),∆s ⊙ (xs − xs−1)⟩︸ ︷︷ ︸
B.2

.

Subsequently, using the conclusions of Lemma E.9 and Lemma E.8, we have

A.1 =−
t∑

s=1

ηs

∥∥∥∥√ϕs ⊙∇f(xs)√
as

∥∥∥∥2

−
t∑

s=1

ηs

〈
∇f(xs),

ϕs ⊙ ξs
as

〉
︸ ︷︷ ︸

A.1.1

+

t∑
s=1

ηs

〈
∇f(xs),

(
1

as
− 1

bs

)
⊙ ϕs ⊙ gs

〉
︸ ︷︷ ︸

A.1.2

.

A.1 ≤ −
t∑

s=1

ηsγ

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + 1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log

(
T

δ

)

+
1

2β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + ηβGT (t)
√
1− β2

2(1− β1)

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2
=

(
1

β
− γ

) t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log

(
T

δ

)
+

ηβGT (t)
√
1− β2

2(1− β1)

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 .
For A.2, applying Young’s inequality, we have

ηs

〈
∇f(xs)−∇f(ys),

ϕs ⊙ gs

bs

〉
(•)
≤ ηs∥∇f(xs)−∇f(ys)∥ ·

∥∥∥∥gs

bs

∥∥∥∥
(◦)
≤ 1

2L
∥∇f(xs)−∇f(ys)∥2 +

Lη2s
2

∥∥∥∥gs

bs

∥∥∥∥2
≤ Lβ2

1

2(1− β1)2
∥xs − xs−1∥2 +

Lη2

2(1− β1)2

∥∥∥∥gs

bs

∥∥∥∥2
(⋆)

≤ Lη2

2(1− β1)2

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 + Lη2

2(1− β1)2

∥∥∥∥gs

bs

∥∥∥∥2 ,
where (•) is based on ϕi ≤ 1 and applying the Cauchy-Schwarz inequality; (◦) follows from applying
Young’s inequality; (⋆) is due to

∥xs − xs−1∥2 ≤ η2s−1

∥∥∥∥ms−1

bs−1

∥∥∥∥2 ≤ η2
∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 .
Thus, summing over s ∈ [t], we obtain:

A.2 ≤ Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 + Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 .
For (B.1) , using Lemma E.10, we have

B.1 ≤
t∑

s=1

ηs
β

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + t∑
s=1

β(GT (t))η
√
1− β2

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2
+

t∑
s=1

βGT (t)ηβ
2
3

2(1− β1)3

∥∥∥∥ms−1

bs

∥∥∥∥2 + 2
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)
.
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For B.2, applying vector inequalities and Lemma E.4, we have

B.2 ≤ β1

1− β1

t∑
s=1

∥∆s∥∞∥xs − xs−1∥∥∇f(ys)−∇f(xs)∥

≤ Lβ2
1ω

(1− β1)2

t∑
s=1

∥xs − xs−1∥2

≤ Lω2η2

(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 .
Finally, for the upper bound of C, we have

C ≤ L

t∑
s=1

η2s

∥∥∥∥gs

bs

∥∥∥∥2 + Lβ2
1

(1− β1)2

t∑
s=1

∥∆s∥2∞∥xs − xs−1∥2

≤ Lη2

(1− β1)2

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 + Lη2ω2

(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 .
Therefore, we define

C1 =
ηβGT

√
1− β2

2(1− β1)
+

3Lη2

2(1− β1)2
,

C2 =
Lη2

2(1− β1)2
+

2Lη2ω2

(1− β1)2
,

C3 =
βGT η

√
1− β2

2(1− β1)3
+

βGT ηβ
2
3

2(1− β1)3
,

C4 =
2
√
dη√

(1− β1)3(1− β2)(1− β1/β2)
,

C5 =
L2C2

0d

(1− β1)2(1− β1/β2)
.

Then, we have

f(ys+1) ≤ f(x1) +

(
1

β
− γ

) t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log

(
T

δ

)
+

ηβGT (t)
√
1− β2

2(1− β1)

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2
+

Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2 + Lη2

2(1− β1)2

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 + 1

β

t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2
+

βGT (t)η
√
1− β2

2(1− β1)3

t∑
s=1

∥∥∥∥ms−1

bs

∥∥∥∥2 + βGT (t)ηβ
2
3

2(1− β1)3

t∑
s=1

∥∥∥∥ms−1

bs

∥∥∥∥2
+

2
√
dηGt√

(1− β1)3(1− β2)(1− β1/β2)

+
Lη2

(1− β1)2

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 + 2Lη2ω2

(1− β1)2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2
≤
(
2

β
− γ

) t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 + d

λ
log

(
T

δ

)
+ C1

t∑
s=1

∥∥∥∥gs

bs

∥∥∥∥2 + C2

t∑
s=1

∥∥∥∥m̂s−1

bs−1

∥∥∥∥2
+ C3
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bs

∥∥∥∥2 + C4GT .

Then, according to Lemma E.6, we have
∥∇f(xs+1)∥2 ≤ 2∥∇f(ys+1)∥2 + 2C5

≤ 4L(f(ys+1)− f∗) + 2C5.
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Thus, we have

∥∇f(xs+1)∥2 ≤ 4L(f(x1)− f∗) + 4L
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2

β
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) t∑
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+ 4LC1
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Recall Lemma E.3, we have:
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Let
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2LηβGT

√
1− β2

(1− β1)2
+

6Lη2

(1− β1)3

)
d log
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F(T )

βT
2

)
,
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)
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λ
log

(
T

δ

)
,

λ =
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√
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3ηGTβ
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Finally, given 0 ≤ β1 < β2 < 1, η = C0

√
1− β2, γ ∈

(
2
β , 1
)

, and β > 2, we define

β3 = max
{

1−β2√
1−β2

, 2−γ2(1+β2)

γ
√
1−β2

, |β2−γ2|+1−γ2

γ
√
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}
and ω = (

√
1 + 1/β2 + 1)max{1, γ, 1/γ}. With

these definitions, we can derive that G2 satisfies

G2 = 4L(f(x1)− f∗) +D1 +D2 +D3 +D4 +D5 + 2C5. (17)

Next, we proceed with a proof by mathematical induction. First, we assume that Gt ≤ G,GT (t) ≤
GT ,∀t ∈ [t] . Thus,

∥∇f(xt+1)∥2 ≤ G2 + 4L

(
2

β
− γ

) t∑
s=1

ηs

∥∥∥∥∇f(xs)√
as

∥∥∥∥2 ≤ G2.

Thus, Gt+1 = max{Gt, ∥∇f(xt+1)∥} ≤ G, which confirms the validity of the initial hypothesis.
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Since Lemma E.7 and Lemma E.9 each hold with probability at least 1-δ, they hold simultaneously
with probability at least 1-2δ. We have,

∥as∥∞ = max
i∈[d]
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2 G2

T + ϵ = GT

√
1− βs
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where (◦) is due to Lemma E.11, we have G2 ∼ O(poly(log(T ))).

G Experimental Details

G.1 Pretraining on CIFAR10

The ViT-27M model [44] undergoes pretraining on the CIFAR-10 dataset with comprehensive
hyperparameter specifications provided in Table 3. Our training protocol employs a base learning
rate of 1.5× 10−4 coupled with a cosine decay schedule over 200 training epochs. The optimization
configuration utilizes AdamW parameters with weight decay coefficient λ = 0.05, numerical stability
constants ϵ = 1× 10−8, and momentum terms β1 = 0.9, β2 = 0.95. To maintain training stability
while processing large-scale inputs, we implement a batch size of 4096 through gradient accumulation
with a step size of 20, ensuring memory efficiency without compromising convergence dynamics.

Table 3: Hyperparameters used for training ViT
# Params β1 β2 Learning Rate Weight Decay Batch Size Warmup Epochs
27.6M 0.9 0.95 1.5e-4 0.05 4096 20

G.2 Pretraining on WikiText-103

The LLaMA2-71M model[46] and Qwen2.5-150M model[47] were pre-trained on the Wikitext-103
dataset. Identical learning rates and scheduling protocols were systematically implemented across all
optimizers during the training process. Comprehensive experimental specifications are tabulated in
Table 4 and Table 5.
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Table 4: Hyperparameters used for training LLaMA2-71M on WikiText-103
Adam-Type Lion-Type Muon-Type

Model Size 71M
Hidden Size 512
Head 8
Depth 12
Training Steps 2034
Warmup Steps 203
Maximum Length 1024
Batch Size 480
Learning Rate 3e-4
Warmup Scheduling linear from 3e-5
Learning Rate Scheduling cosine to 10%
Numerical precision bfloat16
Weight Decay 0.01
β1 0.9 0.9 0.95
β2 0.999 0.99 0.95
Momentum % % 0.95

Table 5: Hyperparameters used for training Qwen2.5-150M on WikiText-103
Adam-Type Muon-Type

Model Size 150M
Hidden Size 640
Head 10
Depth 12
Training Steps 1525
Warmup Steps 154
Maximum Length 1024
Batch Size 160
Learning Rate 1e-3
Warmup Scheduling linear from 6e-5
Learning Rate Scheduling cosine to 10%
Numerical precision bfloat16
Weight Decay 0.01
β1 0.9 0.95
β2 0.95 0.95
Momentum % 0.95

G.3 Fine-Tuning on GLUE

We fine-tune the pre-trained RoBERTa-Base model[48] on the GLUE benchmark using the Hug-
ging Face implementation23. For all tasks except QQP, we employ a batch size of 32, while
QQP uses a larger batch size of 128 due to its dataset characteristics. The model is trained uni-
formly for 3 epochs across all tasks with a maximum sequence length of 512. For each task,
we perform a grid search over learning rates. For most optimizers, the learning rate range is
{1e-5, 2e-5, 3e-5, 4e-5, 5e-5} and the weight decay is set to 0.01. For Lion-type optimizers, the
learning rate range is {1e-6, 2e-6, 3e-6, 4e-6, 5e-6} and the weight decay is set to 0.1. The complete
hyperparameter configurations are summarized in Table 6. For MGUP-AdamW, AdamW, Adam-mini,
and C-AdamW, we use β1 = 0.9 and β2 = 0.999. For LDAdam and Galore, we use β1 = 0.9 and
β2 = 0.99. For Lion, C-Lion, and MGUP-Lion, we use β1 = 0.95 and β2 = 0.98.

2https://huggingface.co/transformers/model_doc/roberta.html
3https://huggingface.co/datasets/nyu-mll/glue
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Table 6: Hyperparameters used for fine-tuning on GLUE.
Hyperparameter MRPC STS-B CoLA RTE SST-2 QNLI QQP
Batch Size 32 32 32 32 32 32 128
Weight Decay (Most) 0.01
Weight Decay (Lion-type) 0.1
Epochs 3
Max Seq Len 512

G.4 Fine-Tuing on GSM8K

We fine-tune the pre-trained LLaMA2-7B model [68] using the llm-foundry codebase4 with evalu-
ation via standardized lm-evaluation-harness5 on the GSM8K benchmark with the Hugging Face
implementation6. The fine-tuning process employs consistent hyperparameters across all optimizers,
including MGUP-AdamW, Adam-8bit, AdamW, and C-AdamW. Specifically, we train for 3 epochs
with a total of 702 training steps, including 20 warm-up steps. The batch size is set to 32, and the
maximum sequence length is 512. We use a learning rate of 5e-5 and optimizer parameters β1 = 0.9
and β2 = 0.999. The complete hyperparameter configurations are summarized in Table 7.

Table 7: Hyperparameter configurations for fine-tuning LLaMA2-7B on GSM8K.
Hyperparameter Value
Epochs 3
Training Steps 702
Warm-up Steps 20
Batch Size 32
Maximum Length 512
Learning Rate 5e-5
β1 0.9
β2 0.999

H Other Algorithm

Algorithm 3 MGUP-Lion

Input: Learning rate ηt > 0, initial parameters x0 ∈ Rd, loss function f(x), momentum factors
β1, β2 ∈ [0, 1), weight decay coefficient λ, stability term ϵ > 0, ratio τ ∈ (0, 1).
for t = 1 to T do

Compute the stochastic gradient gt = ∇f(xt; ξt)
ut = sign(β1mt−1 + (1− β1)gt)
mt = β2mt−1 + (1− β2)gt

ϕt = MGUP(ut ⊙ gt)
xt = (1− ηtλ)⊙ xt

xt+1 = xt − ηtϕt ⊙ ut

end for

4https://github.com/hiyouga/LLaMA-Factory
5https://github.com/EleutherAI/lm-evaluation-harness
6https://huggingface.co/datasets/openai/gsm8k
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Algorithm 4 MGUP-Muon

Input: Learning rate ηt > 0, initial parameters X0 ∈ Rm×n, loss function f(X), momentum
factors β ∈ [0, 1), weight decay coefficient λ, ratio τ ∈ (0, 1).
for t = 1 to T do

Compute the stochastic gradient Gt = ∇f(Xt; ξt)
Mt = βMt−1 +Gt

ϕt = MGUP(Mt ⊙Gt)
Ut = Newton-Schulz(Mt)
Xt = (1− ηtλ)⊙Xt

Xt+1 = Xt − ηtϕt ⊙Ut

end for

I More Results

As shown in Figure 7, which depicts the training curves under a learning rate of 5e-5, MGUP-AdamW
achieves lower training loss per epoch, outperforming baseline optimizers.

Figure 7: Training curves of LLaMA2-7B on GSM-8K.

I.1 Memory cost

Table 8 reports memory for fine-tuning LLaMA-7B on two NVIDIA V100 32GB GPUs. We use a
micro batch size of 1 for GSM8K fine-tuning. Our algorithm introduces transient elevation in peak
memory overhead while maintaining unaltered static memory allocation throughout the computational
process.

Table 8: Memory for FineTuing LLaMA2-7B on GSM8K
Adam-8bit AdamW C-AdamW MGUP-AdamW

Peak Reserved Memory 25.38GB 32.09GB 32.98GB 33.82 GB
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I.2 Time cost

Table 9 documents the runtime measurements for both fine-tuning and pre-training processes con-
ducted primarily on a single NVIDIA RTX 4090 24GB GPU, with one exceptional case: LLaMA2-7B
fine-tuning utilizing two NVIDIA V100-32GB GPUs. For GSM8K fine-tuning experiments, we
maintained a micro-batch size of 1 throughout the process. In pre-training configurations, gradient
accumulation strategy was implemented to optimize memory utilization.
Remark I.1. In all experiments, we documented the duration from initiation to completion rather
than the algorithm’s execution time. Discrepancies may arise due to variations in GPU operational
states.

Table 9: Runtime for FineTuing(PT) and PreTraining(PT) tasks
Model Task AdamW C-AdamW MGUP-AdamW
ViT-28M CIFAR10(PT) 1h5m 1h 6m 1h 6m
LLaMA2-71M WikiText-103(PT) 5h 36m 5h 37m 5h 37m
Qwen2.5-150M WikiText-103(PT) 1h 54m 1h55m 1h56m
RoBERTa-Base QQP(FT) 25m 30m 34m
LLaMA2-7B GSM8K(FT) 15h 53m 21h 37m 22h 58m
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